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Abstract

Lactococcus lactis strains are important components in industrial starter cultures for cheese

manufacturing. They have many strain-dependent properties, which affect the final product.

Here, we explored the use of machine learning to create systematic, high-throughput

screening methods for these properties. Fast acidification of milk is such a strain-dependent

property. To predict the maximum hourly acidification rate (Vmax), we trained Random For-

est (RF) models on four different genomic representations: Presence/absence of gene fami-

lies, counts of Pfam domains, the 8 nucleotide long subsequences of their DNA (8-mers),

and the 9 nucleotide long subsequences of their DNA (9-mers). Vmax was measured at dif-

ferent temperatures, volumes, and in the presence or absence of yeast extract. These con-

ditions were added as features in each RF model. The four models were trained on 257

strains, and the correlation between the measured Vmax and the predicted Vmax was evalu-

ated with Pearson Correlation Coefficients (PC) on a separate dataset of 85 strains. The

models all had high PC scores: 0.83 (gene presence/absence model), 0.84 (Pfam domain

model), 0.76 (8-mer model), and 0.85 (9-mer model). The models all based their predictions

on relevant genetic features and showed consensus on systems for lactose metabolism,

degradation of casein, and pH stress response. Each model also predicted a set of features

not found by the other models.

Introduction

It is important to understand the genomic basis for microbial traits in order to produce better

microorganisms for food cultures, probiotics, and production of enzymes, medicine, and

chemicals. While the arrival of whole-genome sequencing has revealed the DNA sequences of

microorganisms, the functions of many microbial genes are as yet unknown. Furthermore,

many phenotypes are complex and depend on the interactions of multiple genes. Phenotypes

may therefore still be difficult to predict even with good knowledge of the genes directly

involved and their individual functions. When little previous knowledge of the phenotype is
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available, machine learning provides a fast and cheap way to model the phenotype; simulta-

neously providing a valuable screening tool and insights into the mode of action. We here

demonstrate how machine learning can be applied to genome data in order to predict complex

traits and identify genes involved in causing them.

Lactococcus lactis is widely used in industrial starter cultures for cheese and butter-milk

production. The choice of starter culture affects both the texture, flavour, and aroma of the

cheese [1]. It is therefore valuable to be able to characterize large numbers of potential new

starter culture strains in a fast and cheap manner. An important characteristic is the milk acid-

ification activity of a strain. This can be measured in terms of decrease in pH over time as lactic

acid is produced from lactose. To compare these measurements, acidification can be quantified

by for instance maximum hourly acidification rate (Vmax), time to reach Vmax, and lowest pH

obtained. These acidification kinetics of L. lactis are strain-dependent and cannot be inferred

from species or subspecies. In addition to high-throughput screening assays [2], in-silico
screening of strains based on whole-genome sequencing data is now commonly used for vari-

ous types of strain characterization. In-silico screening scales well, enabling fast screening of

many strains. However, while some bacterial traits can be inferred from the presence of a sin-

gle gene (for instance many types of antibiotic resistance [3]), other traits are more complex

and building genome-based screening tools for these is not a trivial task. Milk acidification in

L. lactis is such a phenotype, which depends on multiple genes and interactions. Indepen-

dently, many of the mechanisms involved are well-described in literature, but determining the

results of their combined contributions is still imprecise. Machine learning has become state of

the art for extracting essential information from complex data structures in fields such as

image recognition, speech recognition, and text mining. Machine learning models are mathe-

matical models such as linear regression, which are constructed directly from data. Based on a

set of features and known target values, a model is constructed that can predict target values

from feature values. In recent years, machine learning has also been applied for the prediction

of different bacterial phenotypes. Traitar [4] is an example of such a tool, which was developed

to predict a wide array of phenotypes such as the ability to grow aerobically, to form spores, or

ferment glucose. Other studies focus on predicting resistance or susceptibility to various anti-

biotics [5–7] or minimum inhibitory concentrations [8]. While many prediction models focus

on clinically relevant phenotypes for pathogenic bacteria, two studies have applied classifica-

tion models specifically to Lactococcus strains [9, 10] predicting antibiotic resistance, metal

resistance, and ability to grow on various carbon sources, on milk, and on polysaccharides.

The best way to represent genomes in a machine learning model depends on what causes

the phenotype. Some bacterial traits can be predicted by the presence of certain combinations

of genes. One genomic representation is thus the presence/absence of genes. One study thus

used Ortholog Groups (OGs) to define the presence/absence of genes [9]. Another study used

a pangenome to identify the presence/absence of genes [7]. In a pangenome, genes from differ-

ent bacterial strains are grouped together based on sequence similarity. However, sometimes

genes with lower sequence similarity have the same function. Another study used Pfam

domain families to represent the genomes [4]. Pfam domains are functional or structural

regions of the genes [11]. Using these allows a model to discriminate based on functional pro-

files rather than full-length protein sequence similarity. However, sometimes the difference in

phenotype is expected to arise from point mutations or from non-coding areas of the genome.

To identify these types of signals, genomes can be represented by k-mers. These are sub-

sequences of the DNA of length k. This genome representation has also been used for creating

phenotype prediction models [5, 12–14].

When predicting bacterial phenotypes with machine learning, the number of features is

typically large compared to the number of target values and the data is very noisy in the sense
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that most of the features have no effect on the phenotype. The machine learning algorithm

Random Forest (RF) [15] is well suited for this type of data. Other algorithms which have been

used for bacterial phenotype prediction include Support Vector Machines [4], Neural Net-

works [6, 7], Gradient Boosted Decision Trees [7], XGBoost [8], Logistic Regression [6, 12,

13], and Linear Regression [12]. A RF is not prone to over-fitting when given many features

and can handle non-linear associations and highly correlating features [16]. A RF consists of

multiple decision trees, which are each built from a different subset of the training data. A

decision tree makes a prediction based on a set of rules, which are learned from the data.

When solving regression problems, the final prediction of the RF model is the average of the

decision tree predictions, and when solving classification problems, the final prediction of the

RF model is the most common of the decision tree predictions. A RF model is constructed by

using a part of the data, the training data, to build the decision trees from, and the remaining

data, the test data to test if the model generalizes well to new data. By building each tree from a

random subset of the training data the algorithm reduces over-fitting. Using random sampling

with replacement for each tree is called bootstrapping. When deciding the splits in decision

trees, it is also an option to consider only a subset of the features at each split. While generally

used to reduce overfitting, this may lead to poorer prediction performance when there are

many (noisy) features, as it increases the chance of leaving out important features when decid-

ing the splits [16].

It is possible to get an indication of which biological mechanisms are at play by performing

feature importance analysis on a trained model. In feature importance analysis, features are

ranked by their ability to predict the target. There are different ways to measure feature impor-

tance. One is to measure the impact each individual feature has on the model, by randomly per-

muting its feature values and measuring the effect on prediction accuracy. Another measure,

impurity-decrease, is calculated directly from the trained model. It bases feature importance on

how much the feature averagely decreases the variance of the training data when making a split.

A third measure, SHAP-values, provide insights into the effects different feature values have on

the prediction [17]. However, ranking genomic features by their importances does not auto-

matically reveal which ones are involved in causing a phenotype. For instance, high correlation

between informative features decreases their feature importances [16, 18]. This is because each

tree in the RF will pick one of the correlating features at random to use in the model. Once one

of the correlating features has been selected, the remaining contain no additional information

and will not be used in that tree. Genomic data contains many correlated features. This dilution

of feature importance means that unimportant features can seem more important than they

are. Feature analysis of machine learning models therefore require careful examination to

extract information about the mode of action behind the phenotype.

In this paper, the machine learning algorithm RF is explored as a high-throughput in-silico
screening tool for predicting maximum hourly acidification rates (Vmax) of L. lactis strains

based on their genome sequences. The strains are from two subspecies: L. lactis subsp. lactis and

L. lactis subsp. cremoris. Four different genomic representations are explored for the prediction

of Vmax (genes, Pfam domains, 8-mers and 9-mers) and the resulting models are analysed with

Shap [17] to evaluate whether they base their predictions on meaningful biological features. This

is done by considering high-importance features with consensus across the models.

Results

The acidification rates of L. lactis
An existing dataset of maximum hourly acidification rates was obtained for 342 L. lactis strains

grown in lowwell and deepwell micro-titer plates, with and without addition of yeast extract,
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and at different temperatures (25 C, 30 C, or 40 C). The pH was measured every 6 minutes

during milk fermentations, and maximum hourly acidification rates (Vmax) were calculated.

Since the pH of the media decreases during fermentation, acidification rates are negative. The

highest observed acidification rate was -0.96 hour-1 and the lowest -0.05 hour-1. The strains

tended to grow better in the presence of yeast extract (Fig 1). Both subspecies had a tempera-

ture preference for 30 C, although L. lactis subsp. lactis also had high acidification rates at 40 C

in the presence of yeast extract (Fig 1).

The L. lactis pangenome

The 342 L. lactis strains were genome sequenced. There were 230 L. lactis subsp. lactis strains,

and 112 L. lactis subsp. cremoris strains. The strains contained between 2200 and 2800 genes

each with no discernible difference between the two subspecies (Fig 2A).

To establish the presence/absence of genes in the strains, and to get an overview of the data,

a pangenome was constructed using Roary [19]. A high similarity threshold in Roary for clus-

tering genes together (95% identity) resulted in few core genes and different gene variants

being represented in separate gene groups.

Table 1 shows the distribution of genes into core genes (genes occurring in 99% of the

strains or more), soft core genes (occurring in 95-99% of the strains), shell genes (occurring in

15-95% of the strains) and cloud genes (occurring in less than 15% of the strains). The core

genome of all strains consisted of 595 genes (2.93% of the genes), whereas the core genomes of

each of the two subspecies by themselves were bigger: 1295 core genes (8.64% of the genes) in

L. lactis subsp. lactis and 1180 core genes (10.83% of the genes) in L. lactis subsp. cremoris due

to a higher similarity within a subspecies than between two subspecies (Table 1). The core

genomes stabilized quickly (Fig 2B). Despite having more strains in the pangenome, the lactis
subspecies had more core genes than the cremoris. Only 5585 genes were found in strains of

both subspecies.

Clustering strains by their gene presence/absence profiles was consistent with subspecies

annotations (Fig 1) as the two subspecies clustered separately. Maximum hourly acidification

rates however, varied a lot between strains with similar profiles in terms of gene presence/

absence.

All four RF models predicted Vmax well

Four RF models were trained to predict Vmax based on one of four different representations of

genomic information (8-mer counts, 9-mer counts, Pfam domain counts, presence/absence of

genes) and experimental variables (temperature, volume, and yeast extract addition). All mod-

els were trained on the same set of 257 strains and tested on a separate set of 85 strains. As

there was up to 12 measurements for each strain, there were 2526 data points in the training

set and 798 data points in the test set. For the test data, Pearson Correlation coefficients (PC)

between predicted and actual Vmax values were 0.76 (8-mer model), 0.85 (9-mer model), 0.83

(gene model), and 0.84 (Pfam model), see Fig 3. The most accurate predictions for the test data

were thus achieved with the 9-mer model.

The RF models relied on genomic features for making accurate predictions

Two tests were performed for the Pfam and gene models to find out if the models relied on

genomic signals or if they based the predictions solely on the condition features (temperature,

volume, and addition of yeast extract).

In the first test, the values of each genomic feature of the test set were randomly permuted

before obtaining a PC score for the prediction. This simulation was performed 1000 times.
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Fig 1. Distribution of Vmax with regard to phylogeny. Phylogenetic tree made from clustering the gene presence/

absence profiles (left) and corresponding heatmap of Vmax (right). L. lactis subsp. lactis strains in green and L. lactis
subsp. cremoris strains in blue. Each column in the heatmap shows Vmax under a different set of conditions

(DW = deepwell micro-titer plates, LW = lowwell micro-titer plates, YE = yeast extract, NY = no yeast extract). Dark

purple indicate high rates of acidification and light orange indicate low rates. Missing data is indicated in grey. Box-

and swarmplots (bottom) of the subspecies distribution of Vmax for each set of conditions.

https://doi.org/10.1371/journal.pone.0246287.g001
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The PC score of the prediction for the non-permuted test data was then compared to the 1000

PC scores for permuted test sets (Fig 4A). If the model relies on genomic features to make

accurate predictions, permuting the feature values randomly is expected to decrease PC scores

significantly.

In the second test, genomic feature values were switched randomly between strains. This

way, the relationship between features was kept intact. Again, the performance of the RF

model on the non-permuted test data was compared to 1000 PC scores of permuted test sets

(Fig 4B).

For both the Pfam and gene models, the PC scores in both tests were significantly higher

(outside of the 95% confidence interval) for the original test data than for the permuted data,

indicating that the RF models rely on a genomic signal as well as the condition features. The

computation was too heavy to run for the two k-mer models, but given the results for the two

other models, genetic features are expected to be important for prediction accuracy in the k-

mer models as well.

Pfam model prediction scores were stable when the model was trained on

*75 strains or more

The models require a certain size dataset depending on the complexity of the phenotype. Fig 5

shows how the evaluation scores depend on the number of training samples in the gene and

Fig 2. Overview of core genes and total genes in the L. lactis pangenome. A. Histogram and kernel density estimates

for the number of gene groups per strain. B. Core genome for different size pangenomes. The core genome is defined as

the set of genes, which occur in 99% of the strains or more. For each 100 strains added, a core gene is therefore allowed to

be missing in 1 (more) genome. L. lactis subsp. lactis in green and for L. lactis subsp. cremoris in blue.

https://doi.org/10.1371/journal.pone.0246287.g002

Table 1. Pangenome gene distribution.

L. lactis, both subspecies (342

strains)

L. lactis subsp. lactis (230 strains) L. lactis subsp. cremoris (112

strains)

Count Percent Count Percent Count Percent

Core genes (in �99% of strains) 595 2.93 1295 8.64 1180 10.83

Soft core genes (in 95%-99% of strains) 83 0.41 190 1.27 136 1.25

Shell genes (in 15%-95% of strains) 3556 17.52 1789 11.94 2124 19.50

Cloud genes (in <15% of strains) 16062 79.14 11715 78.16 7452 68.42

Total genes 20296 100.00 14989 100.00 10892 100.00

The distribution of core genes, soft core genes, shell genes, and cloud genes in the Roary pangenome computed for all the L. lactis strains and in the two subspecies-

pangenomes.

https://doi.org/10.1371/journal.pone.0246287.t001
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Fig 3. Evaluation of model predictions on test set. Predicted test set values plotted against the actual values of the maximum hourly acidification rate.

Perfect predictions would produce a line where y = x. The distributions of the predicted values and the actual values are shown above and to the right of

the plot respectively. L. lactis subsp. lactis strains are colored green and L. lactis subsp. cremoris strains are colored blue. For each model, three scores

evaluate the accuracy of the predictions: The Explained Variance, the Pearson Correlation, and the Root Mean Square Error.

https://doi.org/10.1371/journal.pone.0246287.g003
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Pfam models—i.e. how much the prediction errors for the test data change when models were

built from different sized subsets of the training data. When the subset of the training data

used to build the Pfam model consisted of around 75 strains, scores did not improve much by

adding more strains to the training data. For the gene model, more strains were necessary to

reach a stable PC score. When the model was built from around 100 strains, the scores stopped

improving much with the addition of more strains. The number of strains needed for the

8-mer and 9-mer models were not computed, but are expected to be higher for the 9-mer

model due to the higher number of features.

Fig 4. Evaluation of Pfam model and gene model reliance on genomic features. A. The PC scores for predictions on

1000 test sets, for which the features have each been permuted. B. The PC scores for predictions on 1000 test sets, for

which the genomic profiles have been switched between strains.

https://doi.org/10.1371/journal.pone.0246287.g004
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Feature importance analysis can reveal genetic markers of higher

acidification rates

Feature importance analyses were performed to find out which genes, Pfam domains and k-

mers were identified as predictors of higher acidification rates. If acidification rates were

strongly associated with phylogeny, the model might make good predictions based on genes

which indicated the phylogeny but were not involved in causing higher acidification rates. The

association of phylogeny and Vmax was therefore first evaluated in Fig 1. Both high and low

Vmax values are represented by both subspecies, and strains next to each other in the phyloge-

netic tree have different Vmax values. The phylogenetic tree is based on clustering of gene pres-

ence/absence profiles of the strains. The figure thus shows that Vmax does not associate

strongly with phylogeny.

Although phylogeny did not directly determine phenotype, feature importance analysis was

still expected to turn up many noisy features. This was due to the number of features being

much greater than the number of Vmax observations, and due to the highly structured feature-

space (many correlations between features because of population structure). To filter out noise

from the feature importance analyses, high importance features in three models were com-

pared. In the feature importance analyses we focus on consensus features—i.e. features with

high importances in more than one model. However, features from the models do not corre-

spond one to one. The same Pfam domain can occur in many different genes, and a 9-mer can

not only be found in many different genes, but can also correspond to regions of the DNA out-

side of genes. Since the k-mers were calculated from genome sequences, each k-mer was

counted together with its reverse-complement.

The feature analysis was performed with Shap [17]. Features with the highest importances

are shown in Fig 6 (gene model), Table 2 and S1 Fig (Pfam model), Table 3 and S2 Fig (9-mer

model), and S3 Fig (8-mer model). In the SHAP plot in Fig 6, the 20 most important features

are listed in descending order. For each feature, every prediction on the test set is indicated by

an individual dot. The value of the feature is indicated by color, and the effect on the prediction

of having that value is shown along the x-axis. Dots further towards left indicate that having

the given value pushed the prediction towards a higher acidification rate. Dots towards the

right indicate that the value pushed the prediction towards lower acidification rate.

Fig 5. Estimation of necessary training data size. Prediction scores of the test set, when the gene model and the Pfam

model was trained on different sized subsets of the training data.

https://doi.org/10.1371/journal.pone.0246287.g005
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Yeast, temperature, and volume were high importance features in all four

models

All four models identified addition of yeast extract to the media as the most important feature.

Since many L. lactis strains grew better in the presence of yeast extract, it makes sense that this

would be an important feature. Temperature is likewise known to impact acidification rates

[20]. Growth in deepwell micro-titer plates also resulted in higher acidification rates than

growth in lowwell micro-titer plates, likely because of higher oxygen levels in lowwell plates

than in deepwell plates [21].

Genes for lactose metabolism were identified as predictors of higher

acidification rates

The gene model indicated the lacABCDFEGX genes as indicators of higher acidification rate

(Fig 6). The lac genes of L. lactis are responsible for the tagatose 6-phosphate pathway

(lacABCD), the phosphotransferase system (lacF and lacE), the phospho-beta-galactosidase

(lacG), and one unknown function (lacX) [22, 23]. These genes were split into two features in

Fig 6. The 20 features with highest feature importances in the gene model. Highest 20 feature importances as calculated by Shap [17]. The SHAP

values indicate each feature value’s impact on the prediction value. SHAP values are plotted for each feature, for each prediction. The color indicates the

feature value. Depending on the feature, red means either presence of the gene(s), a temperature of 40˚C, presence of yeast extract, or experiment

performed in deepwell micro-titer plates. Purple means a temperature of 30˚C. Blue means absence of the gene(s), a temperature of 25˚C, absence of

yeast extract, or experiments performed in lowwell micro-titer plates. A negative SHAP value indicates that the feature for this data point impacted the

prediction towards a higher acidification rate. Features which always co-occur are grouped together previous to building the RF model. Uniprot IDs are

given in parenthesis when available, otherwise the IDs from the pangenome.

https://doi.org/10.1371/journal.pone.0246287.g006
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the gene model, since the lacABCDF genes were missing in strain354 and the lac genes there-

fore did not co-occur in all strains. The lacEGX genes were at the end of a contig in strain354

and the strain acidified milk, so the lacABCDF genes were likely missing due to an assembly

error. However, both the lacABCDF and the lacEGX genes were indicated by the feature

importance analysis (Fig 6). The Pfam model identified the LacAB_rpiB domain (PF02502) as

an indicator of higher acidification rate (Table 2). This domain was present in both the lacA
and lacB genes as well as in another gene, rpiB. Among the fifteen 9-mers with highest feature

importances, three 9-mers found in lacG and one 9-mer found in lacE were indicated as mark-

ers of higher acidification rate (Table 3).

Genes for casein degradation were identified as predictors of higher

acidification rates

The gene model identified the serine proteinase PrtP as an indicator of higher acidification

rate. The 9-mer model also indicated prtP through six of the fifteen most important 9-mers

(Table 3). In its matured form, PrtP degrades casein [24]. Caseins make up ca. 80% of the pro-

tein in bovine milk [25]. The free amino acid and small peptide content in milk can only

account for up to 20% of the final biomass of Lactococcus grown in milk, the remaining pep-

tides and amino acids required come from the hydrolysis of casein [1]. Matured PrtP degrades

caseins into large oligopeptides of 4-30 residues [1]. The oligopeptides of 4-18 residues are

then transported by the oligotransport system, Opp, into the cytoplasm to be degraded by

Table 2. The 15 features with highest feature importances in the Pfam model.

Pfam domain Strains Pfam domain name Genes the Pfam domain occurs in

PF00639.16 178 Rotamase prtM (prsA)

PF02502.13 287 LacAB_rpiB lacA, lacB, rpiB
PF02254.13 185 TrkA_N ktrA
PF02386.11 185 TrkH ktrB
PF13493.1 165 DUF4118 kdpD
PF02669.10 166 KdpC kdpC
PF03814.10 166 KdpA kdpA
PF02702.12 165 KdpD kdpD
PF07274.7 246 DUF1440 Uncharacterized proteins

PF11361.3 247 DUF3159 Uncharacterized proteins

PF01432.15 332 Peptidase_M3 pepF, pepB
PF07083.6 128 DUF1351 Uncharacterized proteins

PF12730.2 286 ABC2_membrane_4 ABC transporter permease,

Lantibiotic ABC transporter permease,

nisG, Uncharacterized proteins

PF05649.8 204 Peptidase_M13_N Endopeptidase pepO,

Oligoendopeptidase O

PF02486.14 302 Rep_trans Replication initiation protein,

Transcriptional regulator,

Phosphoglucomutase,

Uncharacterized proteins

The fifteen Pfam domains with the highest feature importances, the number of strains they occur in, the domain names, and the genes they occur in. Only genes which

accounted for more than 10 occurrences of the Pfam domains are listed. All the Pfam domains in the table impacted the predictions towards a higher acidification rate,

except ABC2_membrane_4 and Rep_trans. The full overview and SHAP plot can be found in S1 File and S1 Fig.

https://doi.org/10.1371/journal.pone.0246287.t002
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peptidases [25]. The Opp system is present in all the L. lactis strains of this study (Uniprot ID

T2F365), so the models did not identify the Opp genes.

After transport into the cell, the oligopeptides are degraded by peptidases [1, 25]. The Pfam

model identified Peptidase_M3 (PF01432) as an indicator of higher acidification rate. This

domain was found in the oligoendopeptidase pepF and the oligopeptidase pepB.

The Pfam model identified prsA as an indicator of higher acidification rate through the

Pfam domain PF00639 (Rotamase). This gene is also called prtM, and it encodes the

Table 3. The fifteen features with the highest feature importances in the 9-mer model.

9-mer / Reverse-complement Genes the 9-mers occurs in

AGGGCCCAG / CTGGGCCCT 6-phospho-beta-galactosidase (lacG)

CCGAGACCG / CGGTCTCGG 6-phospho-beta-galactosidase (lacG)

Tim44 domain-containing protein

AAGATCTAC / GTAGATCTT Glutamate synthase large subunit

3’-5’ exoribonuclease YhaM (yhaM)

Cytochrome c-type biosis protein DsbD protein-disulfide reductase

Sensor histidine kinase KdpD (kdpD)

Helix-turn-helix transcriptional regulator

GCCGTCGAC / GTCGACGGC PIII-type proteinase (prtP)

AGAGTCCGG / CCGGACTCT PTS system lactose-specific EIICB component (lacE)

CCGGGTAGC / GCTACCCGG PIII-type proteinase (prtP)

GCCAGGGAC / GTCCCTGGC PIII-type proteinase (prtP)

CTACCCGGC / GCCGGGTAG PIII-type proteinase (prtP)

CGCGGCGTA / TACGCCGCG PIII-type proteinase (prtP)

CGCCGCGGC / GCCGCGGCG PIII-type proteinase (prtP)

Copper/potassium-transporting ATPase (copA)

CGCAGCCCC / GGGGCTGCG CBS domain-containing protein (ytoI)
HAD family hydrolase

Teichoic acid biosynthesis protein (tagZ)

Citrate lyase alpha chain (citF)

3-isopropylmalate dehydrogenase (leuB)

N-acetyl-gamma-glutamyl-phosphate reductase (argC)

ACTGGGCCC / GGGCCCAGT 6-phospho-beta-galactosidase (lacG)

Glyoxalase

Glyoxalase family protein

GATCTAACC / GGTTAGATC Cation transporter

Site-specific recombinase (orf30)

Orotidine 5’-phosphate decarboxylase (pyrF_1)

DNA-invertase hin (hin_1)

CGGAACCCG / CGGGTTCCG Diphosphomevalonate decarboxylase

CGACCTACA / TGTAGGTCG Potassium uptake protein, integral membrane component (ktrB)

Molecular chaperone GroES

Probable potassium transport system protein kup 2 (kup2)

The fifteen 9-mers with the highest feature importances and the genes they occur in. All k-mers are counted together

with their reverse-complement previous to building the RF model. Gene annotations are only given for genes which

the 9-mer occurs in for more than 40 strains. All 9-mers in the table impacted the predictions towards a higher

acidification rate, except CGCAGCCCC/GGGGCTGCG and CGGAACCCG/CGGGTTCCG. The full overview and SHAP

plot can be found in S2 File and S2 Fig.

https://doi.org/10.1371/journal.pone.0246287.t003

PLOS ONE Machine learning predicts and provides insights into milk acidification rates of Lactococcus lactis

PLOS ONE | https://doi.org/10.1371/journal.pone.0246287 March 15, 2021 12 / 22

https://doi.org/10.1371/journal.pone.0246287.t003
https://doi.org/10.1371/journal.pone.0246287


maturation protein for PrtP. The prtM gene was not indicated by the gene model as it had

been split into multiple gene groups in the pangenome. PrtP on the other hand was not identi-

fied through the Pfam domains with highest feature importance. The protein contains 4 Pfam

domains: Peptidase_S8 (PF00082), PA (PF02225), DUF1034 (PF06280), and Gram_pos_an-

chor (PF00746). While two of these were found in many other genes (S4 File), the other two

were primarily found in PrtP. However, as the Rotamase domain only occurred in PrtM, this

may have resulted in Rotamase being the better predictor.

Genes involved in potassium transport were identified as predictors of

higher acidification rates

The potassium-transporting ATPase system Kdp and the potassium uptake system Ktr were

both indicated as predictors of higher acidification rate. In the Pfam model, the two domains

with the highest feature importances were domains found in lacAB and prtM. After these, the

next six Pfam domains were all from genes in the Kdp and Ktr systems (Table 2). The Ktr sys-

tem was also indicated by the ktrA gene in the feature importance analysis of the gene model,

and kdpD and ktrB were indicated through the 9-mers AAGATCTAC/GTAGATCTT and

CGACCTACA/TGTAGGTCG respectively.

These systems could be involved in keeping intracellular pH-levels from becoming too low

during the production of lactic acid. L. lactis strains can grow in relatively acidic environments

by keeping the intracellular environment at a near neutral pH [26]. Decrease in the intracellu-

lar pH has been shown to make the cells increase the exchange of K+ for protons [27]. Potas-

sium-proton exchange is involved in pH homeostasis in other bacteria [28, 29]. We therefore

suggest that the kdpACD and ktrAB genes could be involved in maintaining a neutral intracel-

lular pH by functioning as ATP-driven antiporters, which pump the positively charged potas-

sium ions into the cell and the negatively charged hydrogen out of the cell against the

concentration gradient.

The Kdp system was only present in the L. lactis subsp. lactis strains, not in the L. lactis
subsp. cremoris strains. However, it was not present in all L. lactis subsp. lactis strains. Out of

230 L. lactis subsp. lactis strains, 165 carried both the kdpA, kdpC, and kdpD genes, and one

strain contained only the kdpC and KdpD genes. This indicates that the model does not use the

genes as a proxy for subspecies.

Other systems for pH homeostasis in L. lactis include the F1F0-ATPase complex [30], argi-

nine deiminase pathway [31, 32], malolactic fermentation [31, 32], and glutamate decarboxyl-

ation [31, 32]. Each system was found in all or nearly all of the strains (S11 File), and they were

not indicated as highly predictive of higher acidification rates by feature importance analysis

of either of the models.

Uncharacterized genes and domains of unknown function were identified

as important features

An uncharacterized gene was indicated by both the gene model and the Pfam model. This was

the DUF1440 domain-containing protein with Uniprot ID A0A0B8QQW5. There were also

many genes, both characterized and uncharacterized, which were only indicated by one of the

models. Although some of these may be important features that were only detectable by the RF

through that particular genomic representation, many of them are possibly noise.
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Discussion

Four genomic representations were explored for the prediction of maximum hourly acidifica-

tion rates of L. lactis strains with Random Forest (genes, Pfam domains, 8-mers, and 9-mers).

All four RF models predicted the maximum hourly acidification rates with high accuracy and

did so by identifying relevant genomic signals. The PC scores for the correlation between

observed and predicted Vmax were 0.83 (gene model), 0.84 (Pfam model), 0.76 (8-mer model),

and 0.85 (9-mer model) in a test set. Of the four models, the 9-mer model thus had the highest

correlation between actual and predicted acidification rates. This may be because the 9-mer

model does not rely on annotation or on a clustering step to define the features. In the gene

clustering procedure of the pangenome, some genes with the same function were not grouped

together. This was partly due to the high identity threshold, partly due to the nature of the heu-

ristic method. For example, the prtM genes were split into multiple gene groups and the gene

was thus not recognised as the same entity in the Random Forest. In this case, the model iden-

tified the prtP gene instead, but for other mechanisms there might not be an alternative signal

for the model to identify. This was for instance the case for the Kdp system, for which all the

genes were split into multiple gene groups.

The Pfam model however performed similarly to the 9-mer model. In theory, using Pfam

domains would likely give a better performance when building models of more distantly

related strains, since the nucleotide sequences of genes would be expected to have remained

less conserved between such strains.

The 9-mer model performed much better than the 8-mer model—likely because 8-mers

were too short to map uniquely to relevant regions of the genomes. The k-mer models have

the potential to identify functionally important regions of the DNA other than those which

encode genes. They also have the potential to distinguish between genes with minor mutations,

whereas the gene and Pfam models would only be able to distinguish between genes with

larger mutations. However, k-mer models can have a very large number of features for higher

values of k, most of which are noisy (non-informative). Identifying the functionally important

regions requires that at least one k-mer in such a region is both unique to the region and well

conserved. While using longer k-mers increases the chances for finding k-mers unique to a

region, it also increases the number of features drastically, making the models computationally

expensive.

Prediction scores stabilized when including 75 strains or more in the training set. Subspe-

cies-specific models were therefore not investigated as there was not enough data to both build

and test them. However, feature importance analysis of the models containing data from both

subspecies identified both subspecies-specific and shared mechanisms for higher acidification

rates.

This study shows, that without any previous knowledge of which genes influence the phe-

notype, it is possible with machine learning to obtain an accurate picture of the mechanisms at

play and to learn which genes are more indicative of a phenotype. The high importance fea-

tures were in line with previous knowledge of important processes in milk acidification. Genes

for both casein degradation and lactose metabolism were identified, which is supported by lit-

erature. Genes for potassium transport were also identified. These genes are possibly part of a

stress response to keep intracellular pH within a normal range as the external pH drops during

acidification. L. lactis has been shown to increase the exchange rate of extracellular potassium

ions for intracellular protons to increase intracellular pH during low extracellular pH [27].

One of the potassium transport systems, Kdp, was only found in L. lactis subsp. lactis. This

may be part of the reason for the generally higher acidification rates of the subspecies com-

pared to that of L. lactis subsp. cremoris. Some genes indicated by the feature importance
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analyses were however of unknown function. These should be investigated further to learn

their exact role in the acidification process.

This study shows that it is possible to use machine learning to predict a complex bacterial

phenotype from whole genome sequencing data. With careful attention to the model mecha-

nisms and correlated features, it is also possible to identify the key mechanisms driving that

phenotype. This can prove valuable in many other areas besides cheese-making. It can give

highly useful indications of which genes to examine for poorly-understood phenotypes such as

texture-formation in yoghurt by lactic acid bacteria, immune response to probiotics, or patho-

gen-inhibition by non-pathogenic bacteria. It can be used for large-scale screening of new bac-

teria, and prove especially useful for predicting phenotypes of strains that are difficult to grow

—such as many anaerobic bacteria.

Materials and methods

Acidification assay

Milk acidifications were conducted as described in [2], with minor modifications. In short,

strains were retrieved from -80 C glycerol stocks, thawed, and 20 μl were transferred to 180 μl

M17 broth [33] enriched with 1% glucose and 1% lactose and incubated overnight at 30 C. The

outgrown cultures were diluted 100 fold in milk with pH indicator ± yeast extract (0.2%) and

200 μl or 2000 μl were transferred to 96 well lowwell or deepwell plates, respectively. The plates

were incubated on top of flatbed scanners, at 25 C, 30 C and 40 C. Measurements of pH, based

on color of wells was done every 6 minutes. Converting measured hue values into pH values

was done in the following manner: The color (hue) of milk with pH indicator at different pH

values, ranging from pH 6.5 to pH 4.0, was measured using a HP Scanjet G4010 flat-bed scan-

ner and a pH electrode was used to measure the pH of the same wells, to generate a calibration

curve: Hue vs pH. A 4th grade polynomial fit was used to convert hue values into pH values.

This fit was then used to convert all measured hue values from milk acidification experiments

into pH values. Vmax was calculated as the maximum negative slope over 1 hour (10 measure-

ments). Vmax was typically found in the middle of the pH drop.

DNA extraction

Extraction of DNA used for genome sequencing of short reads on the Illumina MiSeq instru-

ment was performed using the DNeasy Blood and Tissue kit (Qiagen, Hilden, Germany). The

protocol suggested by the vendor was applied with the exception that cells were initially treated

with 20 mg/ml lysozyme for 30 min at 37 C followed by proteinase K treatment for 30 min at

56 C. The remaining protocol was conducted on the QIAcube instrument (Qiagen, Hilden,

Germany).

Library preparation and sequencing

For the Illumina platform DNA was fragmented using the BioRuptor instrument (Diagenode

Inc., Denville, NJ, USA) aiming at an insert size of 800bp. Fragmented DNA was used as input

to the KAPA HTP kit (Roche, Basel, Switzerland) and libraries were build according to the

manufacturers recommendations. Sequencing was done using V2 chemistry on the MiSeq

instrument (Illumina, San Diego, CA, USA).

Assembly

Sequencing reads from the MiSeq were trimmed using the CLC genomics software with setting

for quality 0.005 and for length minimum 50 bases and maximum 300 bases. Singletons were
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also removed. Trimmed reads were de novo assembled using CLC genomics software with

default settings. Subsequent to the assembly, contigs with lower coverage that 50% of the aver-

age genome coverage were removed as contaminations.

Species identification and quality control

Species and subspecies identification was done with KmerFinder [34, 35] using the bacte-
ria.ATG database version 20190108_stable downloaded on January 31 2019. Quality

control of the assemblies was done with QUAST v5.0.2 by setting an N50 threshold of 20000

nucleotides.

Thirty-five complete RefSeq genomes

Thirty-five complete RefSeq genome sequences of L. lactis subspecies lactis and L. lactis subsp.

cremoris were downloaded from NCBI (S5 File). Of these, 21 were L. lactis subsp. lactis and 14

were L. lactis subsp. cremoris. The strains were obtained from searching https://www.ncbi.nlm.

nih.gov/assembly for (“Lactococcus lactis subsp. lactis”[Organism] OR
“Lactococcus lactis subsp. cremoris” [Organism]) AND “Complete
Genome”[Assembly level] AND “latest”[filter]. These genomes were

included in the pangenome for annotation purposes, but not included in any of the analyses.

Pangenome

The genes were predicted and annotated with Prokka version 1.14.1 [36].

Roary 3.12.0 [19] was used with default settings (minimum 95% identity for blastp) to build

the pangenome for the strains based on their gff 3 files from the Prokka output. This pangen-

ome was also used to calculate the core genomes for each of the two subspecies lactis and

cremoris.
To get species-relevant annotations for the pangenome, all Lactococcus proteins were down-

loaded from Uniprot (organism:“Lactococcus”), and a BLAST protein database was

created. A BLASTp search was run for representative sequences randomly selected from each

gene group. The search was done with an E-value of 0.01 and all matches with identity or cov-

erage below 50% were discarded. The pangenome included some tRNA genes. As these do not

encode proteins, they were annotated by BLASTn search against the bacterial tRNA sequences

of [37]. For those gene groups which did not get an annotation through this process, a

sequence was selected from the 35 complete RefSeq genomes. Else, an ID was obtained from

NCBI through a BLASTp search with the aforementioned criteria. For 92 gene groups contain-

ing more than six genes, no annotation could be found in either of the databases. Gene groups

containing fewer genes were removed (see section on Random Forest: Data pre-processing).

Gene IDs in the genomic matrix thus refer to sequences in public databases (except a numeri-

cal prefix which ensures a unique feature name).

Pfam annotation

To annotate the strains with Pfam domains, the EMBL-EBI perl script, pfam_scan.pl (ftp://ftp.

ebi.ac.uk/pub/databases/Pfam/Tools/PfamScan.tar.gz), was used with the Hidden Markov

Model library, Pfam-A, from version 32.0 of the Pfam database [11].
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Calculating k-mers

Since the genome sequences in the fasta files could be from either strand, a k-mer and its

reverse-complement sequence are synonymous. They were therefore counted in pairs. In the

matrix, they are represented by the sequence, which comes alphabetically first.

Random Forest: Data pre-processing

Four different genomic representations were used for the machine learning algorithm: A

matrix of the presence/absence of genes (based on the Roary pangenome output), a matrix of

copy numbers of the Pfam domains, and two matrices of the number of nucleotide k-mers of

length 8 and 9. The rows of the matrices represented strains, and each column contained infor-

mation about a specific gene, Pfam domain, or k-mer. Those genes, Pfam domains, or k-mers,

which were either present in nearly all genomes (more than 98%) or absent in nearly all

genomes (more than 98%), were removed from the matrices to reduce noise (pruning). This

removes annotation errors as well as features with little information in a machine learning

context. Genes/Pfam domains/k-mers with identical profiles for all the strains (always co-

occurring) were collapsed into single columns. The conditions the strains were grown under

were also used as features. This added three features to the models: Temperature, Volume, and

Yeast.

Random Forest: Training

To implement the Random Forest, the RandomForestRegressor module of the python

module Scikit-learn [38] was used. The data set was randomly split into a training set of 257

strains (75% of the strains) and a test set of 85 strains (25% of the strains). A random state has

been set in the code to ensure deterministic behaviour.

Randomized 3-fold cross-validated grid-search for optimal parameters in the Random For-

est (RF) was performed on the training data. The grid was

• n_estimators=[10,50,100,150,200,250,. . .,750]

• max_depth=[None,10,20,30,40,. . .,150]

• min_samples_split=[2,4,6,..,16]

• min_samples_leaf=[1,2,3,. . .,9]

• oob_score = [True, False]

The max_features parameter was kept to the default auto since there was a very large

number of features, many of which were noisy. The bootstrap parameter was also left at

the default True to use sampling with replacement. The parameters of the gene model found

by randomized 3-fold cross validated grid-search were ‘n_estimators’: 450, ‘max_depth’: None,

‘min_samples_split’: 2, ‘min_samples_leaf’: 1, ‘oob_score’: True for the gene model. For the

Pfam model they were ‘n_estimators’: 650, ‘max_depth’: 70, ‘min_samples_split’: 6, ‘min_sam-

ples_leaf’: 4, ‘oob_score’: False. For the 8-mer model they were ‘n_estimators’: 650, ‘max_-

depth’: 110, ‘min_samples_split’: 4, ‘min_samples_leaf’: 2, ‘oob_score’: False. For the 9-mer

model they were ‘n_estimators’: 550, ‘max_depth’: 120, ‘min_samples_split’: 4, ‘min_sample-

s_leaf’: 1, ‘oob_score’: False. The models were trained on the training data using the identified

optimal parameters.
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Pipeline

Scripts and software requirements can be found at https://github.com/signetang/bacterial_

phenotype_genotype_matching_RFR.

Supporting information

S1 Fig. The 20 features with highest feature importances in the Pfam model. Made using

Shap [17]. The SHAP values indicate each feature value’s impact on the prediction value.

SHAP values are plotted for each feature, for each prediction. The color indicates the feature

value. Red means a higher value and blue means a lower value. A positive SHAP value indi-

cates that the feature for this data point impacted the prediction towards a higher value (corre-

sponding to a lower acidification rate). Features which always co-occur are grouped together

previous to building the RF model.

(TIF)

S2 Fig. The 20 features with highest feature importances in the 9-mer model. Made using

Shap [17]. The SHAP values indicate each feature value’s impact on the prediction value.

SHAP values are plotted for each feature, for each prediction. The color indicates the feature

value. Red means a higher value and blue means a lower value. A positive SHAP value indi-

cates that the feature for this data point impacted the prediction towards a higher value (corre-

sponding to a lower acidification rate). Features which always co-occur are grouped together

previous to building the RF model.

(TIF)

S3 Fig. The 20 features with highest feature importances in the 8-mer model. Made using

Shap [17]. The SHAP values indicate each feature value’s impact on the prediction value.

SHAP values are plotted for each feature, for each prediction. The color indicates the feature

value. Red means a higher value and blue means a lower value. A positive SHAP value indi-

cates that the feature for this data point impacted the prediction towards a higher value (corre-

sponding to a lower acidification rate). Features which always co-occur are grouped together

previous to building the RF model.

(TIF)

S4 Fig. Evaluation of model on training set. Predicted training set values plotted against the

actual values of the maximum hourly acidification rate. Perfect predictions would produce a

line where y = x. The distributions of the predicted values and the actual values are shown

above and to the right of the plot respectively. L. lactis subsp. lactis strains are colored green

and L. lactis subsp. cremoris strains are colored blue. For each model, three scores evaluate the

accuracy of the predictions: The Explained Variance, the Pearson Correlation, and the Root

Mean Square Error.

(TIF)

S1 File. The Pfam domains with the highest feature importances and the genes in which

they occur.

(PDF)

S2 File. The 9-mers with the highest feature importances and the genes in which they

occur.

(PDF)
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S3 File. The 8-mers with the highest feature importances and the genes in which they

occur.

(PDF)

S4 File. The four Pfam domains in PrtP and the genes in which they were present.

(PDF)

S5 File. Names of complete RefSeq genomes.

(PDF)

S6 File. Gene matrix. Input matrix for the Random Forest. This text file contains 6759 semico-

lon-separated columns in 343 lines. The first line is a header. The first column contains the

strain IDs, the second column contains the subspecies annotations, and the following columns

contain presence/absence of genes (1s and 0s). A column can represent multiple genes if their

occurrence profiles are identical—in those cases the IDs in the column header are comma-sep-

arated.

(TXT)

S7 File. Pfam matrix. Input matrix for the Random Forest. This text file contains 563 semico-

lon-separated columns in 343 lines. The first line is a header. The first column contains the

strain IDs, the second column contains the subspecies annotations, and the following columns

contain counts of Pfam domains. A column can represent multiple Pfam domains if their

occurrence profiles are identical—in those cases the IDs in the column header are comma-sep-

arated.

(TXT)

S8 File. 8mer matrix. Input matrix for the Random Forest. This text file contains 774 semico-

lon-separated columns in 343 lines. The first line is a header. The first column contains the

strain IDs, the second column contains the subspecies annotations, and the following columns

contain counts of reverse-complement 8-mer pairs. A column can represent multiple such

pairs if their occurrence profiles are identical—in those cases the IDs in the column header are

comma-separated. Only the alphabetically first 8-mer in the pairs are used in the column head-

ers.

(TXT)

S9 File. 9mer matrix. Input matrix for the Random Forest. This text file contains 12615 semico-

lon-separated columns in 343 lines. The first line is a header. The first column contains the strain

IDs, the second column contains the subspecies annotations, and the following columns contain

counts of reverse-complement 9-mer pairs. A column can represent multiple such pairs if their

occurrence profiles are identical—in those cases the IDs in the column header are comma-sepa-

rated. Only the alphabetically first 9-mer in the pairs are used in the column headers.

(TXT)

S10 File. Phenotype matrix. Input matrix for the Random Forest. This file contains 13 semi-

colon-separated columns in 243 lines. The first line is a header. The first column contains the

strain IDs and the following columns contain Vmax values under the different conditions.

(CSV)

S11 File. Genes for pH regulation in L. lactis, which did not show up among the most

important features in feature importance analysis. Gene names and corresponding Uniprot

IDs found in the strains.

(PDF)
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