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Abstract
Microbial genome evolution is shaped by a variety of selective pressures. Understanding

how these processes occur can help to address important problems in microbiology by

explaining observed differences in phenotypes, including virulence and resistance to antibi-

otics. Greater access to whole-genome sequencing provides microbiologists with the oppor-

tunity to perform large-scale analyses of selection in novel settings, such as within individual

hosts. This tutorial aims to guide researchers through the fundamentals underpinning popu-

lar methods for measuring selection in pathogens. These methods are transferable to a wide

variety of organisms, and the exercises provided are designed for researchers with any level

of programming experience.

This is part of the PLOS Computational Biology Education collection.

Introduction
Whole-genome sequencing (WGS) of microbial samples is now affordable and fast, which has
enabled its widespread use in both research and clinical practice [1–3]. Analysis of the genetic
variation within WGS data can help characterize the selective pressures acting on microbial
populations [4,5] and provide novel insight into infectious disease transmission [6], the emer-
gence of antibiotic resistance [7,8], and the population dynamics of bacterial epidemics [9,10].
Selection acts on both existing and novel mutations that arise in individuals within a popula-
tion by removing those mutations detrimental to the fitness of the individual and favoring
those that are beneficial. This process can leave a signature across the genome sequences within
the population that can reveal which regions are under functional constraint [5,11] or that are
rapidly adapting to changes in the environment [12].

This tutorial aims to provide microbiologists possessing limited experience in population
genetics analyses with (i) training in statistical methods for detecting selection, (ii) familiarity
with the underlying theory, and (iii) an awareness of the assumptions and limitations of these
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methods. A wide variety of approaches are available to address many questions regarding
microbial evolution, and deciding which to take will depend on numerous factors. These
include the evolutionary processes acting on the sequences, level of genetic variation present
within the data, and computational resources available to the researcher. Here, we provide one
approach to performing a basic population genetics analysis of evolution and selection in non-
recombining microbial populations and a supplementary exercise demonstrating how these
methods can be applied to bacterial WGS data (S1 File). Further examples of where these meth-
ods have been employed to address a variety of evolutionary questions in microbial genomics
are described in S1 Table.

These methods are not robust to homologous recombination and are therefore applicable
when it is absent. It is also assumed that short-read sequence data have been aligned to a refer-
ence sequence and single nucleotide variants have been detected. The preceding steps in a typi-
cal bioinformatics pipeline are described in a number of recent reviews [13,14]. This guide is
based on a workshop included as part of a course entitled “Genotype to Phenotype Mapping of
Complex Traits” at the European Bioinformatics Institute at the Wellcome Trust Genome
Campus (United Kingdom) in July 2014.

Step 1: Construction of a Phylogenetic Tree
Phylogenetic tree methods attempt to reconstruct the evolutionary relationships between a set
of sampled sequences (Fig 1a and 1b). Construction of a phylogenetic tree can help to visualize
the genetic relatedness between samples, infer the order of branching events, and provide one
way to estimate important evolutionary parameters (such as the evolutionary rate, in Step 2). If
sequences are sampled from multiple hosts, the phylogeny can also help to infer the transmis-
sion history during an epidemic [15–17]. Further details and examples of phylogenetic tree
construction and interpretation can be found in several excellent resources (e.g., [18–20]).

Tree-building methods broadly fall into two categories. Distance-based methods use a clus-
tering algorithm to sequentially group clusters of sequences, which makes them relatively fast.
These include neighbor-joining (NJ) and un-weighted pair group method with arithmetic
mean (UPGMA). However, neither method explicitly models back mutations or multiple hits
(successive substitutions at a single site). Character-based methods evaluate a set of plausible
trees based on certain criteria. This makes these methods slower, but information regarding
the evolutionary history encoded by the characters is retained. These methods include maxi-
mum parsimony (MP), maximum likelihood (ML), and Bayesian methods. MP attempts to
minimize the number of character changes across the tree. However, this can often underesti-
mate the length of branches. ML and Bayesian methods are more popular, since they allow for
specification of a probabilistic model of sequence evolution. These methods enable arbitrarily
complex models of sequence evolution, but in the within-host context there may be limited
data for reliable inference of highly-parameterized models, and simple models such as Jukes-
Cantor may suffice. ML searches for the single tree with the greatest likelihood given the
model, while Bayesian methods capture uncertainty in the tree by providing a distribution of
trees that are likely given the data and explicit prior beliefs. Many phylogenetic analyses
assume that sequences have evolved independently and under a constant evolutionary rate.
However, in the presence of selection, convergent evolution may occur, in which the same
substitution arises on different branches, which can cause some sequences on the tree to be
inferred as more closely related than they truly are.

A variety of programs are available for performing phylogenetic analyses of microbial popu-
lations. Several methods, including distance-based methods, can easily be carried out using the
ape library in R. PhyML and RAxML are popular programs for ML analysis of small and larger
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Fig 1. Phylogenetic tree reconstruction and evolutionary rate estimation. A phylogenetic tree comprises a collection of branches that connect sampled
sequences at the tips (called taxa) with the most recent common ancestor of the sample. The point where each pair of branches join together is called a node.
The lengths of these branches represent the evolutionary distance between sequences at either end, usually measured in numbers of substitutions per site,
which can be calculated using the scale bar. The length of the vertical branches and rotation of branches around each node are arbitrary. The tree can be
rooted using a divergent sequence (called an outgroup) (a), in which case the direction of substitutions can be inferred and each node represents the
common ancestor of all descendent nodes and taxa. The node furthest from the tips is called the root. The tree can also be left unrooted and displayed
radially (b) (tip labels have been omitted for visual clarity). Assuming the phylogeny has been rooted correctly, linear regression analysis can be used to test
for a signal of a molecular clock by plotting the sampling time of each sequence against its evolutionary distance from the root of the tree. If the test is
significant (c), the slope of the regression line (red) can provide an estimate of the evolutionary rate. The lack of any temporal signal (d) may occur if
insufficient time has passed for substitutions to accumulate or if the molecular clock has been violated (for example, due to selection, recombination, or
hypermutation).

doi:10.1371/journal.pcbi.1004739.g001
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datasets, respectively, while the Bayesian phylogenetics software BEAST is commonly
employed for estimating time-calibrated trees [21–24].

Analysis of the observed number of substitutions between sequences alone is usually not
sufficient to describe the underlying evolutionary process for a set of sequences. Principled sta-
tistical inference of phylogenetic trees requires specification of a sequence substitution model,
describing the base frequencies (fi) and rate of change from allele i (rows) to allele j (columns)
(rij) via entry Qij of a substitution rate matrix, Q. For example, for the general time-reversible
nucleotide substitution model (GTR):

Q ¼

A C G T

A � fCrAC fGrAG fTrAT

C fArAC � fGrCG fTrCT

G fArAG fCrCG � fTrGT

T fArAT fCrCT fGrGT �

2
66666664

3
77777775

GTR provides a high degree of flexibility and biological complexity by allowing all rates and
frequencies to vary [25]. In some cases, it may be more suitable to use the HKY85 model (e.g.,
to prevent over-parameterization of limited data). This model distinguishes between transi-
tions and transversions via the transition/transversion rate ratio (κ) [26]. In the simplest case,
the Jukes Cantor (JC69) nucleotide substitution model assumes equal base frequencies and
mutation rates [27]. Variation in the substitution rate across the genome can be modeled with
a gamma distribution, which is often split into four discrete categories for computational effi-
ciency [28].

Step 2: Estimation of the Evolutionary Rate
The substitution or evolutionary rate parameter describes the frequency with which new muta-
tions replace existing variants within a population (they become “fixed”). This parameter dif-
fers from the mutation rate, which describes the frequency with which mutations arise during
DNA replication. The evolutionary rate can provide some indication of the adaptive potential
of the population in response to environmental changes. It is often termed the “clock rate” in
reference to the molecular clock hypothesis that substitutions arise regularly over time in a
population [29]. The evolutionary rate is often assumed constant across all branches in the
phylogenetic tree (a strict molecular clock), in which case the branch lengths are interpreted as
proportional to the time that elapsed between the ancestor and descendant of each branch.
Support for a strict clock can also be tested using the relative rates test, which compares the dis-
tance of each individual in a pair of taxa with a more distantly related taxon [30,31]. Otherwise,
the evolutionary rate might be estimated per branch (a relaxed molecular clock [32]) to investi-
gate differences in evolutionary rate across time or space [33,34].

If the sampling times of genome sequences are known, then the evolutionary rate can be cal-
ibrated in terms of substitutions per site per unit time. The evolutionary rate can be quickly
estimated by plotting the sampling time of each isolate against the total branch distance to the
root of the phylogenetic tree, provided the position of the root is accurate (Fig 1c and 1d). The
date-randomization test repeatedly shuffles the sampling times across the tips to generate the
rate distribution expected in the absence of any temporal signal. If the rate estimated with the
correct sample times lies sufficiently outside this distribution, this is deemed as support for
clock-like behavior. Bayesian phylogenetics approaches such as BEAST can model the evolu-
tionary rate parameter on each branch of the tree, allowing estimation of the variation in evolu-
tionary rate across branches and the uncertainty in parameter estimates [23,24]. Estimates of
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the evolutionary rate are often made under the assumption of neutral evolution. The presence
of selection can distort branch lengths in the phylogenetic tree and lead to inaccurate estimates
of the evolutionary rate.

Step 3: Genome Annotation
Popular approaches to detecting selection rely on classification of substitutions according to
their likely functional effect. This is discussed in Step 4, but first requires an interpretation of
the genomic context in which substitutions occur, and this falls under the auspices of genome
annotation. At its simplest, genome annotation involves prediction of coding sequences by
identifying open reading frames (ORFs), which are regions of DNA sequence that encode a sin-
gle polypeptide. However, sophisticated annotation pipelines now exist that perform a variety
of functions that combine direct interpretation of the sequence with the borrowing or "lifting
over" of annotations from other, better-studied reference genomes via searches for sequence
similarity (homology).

Annotation can be carried out using a variety of Web-based or locally installed systems
(reviewed by [35]), such as XBASE [36], GeneMark [37], GLIMMER [38,39], BASys [40],
RAST [41], and Prokka [42]. The accuracy of automated genome annotation is dependent on
several factors, including the accuracy of reference genome databases and the pseudogene con-
tent and quality of the query genome, meaning that manual checking is often necessary [35].

Step 4: Classification of Substitutions
In order to perform basic tests for selection, it is necessary to classify all substitutions. At the
most basic level, this can involve distinguishing protein-altering (non-synonymous) from non
—protein-altering (synonymous) substitutions in coding regions. More sophisticated classifi-
cation may further distinguish protein-truncating (nonsense) and intergenic (outside a coding
region) substitutions, and it may sub-classify substitutions in coding regions by the function of
the gene or non-coding substitutions by the regulatory function of the region or the distance
from a gene [43,44].

When classifying substitutions, it helps to reconstruct ancestral sequences at internal nodes
of the tree, which is usually carried out using parsimony or a probabilistic model of sequence
evolution that returns the most likely ancestral sequences [45–47]. The programs FastML and
PAML use maximum likelihood to perform ancestral sequence reconstruction for nucleotide,
codon, or amino acid sequences [47–50]. The simplest method of classifying amino acid substi-
tutions is to assume no more than a single nucleotide in the triplet changes along a branch.
However, a more sophisticated approach is required when multiple sites in a codon may have
undergone substitution. For these reasons, ML methods have been developed for estimating
the number of synonymous and non-synonymous substitutions along a branch, which also
account for variation in transition rates and base frequency [51,52].

Step 5: Testing for Selection
Selection can act on genetic variation in different ways. In a simple model of directional selec-
tion, a novel mutation may be favored if it confers some sort of selective advantage to the bacte-
rium (positive selection) or it may be disfavored if the mutation is deleterious to the bacterium
(purifying or negative selection). Both positive and negative selection can be measured at indi-
vidual amino acids, across genes or over the entire genome. Here, we outline three approaches
that can be applied to divergent microbial populations in the absence of recombination to
detect selection acting on genes in the population since their most recent common ancestor.
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When applying these methods to clonally evolving bacteria, it’s also important to consider how
the tight linkage across sites can affect estimates of selection (for reviews, see [53,54]).

A) Elevated substitution rates signal positive selection
Sites or genes are expected to mutate independently in microbial genomes within different
individuals (or populations). Observing the recurrent emergence of the same substitution
within different individuals is a signature of parallel or convergent evolution, most likely in
response to a common selection pressure (Fig 2) [55]. For example, the selective pressure
exerted onMycobacterium tuberculosis by antimicrobial drugs during tuberculosis (TB) treat-
ment is clearly identified by the frequent emergence of the same drug resistance point mutation
within different patients [8]. Signals of positive selection may also manifest as numerous differ-
ent substitutions across sites within a gene, given they are likely to have similar effects on the

Fig 2. Detecting selection frommicrobial sequence data. The phylogeny shows the evolutionary history
of 20 sequences sampled evenly from four divergent populations. dN/dS methods test for selection by
comparing the rates of non-synonymous and synonymous substitution occurring between divergent lineages
(i.e., only substitutions that have occurred on the black branches) with those expected under neutrality. In
contrast, the McDonald-Kreitman test for selection compares the ratio of non-synonymous and synonymous
polymorphisms that are present within populations (due to substitutions occurring on red branches) with the
ratio of non-synonymous and synonymous fixed differences that are present between populations (due to
substitutions occurring on black branches). The phylogeny can also be used to detect selection by identifying
parallel evolution, whereby recurrent mutations occur at a site or across a gene during the evolutionary
history of a sample (for example, substitution X on the phylogeny).

doi:10.1371/journal.pcbi.1004739.g002
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encoded protein [56]. The rpoB gene inMycobacterium tuberculosis can mutate at several dif-
ferent sites within a “hot spot” region to confer resistance to the first-line anti-tuberculosis
drug rifampicin [57].

Under the null hypothesis of neutral evolution, constant mutation rates across genes, and
no recombination (H0), the number of substitutions per gene is expected to follow a Poisson
process. The number of substitutions expected per gene can be calculated by multiplying the
per-site mutation rate and the length of the gene. Any significant increase in the substitution
rate of a gene from that expected under H0 can be used as support for positive selection having
acted on the gene. However, an elevated substitution rate within a gene of interest may be due
to a number of other factors, including variation in the mutation rate across genes or recombi-
nation. Therefore, more commonly used methods for detecting positive selection look for a sig-
nificant difference in the rate of substitutions that have a functional effect on the protein
relative to those that do not.

B) Estimates of dN/dS
Comparison of the rate of non-synonymous substitution per non-synonymous site (dN) to the
rate of synonymous substitution per synonymous site (dS) is a popular method of detecting
selection between divergent populations [58,59]. Due to the redundancy of the genetic code,
random mutations generate a greater number of non-synonymous than synonymous substitu-
tions. In order to estimate dN/dS, the ratio of raw counts of non-synonymous and synonymous
substitutions must be adjusted by the ratio that one would expect to see in the absence of any
selection (i.e., under strict neutrality). The null hypothesis (H0) is that the ratio of non-synony-
mous and synonymous counts does not significantly differ from the ratio expected by chance
(r0). This means that when dN/dS is close to one, it is inferred to be evolving strictly neutrally,
in the absence of selection. Estimates>1 suggest that positive selection has acted on the
sequence, while those<1 are indicative of negative selection.

The estimate of dN/dS under the null hypothesis can be obtained via calculation of the
codon substitution rate matrix, which describes the rate of substitution from one codon to
another. The Nielsen and Yang (NY98) model of codon substitution is similar to the HKY85
model of nucleotide substitution, in that it allows both codon frequencies and the rates of tran-
sitions and transversions to vary [59]. Since there are many more codons than bases, the NY98
model is described by a (61 × 61) Qmatrix (rather than the 4 × 4 HKY85 matrix above), which
includes the probability of transitions between all pairs of amino-acid codons (rather than
nucleotides). The model includes a parameter ω, representing the value of dN/dS and κ, the
transition/transversion rate ratio. Rather than drawing the entire rate matrix for the NY98
model, we can describe it for a given pair of codons i and j, as:

Qij ¼

0; if the two codons differ at more than one position

fj; for synonymous transversion

kfj; for synonymous transition

ofj; for non� synonymous transversion

okfj; for non� synonymous transition

8>>>>>>><
>>>>>>>:

The codon frequencies, f, are often estimated directly from the sequence data, while κ can be
estimated using maximum likelihood approaches, such as those implemented in the phyloge-
netics software PhyML [21]. Either ω can be estimated formally and tested against the null
hypothesis that it equals one under neutrality, or the expected ratio r0 of non-synonymous and
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synonymous counts can be computed under neutrality and compared to the observed counts
from Step 4 to test for any signal of positive or negative selection.

However, application of dN/dS methods to microbial populations is complicated by several
factors. Firstly, the test may be statistically underpowered for detecting non-neutral dN/dS per
site if the number of substitutions expected at any individual position is small. Usually it is
more powerful to sum substitutions across sites in the same gene to estimate a per-gene dN/dS,
which can reveal whether selection has acted differently across genes. Secondly, the existence
of sites subject to negative selection is highly likely in any functional protein-coding sequence,
and these sites reduce the true value of dN/dS to below the value of one predicted under the
strict neutrality hypothesis. The presence of sites subject to negative selection reduces the prob-
ability, and hence statistical power, to detect positive selection even when it is present.

Thirdly, the dN/dS statistic assumes that differences between lineages are fixed (i.e., that line-
ages have been diverging for a long time), while substitutions between isolates sampled from
closely related microbial populations (e.g., between hosts in an outbreak) are likely to represent
segregating polymorphisms [60]. Within-population microbial variation has often arisen rela-
tively recently and due to the evolutionary time-lag, selection may not yet have had time to
purge deleterious mutations and fix beneficial mutations. Therefore patterns of polymorphism
are expected to appear more neutral (dN/dS closer to one) than patterns of fixation. Over time,
slightly deleterious non-synonymous substitutions are purged from the population, so esti-
mates of dN/dS tend to decrease as sampled microbial lineages diverge from their most recent
common ancestor [60]. The McDonald-Kreitman test, described in the next section, takes
advantage of this phenomenon by comparing the divergence between lineages with the poly-
morphism within them, giving it greater power to detect selection [61].

C) The McDonald-Kreitman test
The McDonald-Kreitman (MK) test tests for non-neutral evolution by comparing the ratio of
non-synonymous to synonymous polymorphisms within a species (Pn/Ps) to the ratio of non-
synonymous to synonymous fixed differences between species (Dn/Ds) (Fig 2) [61]. It compares
the ratios of raw counts without directly calculating a dN/dS ratio. Although it is often applied
to test for selection within species, it can also be applied to sub-populations (e.g., comparing
within and between host rates of substitution). The test is set up with a two-way contingency
table (Table 1).

Dn/Ds > Pn/Ps, indicates an excess of non-synonymous changes among the fixed differences
distinguishing the two groups, thus implying positive selection. Dn/Ds < Pn/Ps represents a
paucity of non-synonymous fixed differences between groups, indicating their removal by
purifying selection. The proportion of non-synonymous substitutions (α) under positive selec-
tion can be calculated for each gene individually, or a genome-wide estimate of α can be
obtained by averaging these count data across genes [62].

The MK test is robust to variation in the mutation rate and evolutionary histories across
sites in the genome [63]. However, the presence of mildly deleterious mutations that are not
immediately purged from the population increases Pn/Ps and reduces estimates of α, leading to
loss of power to detect positive selection. Extensions of the MK test attempt to remove the

Table 1. Two-way contingency table used in the MacDonald-Kreitman test.

Fixed differences Polymorphisms

Synonymous mutations Ds Ps

Non-synonymous mutations Dn Pn

doi:10.1371/journal.pcbi.1004739.t001
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effect of mildly deleterious mutations by excluding polymorphisms segregating at low frequen-
cies from the analysis [64,65].

Conclusions
This tutorial has demonstrated how basic population genetics methods can be applied to
microbial WGS data to learn about their evolutionary history and the selective pressures acting
on them. The methods presented here and in the accompanying exercise (S1 File) have not
attempted to address analysis of selection in recombining bacteria. In analyses that rely on esti-
mation of phylogenetic trees, homologous recombination and horizontal gene transfer risk
causing false detection of positive selection [66–68]. Several methods are available for detecting
such processes (for reviews see [69–71]), while new methods developed specifically for applica-
tion to whole bacterial genomes are also now available [72–74].

Supporting Information
S1 File. Exercise: Practical approaches for detecting within-host selection in Burkholderia
dolosa. Compressed file containing all material for the exercise, including the description of
the exercises and input data files.
(ZIP)

S1 Table. Microbial genomics applied. A selection of published analyses employing the meth-
ods described in Steps 1–5 to address a range of evolutionary questions across different micro-
bial species.
(PDF)
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