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SUMMARY

An essential event in gene regulation is the binding of a transcription factor (TF)
to its target DNA. Models considering the interactions between the TF and the
DNA geometry proved to be successful approaches to describe this binding
event, while conserving data interpretability. However, a direct characterization
of the DNA shape contribution to binding is still missing due to the lack of accu-
rate and large-scale binding affinity data. Here, we use a binding assay we
recently established to measure with high sensitivity the binding specificities of
13 Drosophila TFs, including dinucleotide dependencies to capture non-indepen-
dent amino acid-base interactions. Correlating the binding affinities with all DNA
shape features, we find that shape readout is widely used by these factors. A
shape readout/TF-DNA complex structure analysis validates our approach while
providing biological insights such as positively charged or highly polar amino
acids often contact nucleotides that exhibit strong shape readout.

INTRODUCTION

The binding of transcription factors (TFs) to specific DNA sequences is a key event for the regulation of

gene expression. The features defining a binding site have been the focus of several decades of research

starting from simple consensus motif binding sites, later replaced by probabilistic models of TF binding

assuming that each base contributes independently to the overall affinity, the so-called position-specific

weight matrices (PWMs) (Stormo et al., 1982). With the advent of high-throughput methods, binding spec-

ificities became available for thousands of TFs and it has become clear that more complex models for bind-

ing sites using non-independent nucleotide interactions lead to more accurate predictions than PWMs

(Weirauch et al., 2013; Zhao and Stormo, 2011). Nucleotide correlations can originate from amino acids

that contact multiple bases simultaneously or from stacking interactions that determine binding through

DNA shape readout. Hence, although determining binding specificities is crucial to predict binding sites

in the genome, such data alone are not sufficient to fully describe TF-DNA binding interactions as they

do not provide insights about themechanism the TF employs to bind to different DNA sequences. To eluci-

date how the TF ‘‘reads’’ the DNA is of paramount importance not only to improve algorithms predicting

binding sites but also to refine our fundamental understanding of how TFs are recruited to specific DNA

regulatory sequences.

To date, two distinct modes of protein-DNA recognition are known: base readout, which reflects the

interplay at nucleobase-amino acid contacts mainly driven by the formation of hydrogen bonds, and

shape readout, dominated by van der Waals interactions and electrostatic potentials (EPs), that recog-

nizes the 3D structure of the DNA double helix. As a consequence, one can assume that, if the TF

uses the shape readout, models incorporating DNA structural information should improve prediction

of TF-DNA binding specificities. To test this hypothesis and thereby help model development, it would

thus be highly desirable to (1) determine accurately TF-DNA binding specificities, including non-indepen-

dent nucleotide interactions since deviations from linear binding can carry information about the influ-

ence of DNA shape, and (2) use these data to assess the contribution of DNA shape readout to the bind-

ing interaction.

Despite the availability of techniques able to measure protein-DNA interactions at high throughput such as

protein binding microarray (PBM) (Berger et al., 2006), SELEX-seq (Rastogi et al., 2018) (Riley et al., 2014),

and SMiLE-seq (Isakova et al., 2017), the accurate measurement of binding affinities remains problematic.

Moreover, these methods require a resin- or filter-based selection step that introduces bias and/or use
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stringent washing protocols resulting in the loss of weak binders, which can lead to erroneously over-spe-

cific binding specificities (Jung et al., 2018). These limitations are critical, especially to determine higher-

order binding interactions, which are intrinsically weak (Maerkl and Quake, 2007; Nutiu et al., 2011).

Evaluating the contribution to binding of DNA shape readout also poses challenges. First, although it had

been known for a long time from crystal structures that TFs read out the DNA shape (see (Rohs et al., 2010)

for review), it is still not possible to determine experimentally the DNA shape features at a large scale for

any given DNA sequence. However, this would be necessary to quantitatively assess DNA shape influence

on TF-DNA binding. This issue has been tackled by Zhou et al. who introduced ‘‘DNAShape’’ (Zhou et al.,

2013), an algorithm that predicts structural DNA features from nucleotide sequences, considering at each

DNA position a local 5-mers nucleotide environment. The original set of four geometric shape features was

later completed by Li et al. (Li et al., 2017), who made tables available to calculate an expanded repertoire

of 13 DNA shape features in total. Finally, Chiu et al. (Chiu et al., 2017) added in a comparable fashion the

EP, which approximates the minor-groove EPs. The EP reflects the mean charge density of the DNA back-

bone sensed by positively charged amino acid residues of the binding protein.

Another difficulty to analyze the influence of DNA shape to binding is that, in spite of all the advances

made possible by ‘‘DNAShape’’ and the succeeding studies, it is still not clear to what degree shape

readout can be described as a function of the underling DNA sequence. It is indeed very difficult to tease

apart whether a binding protein favors a given nucleotide sequence because it recognizes certain amino

acids of this sequence or rather certain shapes features of the DNA helix. An important step was made

with homeodomain TFs by Abe et al. (Abe et al., 2015), who were able to specifically remove the ability

of the binding proteins to read a certain structural feature of DNA and to switch between different modes

of DNA shape readouts. Another approach computationally dissects TF binding specificity in terms of

base and shape readout (Rube et al., 2018). Remarkably, the authors determined that 92-99% of the vari-

ance in the shape features can be explained with a model considering only dinucleotides dependencies.

They also found that interactions were much stronger between neighboring nucleotides than for non-

adjacent positions, indicating that these dinucleotide features are the most important for binding. Hence,

determining neighboring dinucleotide dependencies should be enough to capture most on the higher-

order binding interactions.

Unfortunately, although these studies shed new light on the role of DNA shape in TF-DNA recognition, they

were limited to the analysis of only a few factors and used only four different shape features. This was due to

the lack of quantitative data on higher-order binding specificities and to the lack of tables to calculate other

shape features. Thus, a more comprehensive analysis of TF-DNA binding – especially including higher-or-

der dependencies – is urgently needed to better understand TF-DNAbinding in general and to what extent

DNA shape features are recognized by TFs in particular.

Recently, we presented high-performance fluorescence anisotropy (HiP-FA) (Jung et al., 2018, Jung et al.,

2019), a method that determines TF-DNA binding energies directly in solution with high sensitivity and at a

large scale and allows for measuring the affinity of a TF to any given DNA sequence. These features make

HiP-FA an ideal tool to measure TF-DNA binding specificities, in particular the higher-order dependencies

since these interactions are generally weak and their accurate measurement is both difficult and

indispensable.

Here, we used HiP-FA to measure binding energies for 13 TFs of the Drosophila segmentation gene

network belonging to 8 different binding domain families. We determined their 0th order of binding spec-

ificities taking only into account independent base contributions (PWM) and their first order of binding

specificities accounting for dinucleotide dependencies represented by the dinucleotide position weight

matrices (DPWMs). In this work, we define DPWMs as being the scoring matrices characterizing the devi-

ations in the dinucleotide binding energies compared to pure PWMs (Transparent Methods). Correlating

our affinity data with the 13 known DNA shape features and the EP, we found that nearly all our factors

extensively use shape readout for DNA recognition, independently of the binding domain family. For 11

TFs for which structural information is available, we examined the correlations between their nuclear mag-

netic resonance (NMR)/co-crystal structures or structures of analog proteins obtained by homology-based

modeling and the shape attributes obtained from our analysis. Finally, we ran a cluster analysis to test if

certain shape features tend to co-occur in the DNA shape readout used by our TFs.
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RESULTS

Determination of the TF-DNA Binding Specificities and Overall Strategy for the Analysis

In a previous work (Jung et al., 2018), we have already presented the PWMs determined by HiP-FA for the 13

selected factors. We have also validated our method for determining binding affinities using two orthog-

onal assays, electrophoretic mobility shift assay and microscale thermophoresis. Finally, we have demon-

strated that our PWMs were superior to those obtained with other methods (bacterial one hybrid or DNase

footprinting) in predicting ChiP-seq data and when used in a thermodynamic model for predicting gene

expression inDrosophila embryos (Jung et al., 2018). Herein, we extended our method to capture potential

higher-order TF-DNA interactions by measuring the binding affinities of all mononucleotide and neigh-

boring dinucleotide mutations (Figure 1A) in the core of each TF-DNA consensus binding sequence (6 po-

sitions for GATAe, 7 for all the other TFs). For 6 factors, we measured duplicates or triplicates to check

reproducibility, leading to in total�1600 individual titration curves. We analyzed the data in two steps: first,

we used the binding affinities to determine the PWMs and the DPWMs. Importantly, in the analysis proced-

ure, we developed an algorithm (PySite; https://github.com/Reutern/PySite) to correct for the energy

contribution of off-target binding sites that might be created by chance in dinucleotide mutations (Fig-

ure 1B and Transparent Methods). Second, we assessed the influence of the shape of DNA around the

core binding site on the TF-DNA binding strength. For all dinucleotide mutations, we calculated the 13

shape features and the EP at each position in the binding site using available look-up tables (Chiu et al.,

2017; Li et al., 2017; Zhou et al., 2013). We then applied a robust linear regression algorithm (Transparent

Methods) to correlate, at a given position, the values of each shape feature with the binding energies

measured for all tested mutations of the binding site (Figure 1C; see below for details).

Zeroth- and First-Order Binding Specificities for the Drosophila TFs

We used our measured binding affinities to determine the PWMs and DPWMs (Data S1) of the factors

(Figure 2 and Transparent Methods). Overall, the PWMs are similar and largely share the same consensus

sequences with those obtained by other methods, but they generally present a lower specificity

(measured by their information content [IC]) as already discussed in our previous work (Jung et al.,

2018). In contrast, our DPWMs show fewer but more preferred dinucleotides (as indicated by higher

mutual information [MI] (Transparent Methods), a metric similar to IC but for dinucleotide representation)

compared to computationally derived scoring matrices including nucleotides (Siebert and Soding, 2016)

or obtained using SMiLE-seq data (Rube et al., 2018). The low noise present in our binding specificities

can be visually appreciated by comparing with the logos obtained from SMiLE-seq data for Bicoid (Bcd)

(Rube et al., 2018) (Figure S2), to our knowledge the only factor among our TFs with an already known

higher-order specificities based on binding affinities. For example, at position 5 of the HiP-FA Bcd

DPWM (corresponding to the dinucleotide mutations between positions 4 and 5 in the PWM; Figure 2),

the four pairs AT, AG, GT, and CA have a cumulated MI of nearly 1 bit, thereby dominating over the

other 11 possible dinucleotide mutations. Another more direct way to assess the effect of non-indepen-

dent binding is to compare our experimentally determined affinities with predicted values assuming

purely linear base contribution (Figure S1). Many dinucleotide mutation sequences disagree with

measured values (defined as lying within 3s of the measured values), confirming the presence of non-in-

dependent amino acid-nucleotide interactions.

For all factors, we observe that the 0th order contribution to binding dominates over the first order, as indi-

cated by the higher ICs of the specificity logos (6.9 bits on average for the 0th order compared to 2.1 bits MI

for the first order; Figure 2). This was expected since the simple PWMmodel has proven to capture most of

the sequence preferences for numerous TFs (Stormo et al., 1982; Zhao and Stormo, 2011). Surprisingly, the

DPWMs of nearly all our TFs (with the exceptions of GATAe and Gt) show a high contribution to the overall

binding specificities, revealed by their relatively high total MI (>�1 bit), above our threshold for significant

MI (0.03 bits per nucleotide positions, corresponding to �0.2 bits for the total MI of our DPWM logos; see

Transparent Methods). Several studies already emphasized the importance of neighboring nucleotides in

the prediction of TF binding (Nitta et al., 2015; Siebert and Soding, 2016; Zhao et al., 2012) but only for a few

factors. The sensitivity of the HiP-FA assay enables us to accurately resolve weak – but measurable – bind-

ing events and their deviations from a purely linear binding of independent bases.

Noteworthy, the three members of the homeobox family (Bcd, Gsc, and Oc; Figure 2) have resembling

PWMs and DPWMs, reflecting the similarity of their binding domains. This observation is in line with pre-

vious works describing the high similarity between homeodomain TFs’ PWMs (Affolter et al., 2008). Our
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Figure 1. Experimental and Data Analysis Strategies

(A) Sequence design andmeasurement of binding energies by HiP-FA. A consensus sequence is mutated with all possible

mononucleotide and dinucleotide mutations. The individual TF-DNA binding energies are measured using a robotic

system and an automated custom-modified fluorescence microscope; the titration binding curves are reconstructed and

analyzed following the HiP-FA procedure (Jung et al., 2018, Jung et al., 2019).

(B) Data analysis. After an off-target removal procedure (Transparent Methods), the binding energies are used to

determine the 0th order of binding (PWMs) and the first order of binding (DPWMs), as shown for the TF Bcd. The DPWMs

exhibits the mutual information (MI, a metric similar to the information content IC but for dinucleotide representation),

which is not included in the simple linear PWM.

(C) Analysis of the DNA shape readout contribution. The sensitivity to DNA shape is analyzed following the subsequent

steps: the DNA shape features are calculated using look-up tables (Chiu et al., 2017; Li et al., 2017; Zhou et al., 2013). The

sensitivity to shape readout (termed shape readout value) is plotted per position against the binding energies (lower

panel of c), and a robust linear regression is performed (Transparent Methods). Besides the fit (blue line), the steepest

(gray dashed line) and the least steep fit (purple dashed line) are estimated using the confidence intervals provided by the

robust linear regression. To make a conservative choice, the least steep slope is taken as the shape readout value. The

shape readout values of all features and positions are depicted in the lower right panel for Bcd.
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DPWMs clearly show that this similarity holds also at the first order of binding. A closer inspection, however,

reveals the presence of subtle differences in specificities. At position 5 of the three DPWMs, although the

preferred dinucleotides are very resembling (AT being the strongest positive deviation from linear binding,

TC being the strongest repulsive one), the correspondingMIs differ substantially between the three TFs (for

the positive MI: 0.76 bits for Bcd, 0.42 for Oc, and 0.27 for Gsc). In addition, Bcd differs at position 2 in its

DPWM from the two other factors with its relatively high MI (0.35 compared with 0.08 for Gsc and 0.04 for

Oc). Although these differences are small, their concerted effect might be important to allow these home-

odomains to execute their distinct biological functions.

To conclude, our sensitive measurements of binding affinities provide us with refined binding specificities

for our TFs, including first-order binding interactions.

DNA Shape Readout Is Used by Most of the Investigated TFs

The fact that most of the variance in DNA shape is encoded in dinucleotides (Rube et al., 2018) encouraged

us to tackle the question to which extent TF-DNA binding is driven by DNA shape. To this end, we calcu-

lated the 13 geometric shape features and the EP at each position for all tested DNA sequences and deter-

mined their influence on our binding energies. For a given factor, we evaluate whether the change in bind-

ing energies correlates with a feature of interest when a base at a certain position and/or at a neighboring

position deviates from the consensus sequence. For example, in the case of Bcd, at position 4, the binding

energy decreases over an amplitude of �4 (normalized) when the relative minor groove width (MGW) in-

creases from �0.2 to �0.8 Å (Figure 1C). The sensitivity to DNA shape readout is determined by a robust

linear fitting procedure (Transparent Methods) to minimize the effect of extreme values (identified as out-

liers by the algorithm) and to provide a confidence interval to the resulting fitting parameters. The slope of

the robust linear fitting provides an estimate of how much the binding of the TF at the particular position is

influenced by the local DNA shape. On the following, we define the ‘‘shape readout value’’ as being this

slope after normalization using for the binding energies their z/standard score and for the DNA shape fea-

tures their amplitude (details about the normalization procedures in Transparent Methods). The shape

readout value profiles allow one to compare the shape sensitivity of the free binding energy for the

different shape features along the TF-DNA interface, while providing an intuitive metric of their deviation

from their ‘‘average’’ behavior. For each TF, we applied this analysis procedure for every shape feature and

at all base positions along the core DNA binding sequence (Figure 3 and Data S1). The reproducibility of

the shape readout values among replicates was high with a mean squared Pearson coefficient R2 = 0.78 for

the 6 factors having duplicates or triplicates (Figure S3).

The shape sensitivity plots reveal a widespread use of DNA shape readout for all our TFs (Figure 3), with

strong differences in the shape readout values between factors and at different base positions for a given

factor. Remarkably, the members of the homeodomain family (blue box in Figure 3) behave the same with

similar shape sensitivity plots (discussed in details below), as already observed for the PWMs and

DPWMs. This does not hold true for the zinc finger family (green box) or for the other factors with

different binding domains for which the shape sensitivity plots exhibit various patterns along the DNA

binding sequences. Other studies have reported that zinc fingers are diverse in their binding behavior,

in contrast to other TF families (Kribelbauer et al., 2019; Rohs et al., 2010). Interestingly, we found that

in the center of the binding sites of GATAe and Zelda (Zld) (positions 3 and 4 for both factors in the shape

sensitivity plots), the shape readout values are very low, as discussed below in more details for GATAe. At

these positions, the sequence logos have a high IC, as indicated by the prominent TC and GG bases in

the PWMs of GATAe and Zld (Figure 2). Conversely, shape features become important where sequence

information is not well defined, like for GATAe at positions 5 and 6 and for Zld at positions 1 and 7. This

phenomenon has already been reported for other factors (Abe et al., 2015). Interestingly, we observe a

similar phenomenon for the side chains of most of our factors, for the three homeodomains and for Hb,

Tll, Fkh, and Eip93f. In these cases, shape features contain more information for binding than sequence

alone in the side chains.

Figure 2. Overview of the PWMs and DPWMs for all the Investigated TFs

In the DPWMs, the heights of the dinucleotide letters represent the mutual information (MI) between two positions for the

first order of binding. The total information content (IC) and MI are indicated in the right hand side columns for the PWM

and DPWMs, respectively. Homeodomain factors and zinc fingers are grouped by color. Average PWMs and DPWMs are

shown when replicate measurements were performed.
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Figure 3. Overview of DNA Shape Sensitivities for the investigated TFs

The stacked shape readout values are plotted for each feature at each position (intra-base pair features) or between two

positions (inter-base pair features). To facilitate the comparison with Figure 2, the positions are also labeled with their

respective nucleobase at this position of the consensus sequence. The legend for the respective features is in the lower
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Correlation between the DNA Shape Sensitivity of the TFs and Structural Information

We next wondered whether the observed shape readout values can be related to protein structures as in-

teractions between the TF and its target DNA (Figure 4). Unfortunately, structural information is only avail-

able for the homeodomain TF Bcd, which has an NMR structure (Baird-Titus et al., 2006), and for the other

homeodomains Gcs and Oc sharing very similar protein structure and binding specificities. For the other

factors, we thus sought for experimental structure of homologous TFs using protein homology-based

modeling (Kelley et al., 2015) (Figure S4). In this section, we will focus on the homeodomains, on a B-ZIP

Gt homolog (Pap1) (Fujii et al., 2000), and on a zinc finger GATAe mouse homolog (GATA3) (Bates et al.,

2008).

As for other homeodomain proteins in complex with their DNA targets, the recognition helix of Bcd (in red

in Figure 4C) is thought to be engaged in base readout of the major groove, whereas the N-terminal tail (in

blue) is involved in shape readout of the minor groove (Baird-Titus et al., 2006; Dror et al., 2014; Yang et al.,

2017). Although little is known about the relationship between structural features and binding affinities, it

has been shown that a narrow MGW can enhance the negative EP in the minor groove (Chang et al., 2013;

Rohs et al., 2009), which can attract positively charged amino acids such as arginine (R), lysine (K), and his-

tidine (H), considering the latter can be protonated. We thus focused on nucleotide positions with strong

shape readout values (highlighted with blue rectangles in Figure 4A), in particular with significant shape

readout values for the features MGW and EP, and sought the presence of contacts with R, K, and H residues

at these positions. The residue contact map of Bcd (Figure 4B) shows the individual nucleotide-residue in-

teractions, DNA secondary structure, protein secondary structure, and DNA interactionmoieties (Figure S4

for details). One can observe multiple interactions (highlighted in yellow) between arginine (R4, R55, and

R56) or lysine (K51 and K55) amino acids, and nucleotides positions with strong shape readout values (po-

sitions 1, 2, and 4, highlighted in blue in Figure 4A) exhibiting significant MWG and EP shape readout

values. Another study (Dror et al., 2014) that analyzed 168 mouse homeodomains using PBM data found

a significantly high correlation between the positively charged R or K residues of the N-terminal tail with

the minor groove. Our data confirm the interaction between the R4 residue of the N-terminal tail (indicated

by the blue arrow in Figure 4C) and the T and A nucleotides at position 1 and 2, respectively, exhibiting high

and significant MWG shape readout value and EP (interactions shown in yellow). In addition, we observe

another nucleotide T (position 4, highlighted with the right blue rectangle) with strong shape readout

and that contacts an arginine (R55) and a lysine residue (K51), both belonging to the recognition a-helix.

Interestingly, the A at position 3 (black arrows in Figure 4A) with a very low shape readout interacts only

with the non-charged asparagine and the hydrophobic isoleucine residues (N52 and I48, respectively; black

arrows in Figure 4B). This prompted us to evaluate the frequency of contacts with positive residues for all

our factors for which we found a structure of a homologous protein (Figure S4). Remarkably, we found for

the strong shape readout positions much more frequent nucleotide interactions with R, K, or H (64% of the

contacts) than for the other positions (28% of the contacts). Hence, these results generalize the contribution

of the positively charged amino acids to the shape readout to other DNA secondary structures (such as

a-helixes) and to other binding domains. Interestingly, we also found for the POU domain Nub (Figure S4E)

that positively charged residues can strongly contribute not only to DNA shape readout but also to non-

charged but highly polar amino acids (glutamine, threonine, and serine in this case).

As an additional validation for our analysis, although the DNA shape features ProT, Roll, HelT, and MGW

have been quantitatively investigated for Bcd by Rube et al. (Rube et al., 2018), the MGW was the only

shape feature with significant shape sensitivity coefficients in their study. For a detailed comparison, we

plotted our shape readout values for all positions of the MGW against the corresponding shape sensitivity

coefficients determined by Rube et al. (Rube et al., 2018) (Figure S5). We obtained an excellent correlation

(R2 = 0.99) for the subset of coefficients that Rube et al. found to be significant. Note that our shape readout

values were also significant (p < 0.05) at these positions. Remarkably, we also found significant correlations

for additional features and for the other homeodomains, like at position 4 where the MGW exhibits a local

minimum (Figures 4D and 4E) for Stretch and the EP for the three homedomain proteins, as well as for ProT

Figure 3. Continued

right corner. Homeodomain TFs (blue background color) and zinc finger TFs (green) are grouped together. The

significance levels are indicated for each shape readout value bar with a hashing code indicated in the right bottom

corner (see Transparent Methods for details). Average shape sensitivity plots are shown when replicate measurements

were performed. Overall, there is a widespread use of the DNA shape readout by our TFs.
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Figure 4. Correlation between DNA Shape Readout and Structural Information

Homeodomains TFs.

(A) Shape readout value profile for Bcd. Positions with strong shape readout highlighted with blue rectangles.
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(Gsc) and Buckle (Bcd and Gsc). This shows that the TF reads multiple DNA shape features at this position.

As mentioned above, the reproducibility of the shape feature values is remarkable among the different ho-

meodomains (Figure 4D). Given the sequence similarity between the three proteins, it is not surprising to

find a similar shape readout for most features, which also speaks for the high reproducibility of our

measurements.

Another pertinent example is the TFGiant (Gt) belonging to the family of B-ZIP proteins (Figures 4F–4H and

S4F). Members of this family approach the DNA like a scissor, with two alpha helices contacting the major

groove from two opposing sites (Figure 4G). Interestingly, the same mirror symmetry with a mirror plane

between position 3 and 4 (C and G) is found in the PWM (Figure 4H) and partially in the shape sensitivity

plot (Figure 4F). The shape readout values of both inter- and intra-base pair features between positions

2 and 5 show a highly symmetrical pattern, in line with the binding mode of B-ZIP proteins (Figure 4H

and the residue contact map in Figure S4F). This pattern, although conserved in the PWM, is not maintained

at the side positions in the shape readout values, probably due to the fact that the DNA has more flexibility

outside of the B-ZIP’s scissor and the TF has less contact to its minor groove and backbone (Figure S4F).

At last, we examined the zinc finger protein GATAe (Figures 4I–4J and S4D). Zinc fingers contact the DNA

at two opposing strands with three contacts being at one strand (positions 4 to 2, ATC in the case of

GATAe) and another at the opposing strand (position 1, T) (Fedotova et al., 2017). There are multiple con-

tacts at position 1 (blue circles in Figure 4J and the residue contacts map in Figure S4D) between the TF

and the DNA backbone, which match the high shape readout values at this position (in total 14.1 AU, ab-

solute sum). The contacts between the TF and minor groove or DNA backbone decrease moving toward

the central binding site, as seen in the crystal structure (orange circle in Figures 4J and S4D). The sum of

the shape readout values shows a similar behavior, a decreasing overall shape sensitivity going from po-

sition 1 to 4 (black arrow in Figure 4I). At position 4 (yellow circle), one can observe contacts in the struc-

ture exclusively to bases in the major groove (yellow circle in Figure 4J), and the sum of the shape readout

values is reduced to a minimum (1.8 AU). It was recently reported that metazoan zinc fingers tend to estab-

lish several contacts to the DNA backbone (Najafabadi et al., 2017), possibly permitting DNA shape

readout at these positions.

In overall, this shape/structure analysis validates our approach, while bringing biological insights about the

relationship between shape readout values and residue contacts with the TF-DNA interface.

Shape Readout Values/TF Clustering

Finally, we asked if TFs use predominantly certain shape features to bind to DNA. To test whether shape

features tend to co-occur in the shape readout, we performed two distinct cluster analysis of the shape

readout values matrix (Figure S6 and Transparent Methods): (1) we clustered the different features with

Figure 4. Continued

(B) Residue contacts map for Bcd (obtained using the DNAproDB database (Sagendorf et al., 2019), details in Figure S4). Interaction between bases and

positively charged residues highlighted in yellow.

(C) Crystal structure of Bcd (pdb-ID: 1ZQ3) (Baird-Titus et al., 2006). Base contacts with the recognition helix in red, with the N-terminal tail in blue. The

bluearrow points at the position where the binding domain contacts the narrowing minor groove.

(D) Shape readout values for the three homeodomain TFs at position TAAT of the consensus sequence (position 4 of the corresponding PWMs in Figure 2). In

addition to being very similar, all three homeodomains show a strong readout of the minor groove at this position.

(E) MGWprofile along the binding sequence for the consensus binding sequence used for the homeodomains. It exhibits a minimum value at position TAAT

(red arrow).

B-ZIP TF Gt.

(F) Shape readout values for Gt. The black rectangle indicates positions with highly symmetrical shape readout values around the middle vertical axis (added

to all three panels at the same position).

(G) Crystal structure of a similar B-ZIP TF (pdb-ID: 1GD2) (Fujii et al., 2000) with the same core consensus sequence as Gt. The black box indicates the region

of high mirror symmetry around the black axis. Base contacts highlighted in red.

(H) Gt’s PWM, the first position augmented with data from Jung et al. (Jung et al., 2018). The entire PWM is highly symmetrical.

Zinc finger TF GATAe.

(I) Shape readout values for GATAe. Positions with strong (1, blue) and weak (4, orange) shape readout values are indicated at the x axis.

(J) Their corresponding positions in the protein structure of a similar GATA TF (pdb-ID: 3DFV) (Bates et al., 2008) at both sides. The perspective shows a

position with pronounced contacts to the DNA’s phosphate backbone andminor groove. Base contacts in red. All crystal structures were produced using the

DNAproDB portal (Sagendorf et al., 2019).
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respect to their feature readout by the TF (vertical lines) and (2) its reverse – a clustering of the TFs versus

their shape readout for each feature as a matrix including all nucleotide positions (horizontal lines).

The TF clustering indicates that the different binding proteins show little similarity in their use of the shape

features except for the homeodomains, which was expected. In contrast, the clustering of the shape fea-

tures reflects structural dependencies between shape features. There are three distinct clusters of shape

features, which may be related to biophysical properties of the DNA and its interplay with the binding pro-

tein, such as bends or kinks (details in caption of Figure S6). For instance, the first cluster consists of slide,

helix twist, roll, and MGW. These features were reported to correlate the most with each other both in

bound and unbound DNA (El Hassan and Calladine, 1995) (Stella et al., 2010) and are read out concertedly

in DNA-protein complexes (Suzuki et al., 1997). Thus, the cluster analysis confirms properties of the fea-

tures’ interdependencies in shape readout.

DISCUSSION

HiP-FA constitutes a powerful tool to quantify TF-DNA binding specificity, especially the non-independent

interactions requiring to be determined with high accuracy. The throughput of the method is not sufficient

to discover de novo shape motifs or to explore the large sequence space possible with sequencing-based

methods like HT-SELEX or SMiLE-seq. However, this is not amajor limitation since the prior knowledge that

HiP-FA requires (some information about the TF’s binding preferences) is known for many TFs, and dinu-

cleotidemutations are sufficient to cover most of the non-independent amino acid-nucleotide interactions.

It would also be straightforward to extend the measurements in the flanking regions of the core binding

motif. A comparison of the different approaches and a summary of the results obtained as far as DNA shape

readout analysis is concerned can be found in Table S1.

Our approach consisting in measuring binding energies of a complete set of dinucleotide mutations is

more direct than the one used by Rube et al. (Rube et al., 2018) that requires a prior analysis with the

‘‘No Read Left Behind’’ (Rastogi et al., 2018) algorithm to derive affinities from high-throughput data. In

addition, our downstream analysis of shape sensitivity, which employs a robust linear regression algorithm,

uses fewer parameters and provides directly an interpretable characterization of shape sensitivity. Howev-

er, it is not possible to distinguish between base and shape readout directly. In the analysis procedure, we

cannot exclude the possibility of energy changes due to base readout, leading to an incidental correlation

between binding energies and shape features. We reason that this apparent contribution of shape features

may average out in the linear fitting procedure and, as a consequence, will not lead to a strong correlation

bias in the robust linear regression. This assumption is supported by the following: (1) our estimation of the

shape sensitivity is in excellent agreement with the one obtained by the more complex algorithm elabo-

rated by Rube et al. (Figures S2 and S5), (2) our shape readout values can be related to structural features

of the factors (Figures 4 and S4), (3) the clustering of the shape feature readout rediscovers already known

interdependencies between shape features (Figure S6). Not all shape features are recognized indepen-

dently by the TFs. The different groups in our clustering might represent a specific DNA conformation

which is read out by a TF, rather than the readout of several independent DNA features. These conforma-

tions might play an important role for the binding behavior of several TFs.

By combining directly TF-DNA binding affinities, DNA shape features, and structural information, we

gained insights into their correlation, a debated topic due to their intrinsic covariation. Importantly, our re-

sults suggest that DNA shape readout is widespread among our TFs. The extended use of DNA shape

readout by TFs has become increasingly apparent over the past years (Chiu et al., 2017; Mathelier et al.,

2016; Pal et al., 2019; Rube et al., 2018; Samee et al., 2019; Yang et al., 2017; Zhou et al., 2015), which comes

as no surprise considering that the number of van der Waals interactions enabling shape readout account

for two-third of the protein-DNA interactions (Rube et al., 2018). The correlation analysis of the shape

readout values with protein-DNA complex structures allows us to generalize the influence of the charged

amino acids on the shape readout that has been described so far only for homeodomains in the minor

groove region of the DNA. We observe this effect to other DNA secondary structures (such as a-helixes)

and to other binding domains. In addition, for the POU domain Nub we identify non-charged but polar res-

idues that can also lead to a strong DNA shape readout. To the best of our knowledge, these effects on

DNA shape readout have not been reported. The difficulty to detect the effects of charged and non-

charged residues, especially in the major groove, is that they are obscured by the interactions involved

in the base readout. Our analysis was able to resolve even subtle effects due to the high sensitivity of

ll
OPEN ACCESS

iScience 23, 101694, November 20, 2020 11

iScience
Article



the binding affinity measurements, and our shape analysis was able to deconvolve, to some extent, shape

from base readout.

In summary, we determined the binding specificities for 13 Drosophila TFs including first-order depen-

dencies, provided insights into the correlation between their binding affinities to DNA and the shape fea-

tures of the DNA helix, and gave structural insights in the shape readout. Our method could easily be

extended tomore factors and to different organisms to provide a refined catalog of TF-DNA shape readout

landscapes.

LIMITATIONS OF THE STUDY

Although our HiP-FA assay allows us to determine accurately binding affinities at a relatively large scale, we

cannot cover the whole sequence space as high-throughput methods do. To restrict the number of mea-

surements, we thus focussed on the core binding motif of the TFs, and to all mononucleotide and dinucle-

otides mutations of the consensus sequence rather that all possible mutations. This should however cover

most of the TF-DNA interactions since it has been shown that dinucleotide models explain >92% of the

variance for the MGW, ProT, Roll, and HelT shape features (Rube et al., 2018). In addition, our analysis

based on the direct correlation between binding affinities and shape features can only indirectly and

partially tease apart the respective contributions of base and DNA shape readouts. Note that how to

achieve the deconvolution between base and shape readouts is a longstanding issue in the field.
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Figure S1. Predicted versus measured binding affinities, related to Figure 2. Comparison 

of measured changes in binding affinities against predicted values after dinucleotide mutations 

for the factor Bcd. The predicted values were calculated from our Bcd PWM assuming base 

independence. The average of two experimental values is plotted, with the difference shown 

by the error bars. The 3σ confidence interval (delimited by the dotted lines) indicates the region 

were predicted and measured values are considered to be in agreement. σ: average standard 

deviation of all measurements. The PWM fails to predict many dinucleotide mutation values, 

indicating positions non-independent contribution of the bases at these positions (data points 

outside the 3σ confidence interval). 

  



 

 

Figure S2. Comparison of the Bcd binding specificities obtained with another method, 

related to Figure 2. (a) Bcd PWM and DPWM derived from binding energies obtained by HiP-

FA. (b) Mechanistic-agnostic model of binding specificity developed by Rube et al for the Bcd 

(reverse-complement sequences compared to the logos shown in a). The HiP-FA DPWM 

(lower panel in a) exhibits fewer but more preferred dinucleotides, as indicated by higher 

mutual information MI, due to the low noise of our binding affinity data. The black arrow shows 

the same position.  



 

 

 

 

 

Figure S3. Reproducibility of the shape readout values between triplicates for Bcd and 

Hkb, and between duplicates for Eip93f, Fkh, Nub and Zld, related to Figure 3. For a 

given factor, the shape readout values of a given replicate are plotted all together as a function 

of a second replicate. R² (squared Person-correlation-coefficient) are given for linear 

regression. The replicates were obtained with independent measurements conducted at 

different days. Note that for Hkb only replicate 2 is in poor agreement with the two other 

replicates due to protein aggregation during the measurements that increased variability. 

  



 

 

Figure S4. Correlation between DNA shape readout and structural information, related 

to Figure 4. As structural data are available only for the homeodomain Bcd and the two other 

homeodomains (Gsc and Oc) which share very similar same protein sequence and binding 

specificities (Figure 4a), we sought for experimental structures of additional homologs. First, 

we used the Phyre2 web portal for protein homology modelling and prediction (Kelley et al., 

2015) to create modelled structures for the remaining factors. Then, by choosing as criteria a 

confidence level >99% in the model prediction, amino-acids sequence identity >40%, and a 



deviation from the DNA consensus sequence in the binding domain of maximal 2 nucleotides, 

we found additional structures for the factors Hkb (a), Zld (b), Tll (c), GAGAe (d and Figure 

4c), Nub (e), Gt (f and Figure 4b), D (g) and Fkh (h), thereby providing experimental structures 

for 11 out of the 13 investigated factors (no structures found for Hb and Eip93f with high 

enough percentage of identity). 

We then used the DNAproDB database and processing pipeline developed by the Rohs group 

(Li et al., 2017; Sagendorf et al., 2019) for the structural analysis of the DNA-TF complexes. 

This analysis gives hints about multiple DNA-protein structural features for thousands of 

complexes by combining features of DNA, protein or DNA-protein interactions at the interface, 

and provides tools for creating visualizations of the DNA-protein interface.  

The residue contacts maps of our factors (a-h lower sketches) are shown with the shape 

readout value profile (higher plots). A residue contacts map indicates individual nucleotide-

residue interactions, DNA secondary structure, protein secondary structure and DNA 

interaction moieties. The DNA is displayed as a graph, with nucleotides being nodes and 

edges between them indicating backbone links, base pairing or base stacking (legend on the 

top left). Protein residues are displayed as small nodes with the node shape and color 

representing residue secondary structure. Edges between residue and nucleotide nodes 

represent an interaction between the two and which DNA moiety(s) the interaction involves. 

Although little is known about the relationship between structural features and binding 

affinities, it has been shown that a narrow minor groove width (MGW) can enhance the 

negative electrostatic potential (EP) in the minor groove (Chang et al., 2013; Rohs et al., 

2009), which can attract positively charged amino acids such as arginine (R), lysine (K) and 

histidine (H), considering the latter can be protonated. We thus focused on the nucleotide 

positions with high and significant shape values for the features MGW and EP by seeking the 

presence of contacts with R, K and H residues. To evaluate the contact frequency of these 

residues at the nucleotide positions with strong shape readout values, we selected for each 

TF up to 4 positions with strong shape readout based on their high cumulated shape readout 

values, in particular with significant MGW and/or EP shape readout values (positions 

highlighted with blue rectangles). We then identified the R, K and H residues interacting with 

these nucleotides (interactions highlighted in yellow in the residue contact maps). Overall, we 

observe very frequent interactions with positively charged amino acids at the selected 

positions, as it was the case with Bcd (Figure 4a). For a quantitative evaluation, we calculated 

for all the factors the ratio between the number of these interactions and the total number of 

interactions with the other amino-acids, and compared them with the respective ratios at all 

other nucleotide positions exhibiting less prominent shape readout values. Remarkably, we 



found for the strong shape readout positions much more frequent nucleotide interactions with 

R, K or H (64% of the contacts) than for the other positions (28% of the contacts). It is already 

known for homeodomains that the N-terminal tail recognizes DNA shape in the minor groove 

involving electrostatic attraction between positively charged residues and the shape-

dependent EP. As the recognition helix is thought to be engaged to base readout of the major 

groove, it is difficult to evaluate its contribution to shape readout since shape is dictated by 

sequence. Our results generalize the contribution of the positively charged amino-acids to the 

shape readout to other DNA secondary structures (such as α-helixes) and to other binding 

domains. 

Interestingly, the POU domain Nub (f) uses the most extensively the DNA shape readout, in 

particular with the MGW shape feature and the EP exhibiting high and significant shape 

readout values at all positions. Surprisingly, whereas at the consecutive nucleotide positions 

4, 5, 6 and 7 (blue rectangle) the majority of contacts occurs with positive residues (11 out of 

15 in total), no interaction with a positive residue can be observed at nucleotide positions 1, 2 

and 3. Strikingly, a closer inspection of the residue contacts maps at these positions reveals 

that all interacting amino-acids (glutamine, threonine, and serine) are highly polar. Hence, this 

is a hint that not only positively charged residues can strongly contribute to DNA shape 

readout, but also non-charged but strongly polar amino-acids. To the best of our knowledge 

such an effect has not been reported so far. To conclude, this shape/structure analysis further 

validates our approach, while bringing biological insights. 

 



 

 

Figure S5. Comparison of our shape readout values with the MGW shape sensitivity 

coefficients from Rube et al. (Rube et al., 2018), related to Figure 4. The shape readout 

values determined in this study for the MGW of Bcd are plotted against the equivalent shape 

sensitivity coefficients reported by Rube et al. Values reported to be significant in their study 

are depicted in red, the non-significant ones in grey. A linear regression (blue dashed line) has 

an R² of 0.74 for all values, 0.99 for only significant data points. 

 



 

Figure S6. Heat map and clustering of the shape readout values for the Drosophila TFs 

and DNA shape features, related to Figure 3. The heat map shows the sums of the absolute 

shape readout values over all positions of each of the TFs. In addition, both TFs and shape 

features are clustered by correlation distance (Transparent Methods). The clustering was 

performed on the non-aggregated data (with positions as a second dimension). 

The TF clustering indicates that the different binding proteins show little similarity in their use 

of the shape features except for the homeodomains (green tree on top), which was expected. 

In contrast, the clustering of the shape features reflects structural dependencies between 

shape features. First, the heat map shows that EP is one of the features influencing TF-DNA 

binding energies the most, with strong means correlations for at least 7 factors (Gsc, Oc, Hkb, 

Eip93f, Fkh, Nub, and D; highlighted in green in the heat map). The EP being sensitive to the 

interaction between positively charged residues and the minor groove (Chiu et al., 2017), this 



strong impact on TF-DNA binding is therefore not surprising. Second, we observe three 

distinct clusters of shape features (cyan, red, and green trees on the right). These distinct 

groups may be related to biophysical properties of the DNA and its interplay with the binding 

protein such as bends, kinks, A-/Z-DNA (Rohs et al., 2010). For instance, the first cluster (in 

cyan on the left) consists of slide, helix twist, roll and MGW. These features were reported to 

correlate the most with each other both in bound and unbound DNA  (El Hassan and Calladine, 

1995) (Stella et al., 2010), and are read out concertedly in DNA-protein complexes (Suzuki et 

al., 1997). This interdependency can explain their co-appearance in a cluster (cyan tree on 

the left-hand side). It is also noteworthy that this cluster contains three inter-base pair features 

(Slide, HelT and Roll) out of four, whereas the second cluster (in red) contains mainly intra-

base pair features (Stretch, Buckle and Shear). Thus, there seems to be a synergy between 

inter- and intra-base pair features for the DNA shape readout. The third group (in green) is 

more heterogeneous and doesn’t follow a simple pattern:  it contains mixed shape features 

with, to the best of our knowledge, no known relationship to each other. 

  



 

ADVANTAGES OF OUR STUDY: 

- New set of higher-order binding specificities with low-noise due to the high sensitivity of the HiP-FA binding assay (see Figure S2). 

- Shape analysis using directly the raw binding affinity data and filtering out partially the effect of base readout. 

- The affinity data and their shape analysis detect a significant shape readout for multiple shape features and for most of our factors 

LIMITATIONS: 

- Sequence space limited to thousands of sequences in total. 

- No clear separation between base and shape readout as opposed to the algorithm from Rube et al (their post hoc analysis requires however to compute the binding energies using a scoring 

matrix). 

 

 

Table S1. Comparison of different approaches and summary of the results obtained as far as DNA shape readout analysis is concerned, related to Figure 1.

Study Short description TFs Organism 

New 
generated 
specificity

data? 

Method Readout 
Sequence 

space 
Shape features 

tested 
Shape analysis Findings 

This study Transcription factor 
binding affinities and DNA 
shape readout 

13 TFs from 8 
domain families 

Drosophila YES HiP-FA Absolute binding 
affinities in solution 
(absence of 
unspecific 
adsorption as for the 
surfaces methods) 
 

~103 All 13 known 
shape features 
and the EP 

Direct correlation between shape 
features and binding affinities 

Accurate binding specificities including 
dinucleotide dependencies; Characterization 
of the DNA shape contribution to binding using 
directly the binding affinities – widespread use 
of DNA shape readout by these factors 
 

(Pal et al., 2019) Co-SELECT reveals 
sequence non-specific 
contribution of DNA shape 

83 TFs from 3 
domain families 

Mammals NO HT-SELEX Sequences ~107 MGW, Roll, 
ProT, and HelT 

The method leverages the 
presence of motif-free sequences 
in late HT-SELEX rounds and their 
enrichment in weak binders allows 
to detect an evidence for the role of 
DNA shape features in TF binding 

Motif-independent contribution of shape-
dependent binding 

(Samee et al., 2019) A de novo shape motif 
discovery algorithm 

106 TFs in K562 
and Gm12878 
cell lines 

Human NO ChiP-seq Sequences ~104 MGW, Roll, 
ProT, and HelT 

Shape motif discovery algorithm 
that compares profiles of shape-
features between TF-bound 
regions and non-bound regions 

Many TFs have shape motifs in both in vivo 
and in vitro data; Shape motifs encode 
specificity that goes beyond the sequence 
motif of a TF 

(Rube et al., 2018) A unified approach for 
quantifying and 
interpreting DNA shape 
readout by TFs 

8 Hox TFs in 
complex from 
Slattery et al.; 
homeodomain 
Bcd and a 
human ETS 
factor  

Drosophila NO SELEX-Seq; 
SMiLE-seq 

Relative affinities; 
Absolute binding 
affinities 

~107 MGW, Roll, 
ProT, and HelT 

No Read Left Behind (NRLB) 
algorithm to analyse the SELEX-
seq data; Linear regression model 
to predict shape parameters; 2-
steps post hoc analysis method 
(Shape projection) to analyse 
protein-DNA binding models in 
terms of shape readout  

Adding dinucleotide features as sequence-to-
shape predictors to a linear model can almost 
perfectly explain the shape parameters; Shape 
projection detects shape readout and 
overcomes the confounding between base 
and shape readout 

(Mathelier et al., 
2016) 

DNA shape features 
improve TF binding sites 
(TFBS) predictions 

76 TFs from 24 
domain families 

Human NO ChiP-seq Sequences ~104 MGW, Roll, 
ProT, and HelT 

TFBS predictions; average of 
feature values 
 

Combining shape features with position 
specific scoring matrix (PSSM) improve TFBS 
predictions; Two domain TF families benefit 
most from shape information 

(Yang et al., 2017) Family-specific DNA shape 
readout 

215 TFs from 27 
domain families  

Mammals NO HT-SELEX; 
PBMs 

Sequences; relative 
affinities 

~107 MGW, Roll, 
ProT, and HelT 

Comparison of TF-DNA binding 
model performance by using only 
mononucleotide features or 
mononucleotides and shape 
features 

DNA shape features improve modeling of 
DNA-binding specificities across TF families; 
DNA shape in regions immediately flanking 
the core‐binding site is generally recognized 
upon TF binding 

(Zhou et al., 2015) Quantitative modeling of 
TF binding specificities 
using DNA shape 

68 TFs from12 
domain families 

Mammals NO PBMs; 
SELEX-seq 
for one TF 

Sequences; relative 
affinities for one TF 

~107 MGW, Roll, 
ProT, and HelT 

Comparison of TF-DNA binding 
model performance by using only 
mononucleotide features or 
mononucleotides and shape 
features 

Shape-augmented models perform better than 
sequence-based models; DNA shape features 
predictive of relative binding affinities 

(Riley et al., 2014) DNA binding specificities 
of Exd-Hox complexes 

8 Hox TFs in 
complex with a 
cofactor (Exd) 

Drosophila YES SELEX-Seq Relative affinities ~107 MGW MGW values for the strongest 
binders 

DNA shape contributes to Exd-Hox Dimer 
preferences 



TRANSPARENT METHODS 

Protein expression and purification 

For most transcription factors, it is difficult to express the full-length proteins at high 

levels in bacteria or eukaryotic cells (Burz et al., 1998). Therefore, only GATAe was 

expressed as full-length protein. For the other factors, we cloned the DNA-binding 

domains (DBD) of the TFs, flanked by 14 additional amino acids on either side, into 

the bacterial expression vector pGEX-6P-1 (GE Healthcare). In this vector, the 

polypeptide of interest is fused to a N-terminal Glutathione (GST) tag and placed under 

the control of an IPTG-inducible promoter. 

The fusion constructs were transformed into chemically competent E. coli 

(Top10f, homemade) and protein expression was induced by 1mM IPTG for 20h at 

18°C. Incubation at this temperature allows proper protein folding and higher 

expression levels. 

 The proteins were purified on 5ml GSTrap columns using an ÄKTA protein 

purification system (GE Healthcare) following the manufacturer’s protocol. Certain 

protein preparations contained high levels of bacterial DNA contamination, as judged 

by UV spectroscopy (Nanodrop, Thermo Scientific), and were therefore subjected to 

an additional Heparin purification step using 1ml HiTrapHEP columns. The purity of 

the proteins was verified by SDS-PAGE. 

Determination of the TF-DNA affinities 

The binding energies between the TFs and DNA oligomers harboring the mutations of 

interest were determined using the previously described HiP-FA method. For details 

about the experimental procedure see  (Jung et al., 2018; Jung et al., 2019). In brief, 

the TF of interest and a fluorescently labelled reference DNA oligomer are embedded 



in a porous agarose gel matrix. The competitor solution is added on top of this gel at 

the start of the experiment. The spatial-temporal concentration gradient of competitor 

solution allows to record a titration curve to determine the affinity of the TF towards 

the respective competitor sequence. Separate wells containing the DNA intercalating 

dye Nile Blue are used to determine the competitor concentration at any given time 

and position. 

In contrast to the original HiP-FA protocol, neighboring double mutations are 

systematically introduced in the TF’s consensus (i.e. strongest binder) sequence (at 7 

positions in the center of the 16 bp DNA oligomer, 6 positions for GATAe). The flanking 

sequences of the binding site were optimized to reduce the occurrence of off-target 

binding, checking all possible sequences using a modified version of the Python3 

application PySite (available on Github: https://github.com/Reutern/PySite) with our 

PWMs (Jung et al., 2018) as input. 

Determination of binding weight and off-target removal 

From the perspective of the PWM model, every site is a binding site and two 

sequences differ only in their binding weight. For this reason, residual binding activity 

persists even in regions of oligomers that were hand-picked to avoid a consensus 

binding site. These remaining binding activities can potentially influence the binding 

behavior of the whole oligomer, and should be considered in the calculation of binding 

weights. 

We developed a heuristic algorithm that constructs a PWM de novo from a set 

of oligomers si with known binding affinity ki. The binding weight is inversely 

proportional to the binding affinity. For simplicity, the ratios between affinity and 

inverse weight is set to 1. We assume that at most one protein binds to each oligomer 

at any time. Therefore, we can approximate the total binding weight wj of oligomer j as 

https://github.com/Reutern/PySite


wj = sum (i site on j) wi where wi = 1/ki is the binding weight of site i. Our model searches 

the space of PWMs with an iterative approach. The goal of the algorithm is to find the 

PWM that best matches the measurements. We assess the quality of fit by a scaled 

sum of squared errors between estimated and measured binding weights. For the first 

iteration, we construct PWM0 based on the target sites at the center of the oligomers. 

The following iterations carried out in three steps: first, find the binding sites and 

calculate the weights based on the PWM of the previous iteration. Second, assign 

heuristic binding weights to every called site. This is done by distributing the measured 

weight of an oligomer among all its sites, based on their calculated binding weight 

ratios from the last step. Third, construct a new PWM from the list of sites and their 

heuristically estimated binding weights. 

To transform the binding weights into an energy equivalent space, their natural 

logarithm was taken, yielding an energy based on ΔΔG/RT. 

Representation of PWMs and DPWMs  

PWMs are depicted as sequence logos according to (Schneider and Stephens, 1990) 

using a custom Python3 script. In the DPWMs, the mutual information MI is calculated 

using a Kullback–Leibler divergence (Kullback and Leibler, 1951) using a logarithm 

with base 2. The significance of the MI values was assessed by determining a 

threshold for a significant MI value. To this end, we first calculated the standard 

deviations of each of the dinucleotide MIs that we obtained from the binding affinities 

of Bcd (for which we measured 3 replicates). We found σ(MI)average= 0.01 bits, which 

corresponds to a conservative estimate of the “noise” present in our MI values. We 

then considered a MI value to be significant when MI> 3× σ(MI)average = 0.03 bits. 

Scaled up to 6 positions (the length of our DPWM logos) this corresponds to ~ 0.2 bits. 



Thus, as the lowest total MI we measured is 0.3 for GATAe, all our factors show 

significant total MI. 

Shape readout values 

To determine the influence of DNA shape on the binding weight of a TF, the free 

binding energies were computed from the binding weights as described above and 

normalized using a z-score to make the subsequent analysis more robust against the 

range of the different binding energies, and thereby less influenced by a TF’s 

specificity. The values of the DNA features were calculated using the lookup tables 

provided by the Rohs group (Chiu et al., 2017; Li et al., 2017; Zhou et al., 2013). The 

normalized energies were plotted against the rescaled shape values of a feature 

(scaled from 0 to 1 for all possible values the feature can possibly take) for each 

position, see also Figure 1c. Per position, only those data points were used that 

contained a mutation at this position or at the next neighboring ones. Since the shape 

features between two neighboring base pairs (inter features) are assigned to both 

base pairs, those features have four possible positions where mutations are included 

in the plot and the following regression (two positions plus two neighbors). The 

normalized energies were then fitted according to Equation 1: 

−
∆∆G

𝑅𝑇
 (norm. ) = 𝑠 × 𝑠ℎ𝑎𝑝𝑒𝑓 (𝑛𝑜𝑟𝑚. ) + 𝐶 

Where 
∆∆G

𝑅𝑇
 (norm. ) are the normalized free binding energies for all dinucleotide 

mutations at a given nucleotide position, s the shape readout values, shapef (norm.) 

the normalized shape feature values, and C an offset value. A robust linear regression 

(Huber, 1981) using Huber’s T as M-estimator, with mean absolute deviation as scale 

factor (implemented in the rlm_model from the  statsmodels package- v0.8.0 in Python 



3.1) was used to perform the linear regression (Equation 1) and to estimate a 

confidence interval using an iteratively reweighted least squares approach. The 

statistics of the robust linear regression was used to define confidence intervals. The 

significance level was determined depending if the value of this confidence interval 

was more than one or two standard errors different from zero, respectively. Only 

values more than two standard errors different from the mean are considered as 

statistically significant (p<0.05).  

Clustering of shape features and TFs 

The hierarchical clustering was performed using the figure_factory module from the 

plotly package –v4.0.0 in Python 3.1. The distances were calculated based on 

correlations to avoid single features with high values to dominate the clustering and 

have a less scale variant distance function. The clustering was performed based on 

the shape readout values as defined above. To cluster the TFs, the features and 

positions were treated as two different dimensions for the clustering. To reduce the 

impact of the window chosen for the core sequence, we modified the distance function 

to allow for up to two bases offset, and setting shape readout values to zero for 

positions outside of the chosen window. The clustering for the features was performed 

on a transposed matrix with TFs and positions as dimensions of the data.  

Protein structure depiction 

We used the DNAproDB database and processing pipeline developed by the Rohs 

group (Li et al., 2017; Sagendorf et al., 2019) for the structural analysis and the 

structure rendering of the DNA-TF complexes. For the structures shown in Figure 4, 

we used crystal structures of Bcd (pdb-ID: 1ZQ3) (Baird-Titus et al., 2006), of a B-zip 

TF (pdb-ID: 1GD2) (Fujii et al., 2000) with the same core consensus sequence as Gt, 

and of a similar GATA TF (pdb-ID: 3DFV) (Bates et al., 2008).  
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