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Abstract: Although acute exposure of the heart to angiotensin (Ang II) produces physiological car-
diac hypertrophy and chronic exposure results in pathological hypertrophy, the signal transduction
mechanisms for these effects are of complex nature. It is now evident that the hypertrophic response
is mediated by the activation of Ang type 1 receptors (AT1R), whereas the activation of Ang type 2
receptors (AT2R) by Ang II and Mas receptors by Ang-(1-7) exerts antihypertrophic effects. Further-
more, AT1R-induced activation of phospholipase C for stimulating protein kinase C, influx of Ca2+

through sarcolemmal Ca2+- channels, release of Ca2+ from the sarcoplasmic reticulum, and activation
of sarcolemmal NADPH oxidase 2 for altering cardiomyocytes redox status may be involved in phys-
iological hypertrophy. On the other hand, reduction in the expression of AT2R and Mas receptors,
the release of growth factors from fibroblasts for the occurrence of fibrosis, and the development of
oxidative stress due to activation of mitochondria NADPH oxidase 4 as well as the depression of
nuclear factor erythroid-2 activity for the occurrence of Ca2+-overload and activation of calcineurin
may be involved in inducing pathological cardiac hypertrophy. These observations support the view
that inhibition of AT1R or activation of AT2R and Mas receptors as well as depression of oxidative
stress may prevent or reverse the Ang II-induced cardiac hypertrophy.

Keywords: Ang II-induced cardiac hypertrophy; Ang II-induced signal transduction; AT1 receptors;
AT2 receptors; mass receptors; Ca2+-overload and calcineurin; oxidative stress

1. Introduction

It is now well-known that the activation of both circulating and local cardiac of renin-
angiotensin system (RAS) results in the release of angiotensin II (Ang II), which exerts
powerful effects on the cardiovascular system [1–10]. The activation of RAS normally occurs
as a consequence of a fall in blood pressure and/or an increase in ventricular wall stress
as a compensatory mechanism to maintain hemodynamic homeostasis. At early stages,
Ang II has been demonstrated to increase blood pressure and produce positive inotropic
effect in addition to inducing growth of the myocardium (adaptive cardiac hypertrophy)
and promoting angiogenesis [11–24]. However, the exposure of the heart to Ang II for a
prolonged period results in the transition of adaptive or physiological cardiac hypertrophy
into maladaptive or pathological cardiac hypertrophy, which is considered to serve as a
risk factor for the development of heart failure [25–30]. Several other vasoactive hormones
and different interventions such as pressure overload and volume overload have also been
reported to induce both physiological and pathological cardiac hypertrophy [31–40]. These
observations from various experimental models including those due to elevated levels
of circulating Ang II indicate that cardiac function in physiological hypertrophy is either
augmented or unaltered whereas it is depressed in pathological hypertrophy.

It is pointed out that the activation of RAS results in the release of two major forms of
angiotensin peptides namely Ang II and Ang (1-7) in the circulation [1,2,6,41–43]. While
both hypertensive and hypertrophic responses of Ang II are elicited by activation of angi-
otensin type 1 receptors (AT1R), Ang (1-7) has been demonstrated to produce antagonistic
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effects by activating Mas receptors [6,16,19,41–43]. Furthermore, Ang II has been shown
to exert antihypertensive and antihypertrophic actions by activating angiotensin type 2
receptors (AT2R) [30,44–47]. Since the activation of both AT2R and Mas receptors has
been shown to reduce the hypertensive and hypertrophic responses due to AT1R activa-
tion [18,30,42–45], the functional significance of AT2R and Mas receptors may lie in limiting
the development of Ang II-induced cardiac hypertrophy as well as preventing the transition
of physiological to pathophysiological cardiac hypertrophy. It is noteworthy that Ang II not
only produces hypertrophy of cardiomyocytes but has also been demonstrated to induce
marked growth of other types of cells such as fibroblasts in the cardiac extracellular matrix
as well as vascular smooth muscles [5,7,9,48–50]. Regression of Ang II-induced hyperten-
sion, cardiac hypertrophy, and other associated alterations by AT1R blocking agents also
supports the role of AT1R activation in the genesis of Ang II-induced hypertrophic and
hypertensive responses [51–55]. This article is intended to provide comprehensive and
updated information regarding the functional significance of Ang II-induced adaptive and
maladaptive cardiac hypertrophy. In particular, signal transduction mechanisms for the
induction of cardiac hypertrophy upon the activation of Ang II receptors will be discussed.
In addition, it is planned to describe some therapeutic strategies for the regression of Ang
II-induced cardiac hypertrophy.

2. Induction of Cardiac Hypertrophy by Angiotensin

Ang II has been documented to induce rapid vasoconstriction, increase cardiac con-
tractility, stimulate myocardial metabolism and produce hypertrophic as well as mitogenic
responses [2,5,7,11]. Such effects are also evident upon the activation of both circulating
and cardiac RAS and are considered to be elicited by Ang II; however, these actions are
independent of each other [1,5,6,8,17,56]. While the activation of RAS for a short period has
been shown to produce adaptive cardiac hypertrophy for maintaining cardiovascular func-
tion, prolonged activation of RAS or exposure of the heart to Ang II for a prolonged period
is known to result in maladaptive cardiac hypertrophy, a well-known risk factor for heart
failure [3,4,16,20,26,57]. It should be noted that besides Ang II, different other biologically
active peptides such as Ang-(2-8) (Ang III), Ang-(3-8) (Ang IV) and Ang-(1-7) have been
shown to exert dramatic effects on the cardiovascular system [9,27]. Furthermore, Ang
II-induced actions such as vasoconstriction, cardiac hypertrophy, inflammation, oxidative
stress, fibrosis and fluid retention are mediated through Ang II type I receptors (AT1R)
whereas the effects of Ang-(1-7) are elicited by the activation of Mas receptors [19,25,54,58].
Ang II has also been reported to activate Ang II type II receptors (AT2R) and exert actions,
which, like the activation of Mas receptors, are antagonists to the effects of AT1R activa-
tion [2,7,54,58]. It appears that the mechanisms of Ang II for the induction of physiological
or pathological cardiac hypertrophy involve the interaction of different types of angiotensin
receptors and thus are of complex nature. A schematic representation for the involvement
of different types of angiotensin peptides and their receptors is shown in Figure 1. It should
be pointed out that under pathological conditions, the activation of circulating RAS by a fall
in blood pressure is associated with a release of angiotensinogen from the kidney, which
is then converted into Ang I by the action of renin (present in the liver). It has also been
demonstrated that angiotensin-converting enzyme (ACE) is involved in the conversion
of Ang I to Ang II, Ang III and Ang IV in the lung whereas a homologue of ACE (ACE2)
converts Ang I to Ang (1-9) as well as Ang II into Ang (1-7) [7,27]. On the other hand, it has
been shown that all these compounds of circulating RAS are present in the local RAS (in
various organs), which is activated mainly by an increase in ventricular wall stress [8–10].
Although the action of Ang (1-9) is mediated through Ang (1-7), the action of Ang III and
Ang IV are considered to be similar to those of Ang II. Nonetheless, the role and significance
of Ang (1-9), Ang III and Ang IV are not fully understood at present [27].
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Figure 1. A schematic representation for the involvement of different angiotensin peptides such as
Ang II and Ang (1-7) as well as their receptors for the development of cardiac hypertrophy upon the
activation of renin-angiotensin system. It is pointed out that although other angiotensin peptides
such as Ang III, Ang IV and Ang (1-9) are also formed during the activation of renin-angiotensin
system, their role and receptor mechanisms are not fully understood.

Although Ang II has been reported to promote the incorporation 3H-leucine and
stimulate protein synthesis in cardiomyocytes, fibroblasts and vascular myocytes, the
net growth effect is dependent upon the presence of cellular AT1R/AT2R ratio [47,59,60].
Ang II has been demonstrated to rapidly induce several immediate-early genes such
as c-fos, c-jun and c-myc in both myocytes and non-myocytes preparations indicating
that the hypertrophic signals by this hormone are similar to those by various growth
hormones, which are known to produce physiological hypertrophy [20,35]. On the other
hand, upregulation of skeletal alpha-actin, arterial natriuretic factor and other late-gene
expression by prolonged exposure of myocytes to Ang II represents markers of pathological
hypertrophy and are associated with the fibrosis and inflammation [20,40,48]. It should
be mentioned that pathological cardiac hypertrophy by Ang II is also associated with
the development of oxidative stress, Ca2+-handling defects, apoptosis and autophagy in
addition to involving Ca2+-calmodulin dependent protein kinases as well as the activation
of calcineurin [26,40,48,61]. Furthermore, Ang II-induced hypertrophic and other responses
during the occurrence of both physiological and pathological hypertrophy have been
reported mainly to be due to the activation of AT1R [20,48].

In Ang II induced cardiac hypertrophy, cardiac dysfunction and different signal trans-
duction pathways have been demonstrated to be modified by several pathological factors
and conditions. In this regard, it was observed that Ang II did not induce cardiac hyper-
trophy and produced markedly less degree of apoptosis in transgenic mice with AT1R
mutation lacking epidermal growth factor receptor transactivation [62]. Ang II also failed to
cause hypertension and cardiac hypertrophy in tumor necrosis factor-alpha (TNF-α) knock-
out mice [28]. Upregulation of M3 muscarinic receptors was found to inhibit Ang II-induced
cardiac hypertrophy [63]. Both Toll-like receptors (TLR3 and TLR4) were shown to mediate
Ang II-induced hypertension and cardiac hypertrophy [3,4]. Some investigators [64] have
claimed that the activation of insulin-like growth factor receptors is critical for the induction
of hypertension, cardiac hypertrophy and apoptosis by Ang II whereas others have shown
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Ang II-induced cardiac hypertrophy is attenuated by regulation of autophagy [65]. Both
cardiac thyrotropin releasing hormone [21] and increased aldosterone synthase [29] were
shown to be required for the development of Ang II-induced cardiac hypertrophy and fibro-
sis. The involvement of PI3-kinase has been shown in Ang II-induced cardiac hypertrophy
due to the formation of oxyradicals, phosphorylation of MAP-kinase and expression of
transforming growth factor beta [66,67]. On the other hand, the Wnt/frizzied signaling
has been reported to regulate Ang II-induced cardiac hypertrophy upon the activation of
glycogen synthase kinase-3 beta [68]. These observations provide evidence that different
signal transduction pathways involved in the Ang II-induced of cardiac hypertrophy are
affected by several factors and are of complex nature.

3. Angiotensin-Induced Signal Transduction Pathways for Hypertrophic Responses

Extensive research work has been carried out over the past 4 decades to understand
the hypertrophic effects of Ang II in cardiomyocytes, vascular smooth muscles cells and
different types of cells in the extracellular matrix including fibroblasts [5,7,16,18,50,69]. The
cellular growth effects of Ang II are associated with various signaling systems including
stimulation of phospholipases C and Ca2+-mobilization, as well as activation of protein
kinase C, MAP kinases, tyrosine kinases and nicotinamide adenine dinucleotide phosphate
(NADPH) oxidases (NOX). These Ang II-induced signal transduction alterations are inter-
related and associated with increased protein synthesis as well as protein to DNA and RNA
to DNA ratios. Furthermore, Ang II actions for cellular growth are mediated by two recep-
tors namely AT1R and AT2R which are differentially expressed in cardiomyocytes during
development. Both AT1R and AT2R are coupled with G-protein and produce opposing
effects [49,70,71]. Although the interaction of AT1R and AT2R activations are of complex
nature, alterations in signal transduction pathways by Ang II are considered physiological
under acute conditions for the maintenance of cardiovascular function whereas chronic
changes in these mechanisms due to Ang II are associated with pathological situations for
the development of cardiac hypertrophy with inflammation, oxidative stress, fibrosis and
apoptosis [9,72,73]. The exact reasons for the transition of Ang II-induced physiological
to pathological cardiac hypertrophy are not fully understood; however, it appears that
the development of a critical level of oxidative stress may be one of the most important
pathogenic factors involved in this process.

3.1. Ang II-AT1R Activated Signaling and Cardiac Hypertrophy

Several studies have revealed that Ang II stimulates phospholipase C (PLC), forming
diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3) upon the breakdown of phos-
phatidylinositol 4,5-biphosphate. Subsequently. DAG activates protein kinase C (PKC)
and induces hypertrophic effects resulting in cardiac growth [9,25,59,72,74–76]. This hy-
pertrophic response to Ang II leads to stimulation of mitogen activated protein kinases
(MAPK), including extracellular signal-regulated kinases (ERKs), c-Jun amino-terminal
kinases (JNKs), and p38-MAPKs, which potentiates signals transducer and activator of
transcription (STAT) pathway as well as other intracellular protein kinases such as non-
receptor and receptor tyrosine kinases. It also turns on several downstream signals, such
as MAPK/ERK, Ras/Rho, and translocation of MAPK in the nucleus. It is pointed out
that different other signaling pathways link the AT1 receptor to Gq-independent phospho-
extracellular signal-activated kinase (p-ERK) 1/2 activation by Ang II for cell growth. It
is also noteworthy that cardiac hypertrophy has been shown associated with increased
concentration of intracellular Ca2+ due to the activation of the AT1R. In this regard, AT1R
-Gq/11-phospholipase Cβ (PLCβ) coupling has been reported to produce IP3, which
activates IP3 receptor and release Ca2+ from the sarcoplasmic reticulum. Activation of
sarcolemmal Ca2+-channels by AT1R has also been shown to increase the concentration
of cytosolic Ca2+ [12]. However, there seems to be a good correlation between sustained
Ca2+ release and cell growth indicating that these events may be closely coupled together
and in fact, Ca2+ has been demonstrated to be required for the development of cardiac
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hypertrophy by Ang II [6]. A schematic representation of signal transduction pathway
involving both protein kinase and Ca2+ due to the activation of PLC by AT1R is shown in
Figure 2.
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transduction pathways for the development of Angiotensin II- induced cardiac hypertrophy. The
activation of AT1R has been shown to promote Ca2+—entry through sarcolemmal Ca2+ channels and
increase the intercellular concentration Ca2+, which may also contribute to activating Ca2+ calmodulin
kinase for the occurrence of cardiac hypertrophy.

From the existing information in the literature, it is difficult to sort out the exact signal
transduction pathway, which may be responsible for the development of physiological
or pathological cardiac hypertrophy by Ang II. However, it appears that the intracellular
signaling cascade generated from MAPK constitutes a phosphorylation-based amplifi-
cation network and results in hypertrophic signals for cardiac adaptive or maladaptive
remodeling. Additionally, subfamilies of MAPKs such as p38 kinases, c-JNK, and ERK 1/2,
as signaling pathways in cardiac myocytes or extracellular matrix changes have been de-
scribed to regulate during the progression to the pathological cardiac hypertrophy [77–84].
Furthermore, such changes may be further amplified by the activation of cell membrane
CD38, predominant ADP ribosyl (ADPR) cyclase, which is essential for cyclic ADP ri-
bose (cADPR)-mediated intracellular Ca2+ mobilization. It may be noted that a marked
decrease in Ang-II induced intracellular Ca2+ has been reported to occur in CD38 knock-
down H9c2 cells; this was associated with a decrease in nuclear factor of activated T cells
(NFATc4) translocation and inhibition of ERK/AKT phosphorylation [13]. Likewise, Ca2+-
dependent signaling proteins such as Ca2+/calmodulin-protein kinases and calcineurin
are considered to be involved in pathological cardiac hypertrophy because calcineurin
dephosphorylates the NFAT transcription factors, promoting nuclear translocation and
gene transcription activation. Ca2+-calcineurin-NFAT signaling induced hypertrophy is
triggered by Ca2+mobilizer, cyclic ADP ribose, which is independent of IP3-induced Ca2+

release from the sarcoplasmic reticulum by Ang II. Elevated calcineurin activity in human
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failing ventricular muscle exposed to Ang II has been demonstrated to occur in pathological
cardiac hypertrophy [85].

Since Ang II acts as a growth factor to induce cardiac growth, the activation of cardiac
proteasome promotes Ang II-induced hypertrophy through the AT1R-associated mecha-
nisms. Attenuation of cardiac hypertrophy by proteasome inhibitor (bortezomib) in Ang II
infused mice was shown to be due to inhibition of degradation of ATIR-associated proteins
and inactivation of AT1R-mediated p38 MAPK and STAT3 signaling pathways; this has
been suggested to be beneficial for treating pathological cardiac hypertrophy [86]. In view
of the influence of AT1R activation on cardiac function by affecting cardiac metabolism,
the effects of Ang II on cardiac energy metabolism in experimental models of hypertrophy
and diastolic dysfunction have been demonstrated to be associated with marked reduction
in cardiac glucose and lactate oxidation without any change in glycolysis or fatty acid
β-oxidation in Ang II-treated mice [87]. Since long-term dietary fatty acid intake alters the
development of left ventricular hypertrophy, Ang II increased p38 MAPK phosphorylation
in rats fed high-fat diet has been specified. Additionally, the increased transcription factor
activator protein-1 (AP-1) DNA binding activity in response to Ang II was observed to
be higher in rats fed high-oil diet than in those fed standard diet and Ang II downregu-
lated the inducible nitric oxide synthase mRNA levels [88]. Moreover, as a low level of
high-density lipoprotein (HDL) is an independent risk factor for pathological cardiac hyper-
trophy, downregulation of AT1R and HDL was shown to ameliorate cardiac hypertrophy
via P13K/Akt-dependent mechanism [89]. Ang II-AT1R-dependent mechanism has also
been reported to induce mechanical stress-triggered pathological cardiac hypertrophy by
regulating autophagy [65,89].

The stimulation of AT1R induced transactivation of epidermal growth factor receptor
(EGFR) has been found to regulate the activation of extracellular signal-activated kinase
(ERK) and cardiac hypertrophy in cultured cardiac myocytes [62,79,90]. Additionally,
ANG II activated ERK/glycogen-synthase kinase-3 (GSK3), phosphorylated heat shock
transcription factor 1 (HSF1), resulting in a protein-coding gene RNF126 (ring finger
protein 126) degradation for stabilizing IGF-IIR protein expression and leading to cardiac
hypertrophy [91]. Likewise, ANG II activated its downstream kinase JNK, increased IGF-
IIR expression through AT1R; JNK activation has been shown to degrade sirtuin 1 (SIRT1)
via the proteasome and result in heat shock transcription factor 1 acetylation induced
IGF-IIR expression for developing cardiac hypertrophy and apoptosis [64]. In another
study, the upregulation of the M3 muscarinic acetylcholine receptor (M3-mAChR) has been
indicated during myocardial hypertrophy to relieve the hypertrophic response provoked by
Ang II. Furthermore, Ang II-induced M3-mAChR overexpression has been demonstrated to
attenuate the increased expression of atrial natriuretic peptide and β-myosin heavy chain,
and downregulate AT1R expression and inhibit the activation of MAPK signaling in the
heart [63]. Ang II-induced cardiac hypertrophy in cultured neonatal rat cardiomyocytes was
associated with increased visfatin expression mainly through the AT1R-JAK/STAT pathway.
While an Ang II-induced increase in the expression of visfatin and brain natriuretic peptide
was observed in a dose- and time-dependent manner in cardiomyocytes, pre-treatment with
AT1R antagonist (telmisartan) completely blocked the Ang II-induced visfatin expression
increment [92].

Recent studies have explored some novel signaling mechanisms such as a pro-growth
factor, Wnt1 inducible signaling pathway protein 1 (WISP1), a target of T-cell factor/lymphoid
enhancer factor (TCF/LEF) by which Ang II-AT1R promotes cardiac hypertrophy. AT1R
physical association with NOX2 further enhanced subsequent Ang II stimulation and was
associated with increased Akt, p-Akt, p-p38 MAPK, p-ERK1/2, and WISP1 expression [93].
Furthermore, the involvement of small GTP- binding protein Rac has been indicated in Ang-
II-induced cardiac hypertrophy [94]. It was demonstrated that the adaptor molecule CIKS
is critical in Ang-II-induced cardiomyocyte hypertrophy and is an essential intermediate in
Ang-II-induced redox signaling. Ang-II-induced IKK/p65 and JNK/c-Jun phosphorylation,
NF-κB, and AP-1 activation have also been reported in cardiac hypertrophy [95]. Thus, it
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can be appreciated that a wide variety of signal transduction mechanisms are involved in
inducing cardiac hypertrophy upon stimulation of AT1R by Ang II.

3.2. Ang II-ATIR/ROS/Redox Signaling and Cardiac Hypertrophy

Hypertrophic stimulus by Ang II can stimulate reactive oxygen species (ROS) forma-
tion in cardiomyocytes. Although the formation of Ang II levels at the initial stages for a
brief period activates redox-dependent sensitive mechanisms in the heart and contributes
to adaptive cardiac hypertrophy, prolonged period of Ang II-induced increased distur-
bance in the pro-/antioxidants balance due to excess production of ROS in hypertrophied
myocardium has shown markedly depressed cardiac function and progression of heart fail-
ure [23,61,96–100]. Thus, Ang II-mediated hypertrophic response depends on the increase
in low concentration of ROS production which may result in physiological hypertrophy
where cardiac function is either unaltered or increased, and this seems to be associated
with stimulation of sarcolemmal NOX2. Since the expression of AT1R is redox dependent,
the overproduction of ROS results in the overstimulation of AT1R-mediated pathways for
a prolonged period leading to oxidative stress. These effects of chronic Ang II exposure
result in mitogenic, proinflammatory, and profibrotic actions causing hypertrophic cell
growth, cardiac remodeling, and pathological cardiac hypertrophy [100–103]. Excessive
ROS production via different types of NOX disrupts redox signaling within the cells and is
considered to induce pathological growth of cardiac myocytes [97,98,100,104,105].

NOX activation during early response of endothelial cells to Ang II by binding to the
AT1R, is essential for the formation of ROS in various cardiovascular cell types. Augmented
NOX activity is a source of induction of ROS that has been implicated in the development
of pathological hypertrophy. Ang II-induced hypertrophic effects contribute to ERK1/2,
Akt, and NF-kB signaling via NOX-dependent ROS formation, and subsequent activation
of p38 MAPK, c-JNK, and nuclear factor-κB (NF-κB) as an essential mechanism which
induces cardiomyocyte hypertrophy [100,101,106–108]. Activation of the PKC-ERK-NF-κB
signaling pathway and increased intracellular ROS induced cardiomyocyte hypertrophy
by regulating expression levels of NOX2 and NOX4 has been demonstrated. As NF-κB
is an oxidative sensitive transcriptional factor, Ang II-AT1R activation of NOX2 has been
reported to increase ROS contribution in inducing hypertrophic effects and involvement of
ERK1/2, Akt, and NF-κB signaling. A schematic representation of NOX2 and NOX4 in the
development of physiological cardiac hypertrophy and pathological cardiac hypertrophy
is shown in Figure 3.

It should be mentioned that NOX2 is the predominant protein identified in cardiac
sarcolemma and transduces downstream signaling events for seven NOX known isoforms.
Low levels of ROS are produced by NOX2 for physiological processes such as cell pro-
liferation, migration, differentiation, and cytoskeletal organization, whereas excessive
production of ROS from the activated NOX4, which is mainly localized in mitochondria,
contributes to pathological cardiac hypertrophy [109–111]. Ang II-stimulated ROS gen-
eration via NOX in cardiomyocytes is supported by the blockade of gp91phox-NOX2,
which attenuated Ang II-induced cardiac hypertrophy [94]. Additionally, cardiac-specific
overexpression of NOX4 in mice potentiated Ang II-induced cardiac hypertrophy, which is
inhibited by GKT137831 administration. The mechanisms involved include upregulation of
NOX4 levels, NOX4-dependent ROS production, and increased phosphorylation of RACα

serine/threonine-protein kinase (Akt). Phosphorylation of the two downstream effectors of
Akt, mechanistic target of rapamycin (mTOR) and NF-κB, specifically, the p65 subunit were
found to be upregulated in the hearts of Ang II-infused mice. In this model of transient
overexpression of NOX4 in the heart, NOX4-induced exacerbated Ang II-cardiac hypertro-
phy via increased ROS production has been reported [108]. Moreover, since cardiomyocyte
enlargement is the most defining characteristics of cardiac hypertrophy, Ca2+-dependent
NOX5 was observed to exaggerate cardiac hypertrophy through ROS production. Aug-
mented Ang II-induced cardiomyocyte enlargement accompanied by significant increases
in the fetal genes ANP and β-MHC have also been demonstrated [112–114].
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Figure 3. A schematic representation for the AT1 receptors and redox status mediated signal transduc-
tion pathway as well as AT1 receptor and oxidative stress-calcineurin pathway for the development
of acute and chronic cardiac hypertrophy, respectively. Although different other signal transduction
pathways such as ROS, PKC, ERK1/2, Akt, NF-κB and NOX, p38 MAPK, c-JNK, NF-κB have been
identified to explain Ang II—induced pathological (maladaptive) cardiac hypertrophy, their involve-
ment including that of Ca2+, calmodulin in the development of physiological (adaptive) cardiac
hypertrophy is poorly understood.

3.3. Ang II-AT1R Induced ROS—Mitochondrial Dysfunction

It has been indicated that mitochondrial dysfunction is a significant source of ROS,
and elevated mitochondrial ROS formation is involved in Ang II-induced pathological
cardiac hypertrophy. Indeed, several studies have shown that Ang II enters mitochondria
and stimulates NOX4, promotes electron leak and mitochondrial ROS production; ROS pro-
duced by NOX4 also causes mitochondrial DNA damage, oxidation of components of the
membrane permeability transition pore, and opening of the mitochondrial ATP-sensitive
K+ channels [115–118]. Inhibition of mitochondrial ROS production by SS-31 or genetic
transfer of catalase targeted to mitochondria was found to prevent Ang II-induced cardiac
hypertrophy, and diastolic dysfunction in mice [119]. In Ang II-infused animals, ROS
scavenging with N-acetylcysteine was less effective than mitochondria-targeted scavenging
with peptide SS-31 in preventing cardiac hypertrophy, suggesting that mitochondrial ROS
has an essential role in modulating cardiac remodeling in Ang II-infused animals [120]. Fur-
thermore, mitochondrial cyclophilin D, which acts as a Ca2+ sensitizer for mitochondrial
permeability transition pore opening, mediates Ang II-induced mitochondrial superox-
ide production [121,122]. Likewise, this agent altered mitochondrial function in vivo in
Ang II-infused mice and this supports the view that cardiac hypertrophy is associated
with reductions in cardiac glucose oxidation and ATP production. There also occurs
an upregulation of pyruvate dehydrogenase kinase 4 via activation of the cyclin/cyclin-
dependent kinase-retinoblastoma protein-E2F pathway in response to Ang II [87]. Since
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Ang II-induced mitochondrial metabolic shift is considered a cause of cardiac hypertrophy,
Ang II infusion has been shown to reduce cardiac fatty acid oxidation associated with
enhanced glycolysis. These effects were reversed by inducible cardiac-specific deletion of
acetyl CoA carboxylase, and the associated cardiac hypertrophy was improved [123]. In
fact, NOX-dependent uncoupling of eNOS and consequent mitochondrial dysfunction re-
sulting in sustained oxidative stress is an effective mechanism for developing pathological
cardiac hypotrophy. It is also increasingly evident that increased ROS and oxidative stress
also result from the activities of endogenous antioxidants such as superoxide dismutase,
glutathione peroxidase, and catalase in Ang II-induced cardiac hypertrophy [124–126].

3.4. Ang II-AT1R Induced ROS and Nuclear Factor Erythroid-2 Elated Factor 2 (Nrf2)

Nrf2 is known as an essential regulator of ROS formation in cardiomyocytes, and it has
been indicated that increased ROS generation and PI3K-Akt signaling activate the receptor
Nrf2. Since Nrf2 has a critical role in antioxidant defenses, Nrf2 knockout has been shown
to enhance Ang II-induced cardiac hypertrophy by further increasing oxidative stress in
the heart. It has also been demonstrated that Nrf2 is a novel negative regulator of Ang
II-mediated cardiomyocyte hypertrophy and maladaptive cardiac hypertrophic partly via
the suppression of oxidative stress, independent of changes in blood pressure [83,127–130].
It has recently been documented that Nrf2 deficiency exacerbates Ang II-induced cardiac
hypertrophy via oxidative stress-dependent down-regulation of p27kip1 [128]. In contrast,
activation of Nrf2 was shown to suppress the axis of Ang II-oxidative stress in cardiomy-
ocyte hypertrophy; exacerbated cardiomyocyte hypertrophy induced by Ang II due to Nrf2
deficiency has also been shown in Nrf2 KO mice [83]. As a master transcription factor
expressed in most tissues, Nrf2 exhibits a significant role in amplifying the antioxidant path-
ways associated with the enzymes present in the myocardium as is significantly engaged
in regulating the gene expression of oxidants and antioxidants by binding with antioxidant
response elements [131]. It has also been reported that astragaloside IV improved cardiac
hypertrophy and LV function and structure as well as increased expression of Nrf2 and
heme oxygenase-1 has been shown [132]. These observations are consistent with the view
that depression in Nrf2 activity may reduce the antioxidant reserve in the myocardium and
such a change may be responsible for the progression of pathological cardiac hypertrophy.

3.5. Ang II-AT2R and Ang (1-7)-Mas Receptor Activated Signaling Mechanisms in
Cardiac Hypertrophy

The cardioprotective effects of AT2R activation by counteracting the effects of AT1R
in Ang II-induced cardiac hypertrophy were evident as the blockade of AT2R stimula-
tion was demonstrated to augment the early signals of AT1R-mediated cardiac growth
responses [133–138]. It is pointed out that AT2R belongs to the family of GPCRs with
various downstream signaling mechanisms depending on the cell type. AT2R associated
signaling mechanisms involved in the inactivation of AT1R–activated MAPK protein ty-
rosine phosphatase stimulation, prevention of thyroid hormone-induced cardiac mass
gain, and activation of Akt have been revealed [139]. Ang II- AT1R activation elevated
Ca2+ levels and PKC activation have also been indicated upon downregulating the AT2R
expression in cardiac myocytes [30]. Furthermore, the activation of AT2R has been shown to
promote vasorelaxation through PKA-dependent eNOS activation and paracrine signaling
through bradykinin/cGMP/NO production [137]. AT2R has also been reported to activate
the kinin/NO/cGMP system and protein tyrosine phosphatase as well as serine/threonine
phosphatase stimulation [140]. By binding to AT2R, Ang II antagonize the effect of AT1R by
promoting vasodilation through NO and cGMP stimulation, anti-proliferation, natriuresis,
antiangiogenesis, antifibrosis, and anti-inflammation in various tissues, including endothe-
lium, vascular smooth muscle, heart, brain, and kidney [69,73,138]. Since infusion of Ang-II
in mice lacking the AT2R gene did not show any development of cardiac hypertrophy,
it was suggested that AT2R signaling pathway may participate in the development of
Ang-II-induced cardiac hypertrophy [141]. Primarily dependent on the AT2R, Ang II was
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found to upregulate expression and secretion of a potential myocardial hypertrophy factor
cyclophilin A through ROS production in rat cardiomyocytes [142]. Significant increase
in the level of AT2R expression and contribution of AT2R in the activation of Akt have
also been observed in the development of the thyroid hormone-induced cardiac hypertro-
phy [143]. Although these observations suggest a dual role of Ang II-AT2R activation in
the hypertrophic process depending upon the type and stage of cardiac hypertrophy, most
of the studies favor its antihypertrophic effect in regulating cardiac hypertrophy due to
AT1R activation.

Ang (1–7), one of the significant enzymatic products of ACE2, has been shown to
attenuate Ang II-induced pathological cardiac hypertrophy by its cardioprotective effects
mediated by Mas receptors through different signaling pathways. However, there is
evidence to suggest that Ang (1–7) may promote signaling via Mas receptors in a G
protein-independent manner in spite of the fact that Mas receptors have solid constitutive
activities with Gq and G12. Most studies have shown that A (1–7) or other Mas agonists
in the heart induce antihypertrophic and cardioprotective effects [143–147]. Treatments
of cardiomyocytes with Ang(1–7) have been shown to attenuate Ang II-induced cardiac
hypertrophy [143,147,148]. Furthermore, acute exposure to Ang(1–7) in cardiomyocytes did
not show any noticeable effect on Ca2+ transients but promoted NO release by activating
endothelial NO synthase (eNOS) and nNOS. Alternatively, significant effects on Ca2+-
handling proteins upon chronic exposure to Ang(1–7) or genetic deletion of Mas receptors
have been reported. Additionally, Ang-(1–7)-producing fusion protein in the heart showed
an increased Ca2+ transient amplitude, faster Ca2+ uptake, and increased expression of
SERCA2 [143,149]. Recent work also points to protective functions of Ang (1–7)/AT2R
signaling as Ang (1–7) was shown to mediate vasodilation via AT2R in the presence of an
AT1R blocker [150]. However, it needs to be pointed out that the current knowledge of
Ang (1–7)/Mas receptors signal transduction in cardiac hypertrophic processes is limited,
and more experimental and clinical research for the understanding of its mechanisms is
required [151,152].

4. Therapeutic Strategies for Preventing or Regression of Ang II-Induced
Cardiac Hypertrophy

Since Ang II stimulates cardiovascular growth and remodeling by binding to AT1R,
many AT1R blockers such as losartan, valsartan, telmisartan and candesartan have shown
to attenuate cardiac hypertrophy [153–156]. It is pointed out that AT1R blockade has not
only been shown to prevent the development of Ang II-induced cardiac hypertrophy but
also known to promote its regression. Several studies have reported the antihypertrophic
effect of different synthetic and natural compounds such as curcumin and resveratrol by
inhibiting some target sites in various signal transduction pathways in Ang II-induced
cardiac hypertrophy [60,61,66,67,157,158]. Furthermore, curcumin, losartan, and anti-LOX-
1 antibodies were found to attenuate Ang II-mediated oxidative stress, the expression
of NOX and NF-κB as well as cardiac hypertrophy [157]. Attenuated activation and
expression of AT1R upon inhibiting the phosphorylation of PKC-ERK-NF-κB pathway
by Pterosin B have been shown to exert beneficial effects [60]. Reduction in excessive
intracellular ROS by Pterosin B for regulating the expression levels of NOX2 and NOX4
has also been demonstrated to attenuate Ang II-induced cardiomyocyte hypertrophy [159].
Liraglutide was also shown to ameliorate cardiac hypertrophy potentially by suppressing
the AT1R-mediated events and preventing the progression of cardiac hypertrophy to heart
failure [160].

Pre-treatment of neonatal cardiomyocytes by an AT2R blocker PD123319, was demon-
strated to increase the hypertrophic effects of AT1R activation by Ang II whereas the
antigrowth effects of AT2R activation by Ang II became more evident upon treatment
with an AT1R blocker, losartan. Accordingly, it was suggested net growth effect of Ang
II depends on the cellular AT1/AT2 receptor ratio [60]. Additionally, AT2R blockade was
shown to prevent thyroid hormone-induced cardiac mass gain and Akt activation, indi-
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cating the role of AT2R in developing future therapeutic strategies for the treatment of
pathological cardiac hypertrophy [139]. Apart from AT1R blockers, ACE inhibitors such as
enalapril, ramipril, benazepril, zofenopril, lisinopril, fosinopril, perindopril, and imidapril
which reduce the formation of Ang II, have been evidenced for their beneficial effects in
attenuating pathological cardiac hypertrophy [27,161–167]. In fact, the combination of ACE
inhibitors with AT1R blockers, eprosartan has been reported to improve cardiac output
in patients with severe heart failure [167]. Although several ACE inhibitors and AT1R
antagonists are used clinically for the prevention or reversal of pathological cardiac hyper-
trophy and subsequent heart failure, it remains to be investigated whether these beneficial
effects are associated with elevations in the level of Ang (1-7) or activities of Mas receptors
and AT2R. Because Ang II is known to produce oxidative stress, it has been suggested
that the antihypertrophic effects of ACE inhibitors and AT1R blockers may be due to the
antioxidant activities. The use of different antioxidants has shown to reduce pathological
cardiac hypertrophy as well as vascular remodeling [168,169]. In this regard, scoparone
was reported to inhibit Ang II-induced cardiac hypertrophy in vitro via the elimination of
overexpression of RAC1 and by inhibiting RAC1-mediated oxidative stress [170,171].

Since the vital role of endogenous antioxidant defenses in the control of Ang II-
mediated redox signaling in the heart, up-regulation of antioxidant enzymes (such as
haeme-oxygenase-1 and thioredoxin 2), have been demonstrated to inhibit Ang II-induced
oxidative stress and cardiac hypertrophy [172–174]. The activators of NF-κB such as astraga-
loside can be seen to exert beneficial effects for preventing the Ang II- induced pathological
hypertrophy by elevating the level of antioxidant reserve in cardiomyocytes [132]. Addi-
tionally, activation Rac1-a significant regulator of NOX activity in adult hearts, is required
for Ang II-induced cardiac hypertrophy [175,176]. In cardiomyocytes and cardiac fibrob-
lasts, Ang II activated Rac1 (increasing expression of RAC1-GTP), as well as NOX2 and
NOX4 involvement in cardiac hypertrophy and fibrosis has been indicated [174,177]. The
antioxidants therapies are considered to have an advantage for the treatment of cardiac
hypertrophy over ACE inhibitors or AT1R blockers [17,27,57,61,174,178]. Furthermore, it is
suggested that extensive effort should be made to develop appropriate activators of AT2R
and Mas receptors for preventing or reversing the Ang II- induced pathological cardiac
hypertrophy [133,134,143,149].

5. Concluding Remarks

From the foregoing discussion, it is evident that induction of cardiac hypertrophy by
elevated levels of Ang II upon the activation of RAS is considered to maintain cardiovascular
function. Although Ang II is also known to produce hemodynamic overload due to
vascular vasoconstriction, cardiac hypertrophy induced by this hormone has been shown
to be independent of pressure overload. Nonetheless, acute exposure of the heart to
Ang II has been reported to produce physiological cardiac hypertrophy with augmented
or unaltered cardiac function whereas chronic exposure results in pathological cardiac
hypertrophy with depressed cardiac function. Extensive research work has revealed that
the hypertrophic response of cardiomyocytes, vascular myocytes and the other cell types in
extracellular matrix including fibroblasts to Ang II is primarily elicited by the activation of
AT1R whereas the activation of AT2R results in antihypertrophic effects. Both AT1R and
AT2R are coupled with different signal transduction molecules through Gq-proteins. The
activation of Mas receptors by another angiotensin peptide, Ang-(1-7), has also been shown
to exert antihypertrophic response of the myocardium. It is becoming apparent that the net
growth of myocardium due to Ang II and subsequent stimulation of signal transduction
pathways is a consequence of the activation of AT1R and AT2R or Mas receptors. It is also
clear that an increase in the concentration of intracellular Ca2+ is absolutely essential for
the activation of AT1R-linked signal transduction mechanisms for the induction of cardiac
hypertrophy by Ang II.

Although a wide variety of signal transduction pathways are involved during the
development of cardiac hypertrophy by Ang II, it is difficult to clearly identify which one is
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associated with physiological or pathological hypertrophy. Such a complexity in identifying
the role of any one pathway appears to be related the fact that all these signal transduction
mechanisms are closely inter-related to each other for the occurrence of oxidative stress,
inflammation and intracellular Ca2+-overload. There is ample evidence to suggest that the
hypertrophic response of cardiomyocytes to Ang II involves the AT1R-induced activation
of PLC for the formation of DAG and IP3. Furthermore, there occurs the activation of PKC
by DAG, which then results in the development of cardiac hypertrophy as a consequence
of the activation of ERK1/2. On the other hand, IP3 formed due to the activation of PLC
results in the activation of Ca2+-calmodulin kinase by binding with IP3 receptors in the
sarcoplasmic reticulum and release Ca2+ in the cytoplasm. Since the activation of AT1R has
also been demonstrated to increase Ca2+-entry through Ca2+-channels in the sarcolemmal
membrane, this mechanism can also be seen to participate in raising the intracellular Ca2+

and subsequent cardiac hypertrophy.
Another signal transduction mechanism for the induction of cardiac hypertrophy by

Ang II involves the production of ROS. It appears that the stimulation of AT1R upon acute
exposure of myocardium to Ang II activates NOX2 and produces low concentrations of ROS
for altering the redox status of myocardium. This change has been shown to be associated
with the activation of Akt, increased activity of NF-kB and activation of ERK1/2 for the
occurrence of physiological cardiac hypertrophy. On the other hand, chronic exposure
of myocardium to Ang II stimulates NOX4 upon the activation of AT1R and results in
the development of oxidative stress due to excessive production ROS. Such a change has
been shown to produce intracellular Ca2+-overload and activate calcineurin for inducing
pathological cardiac hypertrophy as a consequence of the occurrence of inflammation,
apoptosis and fibrosis. It is suggested that both these signal transduction mechanisms
involving oxyradical formation and PLC activation may participate in the genesis of Ang
II-induced cardiac hypertrophy. It is pointed out that it is not our intention to rule out the
role of several other pathways and growth factors in the hypertrophic process due to Ang
II. Thus, various interventions inhibiting AT1R or activating AT2R and Mas receptors as
well as affecting different signal transduction pathways can be seen to produce beneficial
effects in reducing the oxidative stress, inflammation, and intracellular Ca2+- overload for
preventing the Ang II-induced cardiac hypertrophy.
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