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Recent clinical trials using antibodies with low toxicity
and high efficiency have raised expectations for the devel-
opment of next-generation protein therapeutics. However,
the process of obtaining therapeutic antibodies remains
time consuming and empirical. This review summarizes
recent progresses in the field of computer-aided antibody
development mainly focusing on antibody modeling,
which is divided essentially into two parts: (i) modeling
the antigen-binding site, also called the complementarity
determining regions (CDRs), and (ii) predicting the rela-
tive orientations of the variable heavy (VH) and light (VL)
chains. Among the six CDR loops, the greatest challenge
is predicting the conformation of CDR-H3, which is the
most important in antigen recognition. Further computa-
tional methods could be used in drug development based
on crystal structures or homology models, including
antibody–antigen dockings and energy calculations with
approximate potential functions. These methods should
guide experimental studies to improve the affinities and
physicochemical properties of antibodies. Finally, several
successful examples of in silico structure-based antibody
designs are reviewed. We also briefly review structure-
based antigen or immunogen design, with application to
rational vaccine development.
Keywords: antibody design/antibody engineering/protein
therapeutics/vaccine design

Introduction

Computational methods are almost universally accepted as
important tools for the invention of small molecule drugs,
helping with tasks such as optimizing affinity for a target,
minimizing off-target effects and optimizing pharmacoki-
netic properties. In these contexts, the computational
methods are generally not considered substitutes for empiric-
al testing, but rather a way to generate testable hypotheses,
helping to interpret and guide experiments. The situation

with antibody therapeutics is strikingly different in this
regard. While modeling has in fact contributed to the design
of therapeutic antibodies, notably in early attempts at human-
izing antibodies, overall the potential impact of computation-
al methods is not as well defined, and the tools not as well
developed and less broadly employed, than in small molecule
drug discovery. Here we review progress in the development
of computational methods that may ultimately be routinely
used in antibody drug discovery.

Because we encounter a large variety of foreign mole-
cules in daily life, ‘diversity’ is a key concept in the adap-
tive immune system in which antibodies take a major role.
The sequences, structures and functions of antibodies have
been extensively studied due to their growing importance as
therapeutics (Carter, 2006; Reichert, 2008; Nelson and
Reichert, 2009) and research tools (Nogi et al., 2008; Hattori
et al., 2010). At the sequence level, antibody diversity is
generated by (i) recombination of V(J)D gene segments
(Tonegawa, 1983) and (ii) somatic mutations during anti-
body maturation, which leads to higher affinity (Besmer
et al., 2004; Neuberger, 2008). At a structural level, anti-
body diversity is manifested primarily in the antigen-binding
sites, comprised of six loops, and by the relative orientations
between the light chain and heavy chain variable domains
(VL and VH).

Our growing understanding of sequence–structure rela-
tionships in antibodies, and advances in computational
protein modeling, has enabled progress toward computational
methods that can assist in re-designing antibodies for higher
affinity or other desired modifications (Rosenberg and
Goldblum, 2006; Lippow and Tidor, 2007; Karanicolas and
Kuhlman, 2009). In Fig. 1, we summarize several ways in
which computational methods can be deployed in the context
of antibody design. One central goal is to accurately predict
the structures of antibodies from their sequences, a special
case of the comparative protein modeling problem, which is
valuable due to the challenges and expenses associated with
experimental structure determination. In cases where the
binding interaction between antibody and antigen is
unknown, protein–protein docking methods can be used to
predict the complex structure, although this remains challen-
ging, especially when using homology-modeled structures
for either the antibody or the antigen (Gray, 2006). Finally,
using experimentally determined or predicted structures of
the antibody–antigen complex, computational methods can
be used to predict mutations that may improve binding affin-
ity, specificity or other properties such as solubility.

In addition to antibody designs, designing better antigens
or immunogens is also expected to elicit neutralizing anti-
bodies (NAbs) for viruses, such as HIV and influenza.
Antigens could work as vaccines only if they elicit appropri-
ate antibodies without showing viral activity. In traditional
vaccine approaches, antigens are empirically identified and
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are usually isolated, inactivated or attenuated, and then
injected so that they cannot cause undesirable infections, but
can induce desired antibody response (Rinaudo et al., 2009).
Although the principle has not changed dramatically, the ac-
cumulation of experimental data and complex structures of
NAbs–antigens provides us with a better understanding of
the structural basis of antigen recognition, and a structure-
based rational vaccine design is now becoming possible.

In this review, we discuss successes and challenges of ap-
plying computational methods in each of these areas, focus-
ing on areas that we view as particularly critical to achieving
routine, successful use of computational methods in antibody
design, especially complementarity determining region
(CDR)-H3 modeling and predicting the effects of somatic or
designed mutations during antibody optimization. Recent
successes of structure-based antigen design based on protein
scaffolds are also described. Other topics, such as canonical
structures (Al-Lazikani et al., 1997; Morea et al., 2000;
Vargas-Madrazo and Paz-Garcia, 2002; Chailyan et al.,
2011a), especially of CDR-L3 (Kuroda et al., 2009); the anti-
body numbering schemes (Honegger and Pluckthun, 2001;
Abhinandan and Martin, 2008); B-cell epitope predictions
(Ponomarenko and Bourne, 2007; Evans, 2008); humaniza-
tion (Almagro and Fransson, 2008); and details of protein–
protein docking (Gray, 2006) are reviewed elsewhere.

Antibody CDR modeling

A core challenge for computational antibody engineering is
predicting the structure of the antibody from sequence. This
is of course a specific case of the more general protein struc-
ture prediction problem (Baker and Sali, 2001; Zhang, 2008),
but antibodies present both special advantages and special
challenges relative to other proteins. Before discussing
methods for predicting antibody structures, we first briefly
review their structural organization.

An antibody consists of two types of chains, the light
and heavy chains, each of which is composed of multiple
domains, all of which assume the common immunoglobulin
(Ig)-fold (Murzin et al., 1995; Chothia et al., 1998). The
antigen-binding site is located in the ‘variable’ domains of
each chain, VL and VH. The antigen-binding sites are called
CDRs and are composed primarily of six ‘hypervariable’
loops, three on the light chain (L1, L2 and L3) and three on
the heavy chain (H1, H2 and H3). The remainder of the vari-
able domains is structurally well conserved at the backbone
level, and aligning antibody sequences is straightforward. For
these reasons, a primary focus of antibody modeling is pre-
dicting the conformations of the CDR loops from their
sequences (Whitelegg and Rees, 2004).

In the 1980s, antibody modeling started with the unexpect-
ed discovery that most of the CDR loops (all but H3) adopt a
limited number of conformations called canonical structures
(Chothia and Lesk, 1987; Chothia et al., 1989; Tramontano
et al., 1989, 1990; Tramontano and Lesk, 1992). The most
probable canonical structures can be predicted based on the
length of the loop and the identities of key residues within or
outside the CDR regions. This knowledge has been used in
humanization procedures (Riechmann et al., 1988) where key
residues should be maintained when non-human CDRs are
grafted onto human frameworks; otherwise, the conformation
of the antigen-binding sites could change resulting in
reduced antibody–antigen-binding affinity (Morea et al.,
2000; Almagro and Fransson, 2008). Canonical structures can
be defined only when the same sequence motifs discovered
from the Protein Data Bank (PDB) appear in the large se-
quence database (Kuroda et al., 2009). Recent increases in
the number of antibody crystal structures have made it pos-
sible to define more canonical structures (Kuroda et al.,
2009; Teplyakov et al., 2010b; Chailyan et al., 2011a).
Definitions of canonical structures are available in the litera-
tures (Al-Lazikani et al., 1997; Morea et al., 2000). A new
classification scheme for CDRs has also been proposed
based on affinity propagation clustering with a large number
of crystal structures (North et al., 2011).

Adopting these empirically determined sequence–structure
relationships has made it possible to model the L1, L2, L3,
H1 and H2 loops with high accuracy [backbone root mean
square deviation (RMSD) between native structures and tem-
plates are usually ,1.0 Å] and subsequent work has focused
mainly on predicting CDR-H3 structures (Shirai et al., 1996;
Morea et al., 1997, 1998; Oliva et al., 1998). CDR-H3 loops
are located in the center of the antigen-binding site, play an
important role in antigen recognitions and gain more muta-
tions during affinity maturation than other portions of anti-
bodies (Clark et al., 2006b). They assume diverse
conformations, limiting the ability to derive simple rules for
their sequence–structure relationships (Fig. 2A). Structural
changes in CDR-H3 also occur upon antigen binding
(Fig. 2B), which makes the problem more complex. These
challenges have led to many experimental and computational
studies to elucidate sequence–structure–function relationships
of CDR-H3 (Zemlin et al., 2003; Brooks et al., 2010; Julien
et al., 2010; Ofek et al., 2010a,b).

Although their overall conformations are diverse, the con-
formations of the C-terminal base regions of CDR-H3 are
limited and assume ‘kinked’ or ‘extended’ forms. Applying
sequence–structure rules for this portion of the loop

Fig. 1. Flow of computational antibody designs.
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simplifies the problem by reducing the computational search
space for the loop modeling. Shirai et al. (1996, 1999) first
proposed H3-rules, which identified the base form and
b-hairpin characteristics from the sequences. Recent
advances in structural genomics have increased our knowl-
edge of sequence–structure relationships in CDR-H3,
leading to refinements of the H3-rules (Koliasnikov et al.,
2006; Kuroda et al., 2008).

In the absence of simple sequence–structure relationships
for the remainder of CDR-H3, the conformations can be pre-
dicted by exploiting the great many methods that have been
developed for the more general problem of loop prediction.
These methods generally work by first enumerating large
numbers of plausible loop conformations, and then predicting
which of these is likely to be correct by using conformational
energy or a scoring function derived from the database of
crystal structures (Soto et al., 2008).

One approach to enumerating plausible loop conforma-
tions for CDR-H3, and other loops for which no simple
sequence–structure relationships exist, is to mine the known
loop structures in the PDB (Jones and Thirup, 1986). For
example, Levy and coworkers surveyed the coverage of short
(7-, 9- and 15-residue) fragments in the PDB against frag-
ments derived from a novel protein, and showed that most of

them are covered with reasonable accuracy (RMSD � 2.0 Å)
(Du et al., 2003). Some other studies have also suggested
that existing loop conformations in the PDB are sufficient to
model most loops (Fernandez-Fuentes and Fiser, 2006; Choi
and Deane, 2010).

With respect to CDR-H3 specifically, Kuroda et al. devel-
oped a knowledge-based sampling method using fragments
derived from both CDR-H3 loops in antibodies and loops in
non-homologous proteins (Kuroda et al., submitted for publi-
cation). They have also demonstrated that the usefulness of
the database approach is enhanced by energy-based refine-
ment. Similarly, Gray and coworkers proposed antibody-
modeling software, RosettaAntibody, based on their Rosetta
design suite (Rohl et al., 2004; Sircar et al., 2009). They
modeled CDR-H3 loops using fragment assembly and the
cyclic coordinate descent approach and minimized them
using the Rosetta protocol (Sivasubramanian et al., 2009).
They also showed that antibody models constructed by their
protocols could be used in subsequent computational
docking procedures using RosettaDock (Gray et al., 2003;
Wang et al., 2007), although they noted a number of chal-
lenges mainly associated with CDR-H3 modeling.

A distinct approach to enumerating possible loop confor-
mations is the so-called ‘ab initio’ approach, which uses
generic ‘Ramachandran’ preferences to generate possible
backbone conformations, and not specific loop conformations
from the PDB. In one of the earliest antibody modeling
methods, Martin et al. combined database searching and ab
initio loop prediction using the CONGEN program
(Bruccoleri et al., 1988; Martin et al., 1989). A neural
network machine learning method was also used to tackle
the H3 modeling problem (Reczko et al., 1995).

More recently, Jacobson and coworkers have developed an
ab initio loop modeling protocol, which searches conform-
ational space by backbone torsion-angle sampling with sub-
sequent energy-based refinement and scoring based on the
all-atom optimized potentials for liquid simulations force
field and an implicit solvent model (Jacobson et al., 2004;
Sellers et al., 2008). This method has been shown to perform
well for loop modeling in generic proteins (Rossi et al.,
2007, 2009) and the protocol can be applied to CDR-H3
modeling with accuracies high enough that the models could
be used as surrogates for experimental structures in many
applications (Sellers et al., 2010).

In general, loop prediction becomes more difficult as the
loops become longer, especially for those longer than �12
amino acids (Zhu et al., 2006), which includes a significant
fraction of CDR-H3 loops, which have a median length of
12 residues (Zemlin et al., 2003). This is largely because the
sampling problem rapidly becomes more difficult with in-
creasing loop length. However, it should also be kept in
mind that long surface loops in proteins are often intrinsical-
ly flexible, such that the observed conformation can vary de-
pending on its interactions with antigen or due to ‘artifacts’
associated with crystal packing (Rapp and Pollack, 2005).
These considerations should be born in mind when evaluat-
ing or applying loop prediction methods to CDR-H3.

Theoretically, the most reliable approach should be to
identify the loop conformations with the lowest free energy
values at room temperature. For that purpose, Shirai et al.
(1998) and Kim et al. (1999) performed the multicanonical
molecular dynamics simulations (Nakajima et al., 1997;

Fig. 2. Structural diversity of antibodies. (A) Variability of six CDRs. (B)
Structural changes of CDR-H3 [root mean square deviation (RMSD) of
backbone N, Ca, C and O atoms is 2.3 Å] and rearrangement of VL/VH

domain orientation. Anti-HIV-1 peptide antibody, Fab50.1 (magenta (1GGI)
and white (1GGC) for antigen bound and free structures, respectively). The
white surface model is the antigen, HIV-1 V3 loop peptide. All graphics of
protein structures in this article are generated using UCSF Chimera (http
://www.cgl.ucsf.edu/chimera).
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Higo et al., 2012) to probe the free energy landscapes, and
they obtained the stable structural ensembles of the CDR-H3
loops at 300 K, which were found to include the correspond-
ing crystal structures. In addition, characterizing the free
energy landscapes should aid in predicting structural changes
of CDR-H3 upon antigen binding based on the ‘population
shift’ principle that suggests that bound conformations
should be relatively close in free energy to the unbound state
(Watanabe et al., 2006; Okazaki and Takada, 2008). Higo
et al. (2011) recently observed both the population shift and
the induced fit mechanisms during the coupled folding and
binding in an intrinsically disordered protein. However,
although conformational sampling methods have matured,
the underlying energy models—generally all-atom force
fields—remain imperfect, limiting the accuracy of the results.
We expect that, in the future, with the further refinement of
force field parameters, methods based on generating struc-
tural ensembles will be routinely used to accurately predict
CDR-H3 loop conformations with and without antigens.

Predicting VL/VH domain orientations

Another challenge in antibody modeling is predicting the
VL/VH domain orientations. The orientations of these two
domains vary among different antibodies, and can also
change upon antigen binding as seen in early work by
Stanfield et al. (1993; Fig. 2B). When modeling antibody
structures from sequence, the relative orientations of the
domains will affect the structure of the antigen-binding
surface. Thus, understanding sequence–structure relation-
ships as well as the energetics of VL/VH domains interface is
crucial not only to elucidate the structural diversity of anti-
bodies, but also to accurately model antibody structures.

A three-layered structure was proposed for the VL/VH inter-
face based on analyzing antibody crystal structures and
sequences (Chothia et al., 1985; Vargas-Madrazo and
Paz-Garcia, 2003). The key residues in these layers are also
important for determining the conformations of CDR-H3
(Kuroda et al., 2008). Therefore it is apparent that the accur-
acy of domain orientation prediction can affect the accuracy
of CDR-H3 modeling and vice versa, which makes sense
because CDR-H3 is located close to the interface with the VL

domain. In one striking example, a crystal structure of a
‘chimeric’ antibody, which had a different VL domain from
the original antibody, was solved, and a structural change of
CDR-H3 was observed upon the VL domain substitution
(RMSD 2.88 Å) whereas the canonical structures of the par-
ental antibodies are maintained (Fig. 3A; Pei et al., 1997). In
another example, however, the VH domain of an antibody
accommodated a different VL domain from another antibody
without any significant structural changes of CDR-H3
(RMSD 0.54 Å) or the other portions of the VH domain
(Fig. 3B; Teplyakov et al., 2010a). These studies, in which
artificial VH/VH domain pairs form stable complexes, shed
light on the possibility of multi-specific antibodies (Bostrom
et al., 2009), which recognize two distinct antigens with non-
overlapping functional paratopes. That is, variable domains
of light and heavy chains, which recognize an antigen,
respectively, independently of the other chain, can be com-
bined, leading to a multi-specific antibody. Considering the
large number of VL and VH sequences in nature, computer-
guided approaches to explore the potential pairing of these

two domains and the domain-wise contributions to antigen
binding, which would be difficult to examine by experi-
ments, are expected.

Exploring the possibility of the prediction of correct
domain orientations based on energetics, Jacobson and cow-
orkers examined the variations of VL/VH domain orientations
in crystal structures and how they relate to sequence
(Narayanan et al., 2009). In this study, the difference in
domain orientation was defined as the non-CDR Ca RMSD
of the VL domain when structural superposition is performed
using the VH domain. They also calculated molecular
mechanics energies between the two domains, showing that
the native VL/VH orientations correspond to those of their
energy minima in conformational space.

In another study, Abhinandan and Marin defined the
VL/VH packing angles as a torsion angle at the interface
using four pseudo-coordinates derived from a set of structur-
ally conserved residues, and determined the distribution of
the packing angle, which varies from 231.0 to 260.88 fol-
lowing approximately a normal distribution with a mean of

Fig. 3. Effect of VL domain substitution on CDR-H3 conformation. (A)
B1–8 (1A6V; magenta (VH) and pink (VL)) and B1–8/NQ11 (1NQB; gray
(VH) and white (VL)). The VL domain of B1–8 (pink) was replaced by that
of another antibody, NQ11, which results in a ‘chimeric’ antibody termed
B1–8/NQ11. Structural change of CDR-H3 is observed (RMSD 2.9 Å). (B)
C836 (3L7E; magenta (VH) and pink (VL)) and X836 (3MBX; gray (VH) and
white (VL)). The VL domain of C836 (pink) was replaced by that of another
antibody, which results in a ‘chimeric’ antibody termed X836. Structural
change of CDR-H3 is not observed (RMSD 0.5 Å).
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245.68 (Abhinandan and Martin, 2010). The authors pro-
posed a method to predict the VL/VH packing angles using
neural networks trained against several interface residues in
antibody crystal structures. This work also identified some
potential key residues (L38, L40, L41, L44, L46, L87, H33,
H42, H45, H60, H62, H91, H105), which are located in the
framework regions and are extracted by the genetic algo-
rithm, for the prediction of the packing angle and for anti-
body engineering (Abhinandan and Martin, 2010). Here it is
noteworthy that the evaluation of VL/VH domain orientations
only by the packing angles could neglect another aspect of
the variations: translation of each domain.

Tramontano and coworkers also analyzed the variability of
VL/VH domain angles using cluster analysis based on a dis-
tance by LGA software (Chailyan et al., 2011b). The number
of antibody crystal structures with k light chain in the PDB
is much larger than that of antibodies with l light chain, and
the authors used a ‘balanced light chain set’, which included
similar numbers of Vk and Vl antibody sequences, respect-
ively. They found that VL/VH pairings can be divided into
two major clusters where one cluster is only observed in
mouse antibodies and the other is observed both in mouse
and in human, indicating the importance of template selec-
tion in humanization procedure. They pointed out that these
clusters could be assigned from the sequences by looking at
some specific positions (L8, L28, L36, L41, L42, L43, L44,
L66) in the sequences. Interestingly, only two of these resi-
dues, L41 and L44, are shared with the residues proposed by
Abhinandan and Marin as the packing determinants. The
AbNum scheme (Abhinandan and Martin, 2008) was used in
both studies for antibody numbering. Structural positions of
these residues are described in Fig. 4. In another finding of
Tramontano and coworkers, the antibodies in one of the clus-
ters tend to recognize smaller antigens, such as haptens,

whereas ones in the other cluster tend to show more promis-
cuous binding, indicating the correlation between the relative
orientation and the antigen-binding capability.

The studies discussed above imply that VL/VH domain
orientations are encoded by the sequence of each domain,
but the dependence seems to be subtle. The domain orienta-
tions can also change somewhat upon antigen binding and
may fluctuate in solution. Another approach might be to use
the predicted domain orientation to select the best templates
for antibody modeling. Also currently unexplored is the cor-
relation between the packing angle and other properties such
as solubility and stability.

Wang et al. (2009) performed covariation analyses using a
large multiple sequence alignment of Ig-fold derived from
NR-database at National Center for Biotechnology
Information as well as from the PDB. Their calculations sug-
gested the existence of conserved amino acid networks in VH

(H37, H38, H44, H45, H47, H103) and VL (L36, L37, L43,
L44, L46, L98) domains, respectively, and the networks clus-
tered in VL/VH domain interface. They also identified the
conserved network in VH/CH domain interface, but not in VL/
CL domain interface. Protein designs based on these con-
served amino acid networks showed some successes in the
context of generating thermostabile antibodies.

Some software for antibody modeling is available on the
web. Tramontano and coworkers developed the PIGS web
server, which provides various options for choosing tem-
plates for the light and heavy chains (Marcatili et al., 2008).
It constructs CDRs simply by grafting canonical structures
and CDR-H3 loops of other antibodies onto the modeled
framework. RosettaAntibody uses a VL/VH docking proced-
ure based on the Rosetta energy function and rigid-body
minimization to refine the orientations following CDR-H3
modeling (Sircar et al., 2009; Sivasubramanian et al., 2009).

Fig. 4. Structural positions of residues that were identified as important for VL/VH packing. AbNum numbering scheme was used both in Abhinandan and
Martin (2010) and in Chailyan et al. (2011b). Consensus residues proposed in both studies are shown as yellow spheres while residues proposed only by
Abhinandan and Martin (2010) and Chailyan et al. (2011b) are shown as green and red spheres, respectively. (A) VL domain. (B) VH domain.
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Web Antibody Modeling (WAM), which was a pioneering
software package for antibody modeling developed by Rees
and coworkers, is also available on the web (Whitelegg and
Rees, 2000). Recently, Almagro and coworkers performed
blind tests of antibody modeling methods including PIGS,
RosettaAntibody and the other two modeling strategies inde-
pendently developed in Chemical Computer Group and
Accerlys Inc., using nine unpublished antibody crystal struc-
tures at that time (Almagro et al., 2011). They demonstrated
that, overall, the results of each method showed similar
trends. In each case, the conformations of the framework
regions were predicted quite well (average RMSDs are
�1.0 Å) whereas they tended to fail to predict the conforma-
tions of CDR-H3 (average RMSDs . 3.0 Å). These results
reconfirmed the difficulty of modeling CDR-H3, and there
seems to be much room to improve the methods. More im-
portantly, this work may lead to additional blind-prediction
exercises, analogous to CASP (Critical Assessment of protein
Structure Prediction) and CAPRI (Critical Assessment of
PRediction of Interactions).

There are a few public databases that contain antibody
data from the PDB (Allcorn and Martin, 2002; Kaas et al.,
2004) or from the large sequence database (Retter et al.,
2005; Giudicelli et al., 2006). Considering the rapid increase
in antibody structural and sequence data, these public data-
bases will play important roles in organizing the information.

Antibody–antigen recognition

Needless to say, the best way to gain atomic-level insights
into antibody–antigen recognition is to determine crystal
structures of the complexes by X-ray crystallography.
However solving the structures of antibody–antigen com-
plexes is frequently challenging. Computational protein–
protein docking methods provide an alternative way to study
antibody–antigen interactions when structures are not avail-
able. Although computational protein–protein docking
methods are rapidly improving, there are still limitations, es-
pecially when modeled structures are used as starting points
(Gray, 2006). On the other hand, there are a few advantages
in applying protein–protein docking to antibody–antigen
complexes. First, we know that antigens bind to the CDRs of
antibody structures. In addition, the residues in antigens that
the antibody binds to, called epitopes, can be predicted by
computational methods to some extent (Evans, 2008). This
information can help to more accurately predict antigen–
antibody complex structures, along with any other experi-
mental data such as from mutagenesis that can be used to
restrain the protein–protein docking.

In general, antigenic epitopes in proteins are discontinuous
in the protein sequences (Barlow et al., 1986; Van
Regenmortel, 1996). One problem in epitope prediction is
that many existing methods focus on protein sequences to
predict continuous epitopes. The increase in the number of
antibody–antigen complex structures has enabled us to better
understand the amino acid compositions of antibody–antigen
interfaces and how they differ from those of other heterodi-
mer proteins. Structure-based epitope prediction algorithms
have begun to be developed based on such information
(Liang et al., 2009). Another problem is that current
methods, including structure-based algorithms (Haste
Andersen et al., 2006), are not designed to predict epitopes

for specific antibodies. Recently Soga et al. (2010) have
developed a method to predict epitope residues for individual
antibodies from the sequence composition of the antibody–
antigen interfaces.

In general, protein–protein interactions can be classified
into permanent and transient interactions (Ozbabacan et al.,
2011). Antibody–antigen interactions are often considered to
be transient (Cho et al., 2006). Although we might expect
high complementarity of antibody–antigen interfaces since
antibodies often show high specificities and affinities, a pre-
vious analysis based on a small dataset of available
structures showed that the shape complementarity of anti-
body–antigen interfaces was lower on average than that of
protein–protein interfaces in general (Lawrence and Colman,
1993). From an evolutionary perspective, antibodies could
evolve independently of antigens in our body, while other
proteins involved in protein–protein interactions can evolve
with their counterparts, which is often called coevolution, so
that the shape complementarity of general proteins could be
optimized against their partners. However, a later analysis
with high-resolution crystal structures suggested the possibil-
ity that the previous observation that antibody–antigen
complexes had lower shape complementarity was due to the
low quality of the crystal structures (Cohen et al., 2005). It
has been also found that overall topography of antigen-
binding sites is roughly classified into a limited number
of groups associated with different types of antigens
(MacCallum et al., 1996; Lee et al., 2006). For example,
anti-protein antibodies tend to have flat antigen-binding sites
while those of anti-peptide antibodies have a groove-like
shape, in which peptides are buried. Electrostatic comple-
mentarity of antibody–antigen interfaces seemed to show a
similar trend to that of protein–protein interface in general
(McCoy et al., 1997). Since the discussions above were
based on a limited number of antibody–antigen structures, a
more comprehensive analysis of the complementarities of the
interfaces is required to understand the essential nature of
antibody–antigen recognitions, helping to guide the rational
design of antibody therapeutics.

Lysozyme has frequently been used as a model antigen to
gain insights into antibody–antigen interactions (Davies and
Cohen, 1996). In computational studies, Smith-Gill and
coworkers investigated antibody–antigen interactions using
homology-modeled anti-lysozyme antibody structures,
HyHEL8 and HyHEL26, and a crystal structure, HyHEL10
(Sinha et al., 2002; Mohan et al., 2003). They calculated the
binding energies and performed kinetics experiments,
showing that a greater electrostatic contribution to antigen
binding leads to higher specificity while hydrophobic interac-
tions favor conformational flexibility and cross-reactivity.
Their subsequent work based on molecular dynamics (MD)
simulations with a crystal structure, HyHEL63, also sup-
ported the importance of electrostatic forces in the anti-
body–antigen association (Sinha et al., 2007).

In a recent application of protein–protein docking to
antibody–antigen complexes, Gray and coworkers used anti-
body models generated by WAM and antigen structures to
propose the potential binding modes of antibody–antigen
complexes using RosettaDock (Sivasubramanian et al., 2006,
2008). The protein–protein docking used a rigid-body Monte
Carlo (MC) search and a low-resolution interaction potential
including an alignment score specific for antibodies in an
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initial stage, and, in the subsequence refinement stage, an
all-atom scoring function was used to select a solution (Gray
et al., 2003; Gray, 2006). In one of the examples, an
EGFR-binding antibody, they also incorporated computational
and experimental mutagenesis information into their docking
procedures (Sivasubramanian et al., 2006).

The flexibility of protein–protein interactions should be
incorporated when considering the possibility of structural
change upon binding (Zacharias, 2010). Structural errors in
comparative models could also lead to serious errors in the
subsequent steps in protein–protein docking. Methods are
available for treating side chain flexibility, for instance by
taking advantage of rotamer libraries, while dealing with
backbone flexibility is much more difficult. Although impli-
cit, one approach to incorporate backbone flexibility in
protein–protein docking is the so-called ensemble docking,
which uses several structures generated by sampling methods
as starting points. MD simulations can also be used to gener-
ate such conformational ensembles. An advantage of ensem-
ble docking is that it uses rapid rigid protein–protein
docking methods, which have shown good performance in
CAPRI contests so far, to identify the correct near-native
models (Bonvin, 2006).

Gray and coworkers examined how ensemble docking is
effective by varying the treatment of backbone flexibilities in
each ensemble in protein–protein docking simulations in
general (Chaudhury and Gray, 2008). They took advantage of
two ensembles for docking: computational ensembles gener-
ated by RosettaRelax (Misura and Baker, 2005) and nuclear
magnetic resonance (NMR) ensembles provided by NMR
solution state studies. Although the backbone flexibilities
were restricted only to the ligand proteins, they showed
better performance using ensemble dockings than using a
rigid-body protein–protein docking. Recently, for the appli-
cation of modeling antibody–antigen complexes, they also
developed a novel docking procedure called SnugDock,
which simultaneously optimizes paratopes, i.e. CDR loops,
and VL/VH domain orientations during antibody–antigen
docking (Sircar and Gray, 2010). In a subsequent study, this
method was applied to protein–protein docking in general,
showing the versatility of this protocol (Sircar et al., 2010).
In another innovative study, Simonelli et al. (2010)
combined experimental data with a computational protein–
protein docking method. They used several antibody models
created by the PIGS and RosettaAntibody programs as an
ensemble, and docked them to the antigen, a surface protein
of dengue virus, using RosettaDock. They took advantage of
NMR chemical shift data to validate the docking results,
showing that NMR epitope mapping improved the accuracy
of computational docking.

Looking forward, incorporating backbone flexibility in the
docking procedure is a promising and an essential approach
to take into account the structural change upon binding and
to overcome the small structural errors expected when using
homology-modeled structures.

Affinity maturation by somatic mutations
and computational design

Antibodies can evolve in a short time in response to antigens,
so that they are more specific to their antigens and have higher
affinity, mainly by improving the complementarity of the

antibody–antigen interfaces (Li et al., 2003; Cauerhff et al.,
2004; Acierno et al., 2007). Somatic mutations can occur not
only in the antigen-binding site, but also in the framework
region, which antigens usually do not contact physically
(Lavoie et al., 1992). Computational methods have played an
important role in understanding how these mutations improve
binding affinity, and more recently, have also been used to
predict novel mutations to improve affinity or specificity.

Based on the analysis of a large number of sequences,
Clark et al. (2006) examined trends in amino acid substitu-
tions during the somatic maturation process. Specifically,
using a gene-fitting procedure with codon probability tables,
they examined mutation probabilities in 23 116 heavy chains
and 11 095 light chains. By comparing the probabilities with
the conventional BLOSUM matrix, they concluded that
amino acid substitutions in somatic mutation process have
similar trends to those observed in protein evolution in
general. They also showed that mutations tend to occur in
antibody–antigen interfaces and in exposed surface regions,
rather than the framework region. Finally, they examined
changes of amino acid composition in the antibody–antigen
interface, showing that the numbers of tyrosine, serine and
tryptophan residues decrease while those of histidine, proline
and phenylalanine increase during the maturation process.

Several computational studies have been conducted to in-
vestigate the relationship between somatic mutations and
conformational flexibilities of antibodies. A plausible hy-
pothesis is that antibodies acquire rigidity during maturation
in order to increase binding affinity (by minimizing entropic
losses upon binding) and to improve specificity. In fact,
crystal structures of antibody drugs available in the PDB are
predicted to assume rigid conformations based on their
sequence features (Kuroda et al., 2008). In these studies, the
rigidification was hypothesized to occur within the entire
variable domains rather than within only CDRs, by forming
regular secondary structures, such as b-turns, and hydrogen
bonds (Kuroda et al., 2008), or by making residue contact
networks, during the maturation process (Zimmermann et al.,
2010). Thermodynamic experiments and MD simulations
demonstrated that all residues in variable domains may par-
ticipate in the rigidification rather than the limited number of
CDR residues (Jimenez et al., 2003; Thielges et al., 2008;
Zimmermann et al., 2010).

Kollman and coworkers (Chong et al., 1999) used MD
simulations to study the germline and matured anti-hapten
antibodies, 48G7 (Patten et al., 1996; Wedemayer et al.,
1997). They showed that maturation of 48G7 was driven by
electrostatic optimization of the antigen-binding site, which
resulted in geometric reorganization and rigidification, as
manifested by smaller root mean square fluctuations of
matured 48G7 compared with those of the germline anti-
body. Demirel and Lesk (2005) investigated the same anti-
bodies using an elastic network model and concluded that
the fluctuations of the germline antibody were similar to
those of matured one. Rather, the structural difference
observed in crystal structures was thought to result from the
different binding mechanisms of germline and matured anti-
bodies; induced fit could occur upon hapten binding in the
germline antibody while hapten binding to the mature one
was explained by a lock-and-key model. A second well-
studied pair of germline and mature antibodies are those of
the anti-hapten antibody, 4-4-20. Experimental results and
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MD simulations again suggested that the somatic mutations,
several of which are not in direct contact with the antigen,
restrict the conformational fluctuations in the mature anti-
body (Zimmermann et al., 2006; Thorpe and Brooks, 2007).
More recently, Babor and Kortemme analyzed several germ-
line and matured antibody structures in the PDB using their
multi-constraint computational design protocol (Humphris
and Kortemme, 2007) with the Rosetta scoring function, and
confirmed that native sequences of germline CDR-H3 are
designed for conformational flexibility while those of
matured ones are highly optimized for single conformations
(Babor and Kortemme, 2009). On the other hand, rigidifica-
tion upon maturation is most likely not universal, because a
matured anti-hapten antibody, SPE-7, is known to assume
several different conformations in response to binding differ-
ent antigens (James et al., 2003; James and Tawfik, 2003). In
addition, a series of studies of anti-hapten antibodies has
demonstrated that rapid maturation based on CDR rigidifica-
tion tend to arrive at a moderate affinity ceiling whereas flex-
ibilities in CDR-H3 may play an important role in higher
affinity maturation (Furukawa et al., 1999, 2001).

To more directly determine how somatic mutations modu-
late CDRs flexibility in nature, Jacobson and coworker also
analyzed a set of antibodies, whose crystal structures were
solved both in germline and matured forms, without their
antigens in the crystal structures, using MD simulations with
an implicit solvent model (Wong et al., 2011). Significant
rigidification was observed for CDR residues that contact the
antigen, mainly in CDR-H3, while the other five CDRs fre-
quently displayed some increase in flexibility. The observed
rigidification was explained by new hydrogen bonds, salt
bridges and side chain packings that were improved by
somatic mutations. Interestingly, conformations similar to the
germline antigen free- and bound forms of 7G12 (1NGZ and
1N7M, respectively) were reproduced when using the germ-
line free form (1NGZ) as the initial structure in the simula-
tion, whereas the germline bound form was not sampled
when the matured free form (1NGY) was used as the initial
structure. This observation suggested a population shift
mechanism of antigen binding in the 7G12 antibody.
Consistent with his hypothesis, a structural change of
CDR-H3 upon antigen binding was observed in the germline
crystal structures (RMSD of CDR-H3 between the antigen
bound- and free forms is 2.22 Å) while that of matured form
is not observed (RMSD 0.39 Å), and CDR-H3 of the germ-
line bound form is almost identical to those of matured
antigen free- and bound forms (RMSD of CDR-H3 in the
germline form against those in matured antigen free- and
bound forms is 0.39 and 0.42 Å, respectively) (Fig. 5). In
this antibody, the S97M mutation in the VH domain contribu-
ted to improve hydrophobic contacts and modulated the flexi-
bility of CDR-H3 by anchoring the loop to its antigen free
from, thus shifting the equilibrium toward the conformation
most suitable for binding, so that the matured form could
bind the antigen without entropic penalty. Another mutation
that modulates flexibility in this antibody was the mutation
of Ser to Asn at the position 76 in the VH domain. This
S76N mutation anchored CDR-H1 loop via hydrogen bonds
during the simulations. In the simulations of the germline
form, the Ser residue at the position 76 rarely formed hydro-
gen bonds with the CDR-H1 whereas, in the simulations of
the matured form, the Asn at the corresponding position

often formed multiple hydrogen bonds via the side chain
with the CDR-H1, which results in the rigidification of the
CDR. It is noteworthy that position 76 in the VH domain is
far from the antigen-binding site (Fig. 5). Therefore, this
example shows how mutations distant from the antigen-
binding site can modulate binding.

Although antibodies can evolve in vivo through affinity
maturation, arguments have emerged that binding affinities
and specificity could be further improved by using artificial
systems, such as synthetic antibody libraries (Soderlind
et al., 2000; Borrebaeck and Ohlin, 2002; Bond et al., 2005;
Sidhu and Fellouse, 2006; Michnick and Sidhu, 2008; Babor
et al., 2011) and computational protein designs (Babor and
Kortemme, 2009). Here we review some recent successes of
the latter approach, in which the affinities of natural anti-
bodies were improved to varying extents (Table I). Details of
protein design methodologies are reviewed elsewhere
(Rosenberg and Goldblum, 2006; Lippow and Tidor, 2007;
Karanicolas and Kuhlman, 2009).

Most of the current examples of computational antibody
design start from antigen–antibody complex structures in the
PDB, that is, the studies can be described as ‘re-design’ of
antigen–antibody interfaces. Protein interface re-design
relies on estimating free energy changes due to amino acid
substitutions, which can be accomplished using physics-
based force fields (Huang et al., 2006) or knowledge-based
potentials derived from the structural database (Ota et al.,
2001; Russ and Ranganathan, 2002; Clark and van Vlijmen,
2008). Similar to comparative modeling methods, re-design
also requires efficient conformational search algorithms, such
as dead-end elimination (DEE) (Desmet et al., 1992; Dahiyat
and Mayo, 1996, 1997; De Maeyer et al., 2000) and MC
searches (Koehl and Levitt, 1999; Kuhlman and Baker,
2000), to sample conformations of modified structures. In
most studies, protein backbones have been fixed during the
procedures due to computational limitations. However, it has
become possible to incorporate explicit backbone flexibility

Fig. 5. Positions of somatic mutations in a metal chelatase catalytic
antibody, 7G12. The mutations, R49M, S76N and S97M in VH domain, are
represented as spheres. Germline and matured antigen bound forms are
represented by magenta (1N7M) and yellow (3FCT) model, respectively.
Germline and matured antigen-free forms are represented by white (1NGZ)
and cyan (1NGY) model, respectively. The antigen is shown as a black
surface model. The residues at position 49 and 97 contact the antigen
whereas the residue at position 76 is far from the antigen-binding site.
Structural change of CDR-H3 is observed only in the germline form
(magenta and white; RMSD 2.2 Å. See text.).
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in computational protein design (Hu et al., 2007; Murphy
et al., 2009).

Clark et al. optimized an antibody AQC2 for binding to
the I domain of human integrin VLA1 using the CHARMM
force field (Brooks et al., 1983), the ICE software (Kangas
and Tidor, 1998), which calculates electrostatic interactions
and desolvation energies, and a DEE-based side chain
repacking software, DEZYMER, developed by Hellinga and
coworkers (Looger and Hellinga, 2001). This approach suc-
ceeded in improving the binding affinity even though the ori-
ginal antibody has the relatively high affinity (KD � 7 nM)
(Clark et al., 2006a). They tried .80 designed variants in-
cluding multiple mutations, in which the combination of four
mutations (L: S28Q, N52E, H: T50V, K64E; Fig. 6A) dis-
played the highest affinity of 850 pM, which was a 10-fold
improvement over the wild type. The designed structure was
solved and the rearrangement of a hydrogen bond network in
the interface was elucidated.

In another successful antibody–antigen re-design, Lippow
et al. (2007) focused on electrostatic interactions. One of the
obvious advantages to optimize electrostatic forces is that
long-range interactions could be incorporated into design
process. They designed single mutations in all CDR positions
using the DEE and A* search algorithms with the
CHARMM force field, ranked them by Poisson–Boltzmann
electrostatics and demonstrated that four mutations (L:
N92A, H: T28D, S57V, T58D; Fig. 6B) together generate
100-fold improvement of the affinity over wild type (43 pM
vs. 4.4 nM for wild type).

A somewhat different use of computational modeling is to
identify favorable positions for experimental random mutagen-
esis, rather than relying on computational prediction to iden-
tify specific favorable mutations. In such a study, Barderas
et al. (2008) used computational modeling, including con-
strained antigen docking and MD simulations, to select favor-
able residues for random mutagenesis in CDR-H3 and -L3 by
phage display. This approach resulted in mature anti-gastrin
antibodies with binding affinities as potent as 13.2 nM, a
454-fold improvement over wild type based on six mutations.

In some cases, specificity, and not affinity, is the major
challenge addressed by computational design, as in the work
by Farady et al. (2009), which aimed to improve the species
cross-reactivity of an anti-protease antibody, E2. The
problem is that antibodies derived from mice immunized by
human antigens often display low efficacy in pre-clinical
animal models because the structures and sequences of the

antigen targets are not completely conserved between
humans and mice. In the case of the protease antigen, called
MT-SP1 in human and epithin in mouse, they share 87%
sequence identity, and three surface residues that contact
the antibody differ. Based on the complex structure of
MT-SP1/E2, an epithin/E2 structure was modeled. Residues
in the antibody that contacted the antigen were selected for
in silico mutations and several mutations were predicted to
improve the affinity for epithin on the basis of a molecular
mechanics energy function. The T98R mutation (Fig. 6C) in
CDR-H3 showed the largest predicted free energy change,
and subsequent experimental tests confirmed that the muta-
tion results in a 14-fold affinity improvement over wild type
(KI reduced from 4.8 nM to 340 pM). The mutation is
believed to improve epithin binding by introducing new
hydrogen bonds in the antigen–antibody interface.

What can we learn from these successes? First, high-
resolution crystal structures are not necessarily required for
computational design. As shown in Table I, initial structures,
which have moderate resolution from 2.17 to 2.80 Å, could
be exploited for computational design, as well as homology
models of antibodies and antigens. These successes imply
that current antibody modeling methods might be sufficiently
accurate to be used in computational antibody design.
Second, computational protein–protein docking could be
used as a first step in design procedure, particularly in cases
where experimental information can be used to help to guide
the docking. Third, significant improvement in binding affin-
ity frequently requires multiple amino acid substitutions.
Finally, as seen in Figs 5 and 6, it is clear that not only
CDR-H3 but also the other five CDR loops can be candidates
for affinity-enhancing mutations. Conformational changes
that occur upon antigen binding, especially in CDR-H3,
present a challenge for antibody design. In addition, current
protocols mainly focus on optimizing antigen-contacting
residues in CDRs. Mutations during somatic maturations,
however, often occur in the framework regions, which anti-
gens cannot directly contact (Lavoie et al., 1992). Exploiting
mutations of framework regions might be possible when
incorporating backbone flexibility during computational
designs.

Stability design and aggregation in antibodies

Another challenging application of computational designs in
antibody engineering is to predict aggregate-prone regions

Table I. Results of computational designs

Initial structuresa Resolution
(Å)

Antigen KD
WT,b KD

Mut,b Affinity
improvementc

Designed mutationsd Ref.

AQC2 (1MHP) 2.80 Integrin 7 nM 850 pM 10 L: S28Q, N52E, H: T50V, K64E Clark et al. (2006b)
D44.1 (1MLC) 2.50 Lysozyme 4.4 nM 30 pM 140 L: N92A, H: T28D, E35S, S57V, T58D,

G99D
Lippow et al.
(2007)

TA4 N/Ae Gastrin 6 mM 13.2 nM 454 L: H91F, Q92F, R94P, V96A, H: I100L,
S102V

Barderas et al.
(2008)

E2 (3BN9) 2.17 Protease 4.8 nM 340 pM 14 H: T98R Farady et al. (2009)

aAntibody structures to be designed. PDB codes are shown in parentheses.
bReported values in the papers. For E2, KI value is shown.
cReported values in the papers.
dThere are a number of designed mutations in each works. Only representatives are shown. L and H represent light and heavy chains, respectively.
eHomology modeled structure was used.
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(APRs) from amino acid sequences and to design
aggregate-resistant antibodies by introducing mutations in
those regions. One mechanism of aggregation is the forma-
tion of amyloid fibrils, which are rich in b-sheet structure,
and have been associated with diseases such as Alzheimer’s
or Parkinson’s diseases (Dobson, 1999). Experimental obser-
vations suggest that short segments of a protein could facili-
tate aggregation (Ventura et al., 2004), and these are termed
as APRs. Currently, several computational methods are
available to predict APRs and rates of aggregations, mainly
based on the sequence composition and on propensities
such as hydrophobicity, charge and secondary structure pro-
pensity (Caflisch, 2006; Conchillo-Sole et al., 2007; Trovato

et al., 2007; Garbuzynskiy et al., 2010). Empirical or phe-
nomenological models have been proposed for the effect of
mutations on the aggregation rate on the basis of the ex-
perimental data (Chiti et al., 2003; DuBay et al., 2004).
MD simulations have also been used to interpret and com-
plement experimental studies of protein aggregation and
amyloidosis (Ma and Nussinov, 2006; Sharma et al., 2008).
A review of aggregation in protein therapeutics is available
elsewhere (Agrawal et al., 2011), so here we limit our-
selves to recent studies on design of aggregation-resistant
antibodies.

Aggregation in therapeutic proteins can lead to problems
with immunogenicity (Rosenberg, 2006; Kumar et al., 2011)
and in addition, antibodies have been known to aggregate in
high concentration of formulations for therapy and in storage
(Shire et al., 2004). Many experimental studies have been
performed to investigate antibody stability and resistance to
aggregation, primarily using single-chain Fv fragments
(scFv) (Bird et al., 1988; Glockshuber et al., 1990; Worn and
Pluckthun, 1998, 1999, 2001).

Designed mutations for aggregation-resistant antibodies
may induce the loss of desired affinities. Wang et al. exam-
ined how APRs in antibody structures contribute to antigen
recognition using TANGO (Fernandez-Escamilla et al.,
2004) and PAGE (Tartaglia et al., 2005), which are computa-
tional tools to predict APRs in protein sequences, based on
29 antigen–antibody complexes in the PDB (Wang et al.,
2010). They found that the APRs most frequently appeared
in CDR-H2, and less frequently in CDR-H3, although resi-
dues in the N-terminal framework region of CDR-H3 are
predicted to be APRs. Based on changes of buried surface
area upon antigen binding, they also showed that aromatic
residues, Tyr and Trp, are favored both in antigen-binding
sites and APRs, indicating that aggregation may be asso-
ciated with antigen binding via these residues.

In a different, structure-based approach to predicting
APRs in antibodies, Trout and coworkers proposed a novel
measure called spatial aggregation propensity (SAP), which
quantifies the exposure of hydrophobic residues, averaged
over snapshots from a MD simulations with explicit water
(Chennamsetty et al., 2009a,b; Voynov et al., 2009). Using
this measure, they identified 14 aggregation-prone motifs in
constant regions of human IgG molecules and, by comparing
the amino acid sequences, they noticed that those APRs are
not conserved among the other antibody classes (IgA1, IgD,
IgE and IgM) (Chennamsetty et al., 2009a). In these works,
antibody structures were used to derive SAP values but anti-
body models could potentially be used when crystal struc-
tures are unavailable. Subsequent work from the same lab
demonstrated that the SAP measure could be applied to anti-
body fragments, such as Fab or Fc, and homology-modeled
structures, and that MD simulations could be performed with
implicit solvent models to obtain SAP values with reasonable
computational time and tolerable accuracies (Chennamsetty
et al., 2010).

In an experimental study, Perchiacca et al. (2011) per-
formed mutational analysis of a human VH domain antibody
to investigate the molecular origin of the aggregation by
comparing the biophysical properties of an aggregation-prone
antibody and the aggregation-resistant counterpart. The dif-
ference between the two antibodies is only in the sequence
composition of each CDR. Although the introduction of

Fig. 6. Positions of designed mutations in antibodies. CDR-H3 is colored
blue. Positions of designed mutations are represented as sphere models.
Original residues are shown. (A) Anti-integrin antibody, AQC2 (1MHP).
(B) Anti-lysozyme antibody, D44.1 (1MLC). (C) Anti-protease antibody,
E2 (3BN9).
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charged mutations distant from the CDRs failed to confer
aggregation-resistance property for the aggregation-prone
antibody, the mutations within the first CDR loop (H31–
H33) or near the CDR (H29) successfully produced an
aggregation-resistant antibody. It is noteworthy that, while
the results of some computational methods that were used to
predict APRs in this antibody contain several false positives,
the consensus APR of those prediction tools (H28–H32) is
almost identical to the aggregation hot spots in this experi-
ment (H29, H31–H33). This indicates that computational
meta-approaches that integrate prediction results from several
methods may help to improve prediction of APRs in
antibodies.

Wang and Duan (2011) performed MD simulations with
the aim of proposing a strategy for improving the thermal
stability of an anti-VEGF scFv antibody. The simulations
demonstrated that, at least in the scFv antibody, when the
temperature is elevated, the dissociation of VL/VH domain
interface occurred at first followed by unfolding of VL

domain and then partial unfolding of VH domain, suggesting
that stability of the VL/VH domain interface may govern the
stability of entire antibody structure. If this is correct, then
engineering of the VL/VH domain interface is the first choice
for improving the thermal stability of the antibody. The ex-
tensive analyses of VL/VH domain interfaces reviewed in the
previous section may provide guidance for producing more
stable antibodies based on VL/VH interface designs in silico.

Antigen design to elicit NAbs

Advances in computational protein design methods, and the
increasing number of protein crystal structures, may make it
possible to develop vaccine candidates more rationally and
efficiently. Vaccine injections elicit desired NAbs for anti-
gens or viruses targeted in therapy (Burton, 2002). HIV-1
has attracted much attention because of the lack of appropri-
ate vaccines and because of the increasing number of
patients. NAbs work either by binding to the virus surface
and then blocking subsequent cellular response, or by
binding after virion attachment to a target cell so that they
can inhibit viral entry. HIV-1 shows significant variability of
the sequences and glycosylation patterns, which results in its
escaping from human immune systems (Burton et al., 2004).
A few regions in the HIV-1 envelope spike regions are struc-
turally conserved among diverse isolates, including the
CD4-binding site on gp120, the coreceptor binding site on
gp120 and the membrane proximal external region (MPER)
of gp41, all of which can be targets for binding by antibodies.
Thus, eliciting broadly NAbs by those conserved epitopes or
by their mimics is challenging, and advanced computational
approaches could conceivably help tackle this issue.

Ofek et al. (2010a,b) used computational-guided approach
to design epitope scaffolds to elicit anti-HIV-1 antibodies.
They introduced a known linear epitope of MPER, which is
usually recognized by 2F5 antibody, into scaffolds selected
from the PDB. The existing scaffolds were re-designed by
RosettaDesign suit to introduce mutations so that the targeted
epitope is accommodated in the scaffolds, leading to stable
proteins that consist of the HIV-1 epitope and the scaffolds
derived from unrelated proteins. These designs succeeded
in eliciting some antibodies with similar binding modes of
2F5 with the peptide epitope but with shorter CDR-H3 loops

than 2F5. Despite this apparent success, the resulting anti-
bodies did not neutralize the virus in an experimental test
probably due to the lack of a long CDR-H3 loop with the ap-
propriate hydrophobic nature. However, crystal structures
demonstrated that the elicited antibodies induced the desired
conformational change of the HIV epitope, which is encour-
aging for computational immunogen design based on epitope
scaffolds already existing in the PDB. They also suggested a
correlation between epitope flexibility and immunogenicity
based on the structures obtained.

In a related study, Lapelosa et al. (2009, 2010) analyzed
the MPER epitope with human rhinovirus (HRV) scaffolds
using replica exchange molecular dynamics (REMD) simula-
tion techniques with an implicit solvent model. Their inten-
tion was to identify the conformational preferences of the
epitope, which are considered to be recognized by 2F5 anti-
body, and to identify the virus scaffold that maximizes the
epitope exposure to solvent. They proposed a structural
model of the induced antibody and HRV complex. This
model was then used for further design of virus constructs.
Using a focused library, the anchor of each end of the 2F5
epitope in the modeled HRV sequence was optimized, and
the binding affinity of the optimized models was evaluated
experimentally. Subsequently, the authors used REMD simu-
lations of the optimized models to show a correlation
between the binding affinity and the conformational prefer-
ences of the epitope, showing that conformations that closely
mimicked ones in crystal structures displayed high affinity,
confirming the validity of their proposed computational
model and the strategy used.

Another NAb that recognizes the MPER of gp41 is the
4E10 antibody. Correia et al. (2010b) designed an epitope
scaffold based on the binding mode of this antibody, again
by using Rosetta. They searched for appropriate backbone
scaffolds from the PDB, and designed the amino acid
sequences with the goal of designing scaffolds that are
soluble and stable with the epitope peptide in solution. Their
subsequent experimental validation showed that the designed
proteins consisting of the MPER epitope and the scaffolds
bind to 4E10 with higher affinities (from pM to nM levels)
compared with only the MPER peptide epitope itself (nM
level). Then, they determined the crystal structures, demon-
strating the similarity between the inserted epitope in the
scaffold and the epitope recognized by 4E10 in the anti-
body–peptide crystal structures. Based on these designed
chimeric proteins, they also proposed two distinct computa-
tional technologies: flexible backbone remodeling and resur-
facing (Correia et al., 2010a). These methods were used to
modify the structure of the designed proteins with the goal
of the minimizing immunogenicity while retaining the
thermal stability, solubility and high affinity toward cognate
antibody obtained in the earlier study (Correia et al., 2010b).
By using the backbone remodeling method, a globular
domain, which assumes a–b–a topology, of the designed
protein scaffold was trimmed, then the sequence of the
remaining scaffold was designed by the resurfacing method
or side chain replacement, resulting in a chimeric protein
having a better melting temperature and a similar affinity to
the parent protein. They also determined the crystal structure
of the re-designed proteins, showing close agreement
between the structure and the model. However they also
pointed out that the loop region that was replaced from a
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domain in the parent protein in the remodeling stage had a
slightly different backbone conformation from the crystal
structure, which results in packing errors in the region,
demonstrating that even a small displacement of a backbone
conformation could lead to an inaccurate prediction.

In a related study, Oomen et al. (2003) designed an immu-
nogen by synthesizing cyclic peptides, which reduce the
peptide flexibility and mimic the b-turn conformation in the
peptide–antibody complex structure, as an alternative to
using an epitope scaffold to elicit an antibody. They assessed
conformational preferences and the stability of four designed
peptides using MD simulations. The most stable and the
least flexible peptide evaluated by the simulations actually
induced a cross-reactive potent antibody in an experiment.

In the studies discussed here, the common strategy for
antigen designs is to produce epitope mimics of the NAbs
identified from crystal structures, and a challenge is maxi-
mizing the exposure of the mimics, which is supposed to be
recognized by an antibody, to solvent in a certain protein en-
vironment. Advanced computational techniques have been
utilized in this context. Currently, a huge number of protein
structures are available in public, and the number is still
growing due to the structural genomics efforts. Hence search-
ing for a protein scaffold from the structural database seems
to be a promising approach for rational vaccine designs. De
novo scaffolds for protein design were also proposed
(MacDonald et al., 2010). In addition, MD simulations are
required to analyze conformational preferences of epitopes in
solution, ideally in conjunction with experiments such as
NMR.

Looking forward, we envision that computational methods
may be particularly useful to study antibody–peptide com-
plexes, that is, the recognition of sequential epitopes. The
peptides often assume b-turn conformations in an antigen-
binding site, and the recognition mechanism seems to
depend on the length of CDR-H3 (Bates et al., 1998).
Considering their smaller size compared with protein anti-
gens, the evaluation of free energy of binding for designed
peptides by computer simulations is a promising approach
for rational vaccine design. Furthermore, information con-
cerning the behavior of mutant viral antigens may be quite
useful for rational vaccine design since pandemic could
occur because of antigenic drifts. Structures and simulations
of antibody–antigen complexes provide essential information
to analyze such behavior.

Perspectives and concluding remarks

Recent advances in computational technologies combined
with dramatic advances in high-throughput technology
(Reddy and Georgiou, 2011) have the potential to make im-
portant contributions to the development of biological thera-
peutics, including those based on antibodies and antigens. A
central challenge is accurately predicting antibody structures
from their sequences, and significant progress has been made
toward this goal. The prediction of antibody–antigen-binding
modes, by computational protein–protein docking, has also
made great progress, especially by exploiting knowledge of
the antigen-binding site and experimental data. Accurate pre-
diction of epitopes and paratopes should further improve
accuracy. Finally, we have reviewed several examples of
computational affinity maturation (Clark et al., 2006a;

Lippow et al., 2007; Farady et al., 2009), all of which have
taken advantage of crystal structures of antibody–antigen
complexes in the PDB except for Barderas et al. (2008).

However, there are still no striking examples where all of
these computational capabilities have been combined, i.e.
both an antibody and an antigen are modeled from their
sequences, their binding mode is predicted by protein-protein
docking, and then the resultant model is used to predict
mutations that improve binding affinity and/or specificity. In
such an ambitious undertaking, relatively small errors in
each step could be amplified in subsequent steps. However,
we anticipate continuing improvements in all of these com-
putational approaches; for example, the recent emergence of
methods for incorporating backbone flexibility in protein
docking and protein engineering will be potentially useful in
computational antibody design. Treating loop flexibility is
particularly important in antibody design because large con-
formational changes can occur upon antigen binding, and
affinity maturation can modulate both the conformations and
dynamics of the CDR loops.

Beyond improvements in conformational sampling
methods, continuing improvements in ‘scoring functions’
used to estimate free energies are needed. Approximations in
the scoring function can lead to deleterious effects, especial-
ly when using implicit solvent models, and quantitative esti-
mations of free energy changes upon antigen binding are still
very difficult, even in the case of small ligands. Most current
force fields for protein design include many heuristic terms.
Although qualitative estimations might be sufficient for some
applications, rigorous free energy evaluations explicitly in-
cluding the contributions of conformational entropy and
solvent polarization are challenging issues in computational
chemistry and biology. Knowledge-based potentials will
likely also continue to improve as the number of protein
structures and sequences continues to increase exponentially.

In terms of improvements of the properties in antibodies,
such as immunogenicity and solubility, sequence-based
methods have shown promise in antibody engineering
(Abhinandan and Martin, 2007; David et al., 2010; Thullier
et al., 2010), in addition to structure-based methods. The
sequence-based methods can take advantage of the rapid
advances in sequencing technology.

Structure-based vaccine design approaches will also be
enhanced with increasing knowledge of antibody–antigen
structures as well as improved computational methods.
Scaffold-based vaccine design is a promising approach.
Although high specificity is desired for an antibody drug, the
importance of poly-reactivity of antibodies as a vaccine can-
didate has been pointed out (Dimitrov et al., 2011) because
such antibodies might accommodate high variability of
single antigens. Thus, understanding the origins of high spe-
cificity and cross-reactivity of antibodies is important in
terms of developing protein therapeutics, and further struc-
tural analyses of antibody–antigen complex structures should
provide hints to elucidate such mechanisms.

Overall, although there has been much progress in under-
standing sequence–structure relationships in antibodies, there
is still much to learn, especially regarding the mechanisms
of antibody affinity maturation, such as the relationship
between somatic mutations and conformational heterogen-
eity. Other types of protein scaffolds have been explored as
an alternative to antibodies, and computational methods
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are likely to play an important role in these undertakings.
Another area that requires greater attention is the role of
water molecules in antibody–antigen interfaces (Yokota
et al., 2003). Water molecules can improve the complimen-
tary of the interface as seen in the case of affinity matura-
tions by somatic mutations. Explicit treatment of water
molecules in the design process will require novel theories or
technologies, and some such efforts are underway (Jiang
et al., 2005; Schymkowitz et al., 2005). Finally, it will be
challenging to simultaneously optimize binding affinity,
specificity, stability, solubility and other properties needed
for a successful therapeutic protein.
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