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Background: Cluster analysis is a core task in modern data-centric computation. Algorithmic choice is driven by
factors such as data size and heterogeneity, the similarity measures employed, and the type of clusters sought.
Familiarity and mere preference often play a significant role as well. Comparisons between clustering algorithms tend
to focus on cluster quality. Such comparisons are complicated by the fact that algorithms often have multiple settings
that can affect the clusters produced. Such a setting may represent, for example, a preset variable, a parameter of
interest, or various sorts of initial assignments. A question of interest then is this: to what degree do the clusters

Results: This work introduces a new metric, termed simply “robustness”, designed to answer that question.
Robustness is an easily-interpretable measure of the propensity of a clustering algorithm to maintain output
coherence over a range of settings. The robustness of eleven popular clustering algorithms is evaluated over some
two dozen publicly available mRNA expression microarray datasets. Given their straightforwardness and predictability,
hierarchical methods generally exhibited the highest robustness on most datasets. Of the more complex strategies,
the paraclique algorithm yielded consistently higher robustness than other algorithms tested, approaching and even
surpassing hierarchical methods on several datasets. Other techniques exhibited mixed robustness, with no clear

Conclusions: Robustness provides a simple and intuitive measure of the stability and predictability of a clustering
algorithm. It can be a useful tool to aid both in algorithm selection and in deciding how much effort to devote to

Background

Clustering algorithms are generally used to classify a
set of objects into subsets using some measure of
similarity between each object pair. Comparisons between
clustering algorithms typically focus on the quality of
clusters produced, as measured against either a known
classification scheme or against some theoretical stan-
dards [1-3]. In the former case, varying criteria for
what constitutes a meritorious cluster are often applied,
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employing domain-specific knowledge such as ontological
enrichment [4, 5], geographical alignment [6] or legacy
delineation [7]. In the latter case, statistical quality met-
rics are most often used, with cluster density something of
a gold standard. Examples include modularity [8], which
measures the density of connections within clusters versus
density of connections between clusters, clustering coef-
ficient [9, 10], which gives the proportion of triplets for
which transitivity holds, and silhouette coefficient [11],
which is based on how similar a node is to its own clus-
ter as compared to other clusters. Additional metrics
include the adjusted rand index [12], homogeneity [13],
completeness [14], V-measure [15], and adjusted mutual
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information [16]. No single algorithm is of course likely to
perform best over every metric.

In this paper, we consider algorithmic comparisons
from another perspective. Rather than attempt to mea-
sure the quality or correctness of the clusters themselves,
we focus instead on the sensitivity of an algorithm’s
clusters to changes in its various settings. The metric we
introduce, which we term “robustness’, provides a rela-
tively simple measure of a clustering algorithm’s stability
over a range of these settings. We note that robustness
should not be confused with other clustering appraisals
such as correctness or resistance to noise, which are
studied elsewhere in the literature. And while it might
seem tempting to try to combine multiple notions, such
as accuracy and robustness, into some single metric, the
resultant analysis is fraught with complexity and well
beyond the scope of this work.

In order to demonstrate the utility of robustness,
we chose transcriptomic data publicly available from
the Gene Expression Omnibus (GEO) [17]. This is
a relevant and logical choice given current technol-
ogy because of gene co-expression data’s ready abun-
dance, availability and standardized format, and because
clustering of this sort of data is such an overwhelm-
ingly common task in the research community’s quest
to discover and delineate putative molecular response
networks.

Methods

Algorithms

Clustering algorithms typically have one or more
adjustable settings. For instance, such a setting may
denote a preset variable, a relevant parameter, or sets of
initial assignments. Sometimes the only setting available
is the number of clusters desired. To make the scope
of this work manageable, and to keep comparisons as
equitable as possible, we only consider algorithms that
produce non-overlapping clusters, and that are unsu-
pervised, in the sense that classes into which objects
are clustered are not defined in advance. (We deviate
from this very slightly in the case of Nearest Neighbor
Networks (NNN) [18], which allows a pair of clusters
to share a single element.) For each method consid-
ered we selected a range of settings commonly used in
practice.

Different algorithms may produce (sometimes vastly)
different clusters, as may different settings of the same
algorithm. In a previous comparison of genome-scale
clustering algorithms [1], we focused on cluster enrich-
ment, using Jaccard similarity with known Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) annotation sets as a measure of cluster quality. In
that study, graph-theoretical methods outperformed con-
ventional methods by a wide margin. A natural question
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then is whether something along the same line may hold
for robustness.

Robustness

We seek to define a measure of robustness that can pro-
vide a single, easily-interpretable metric that captures the
tendency of a clustering algorithm to keep pairs of objects
together over a range of settings. Indeed, each algorithm
may have its own optimum settings. We did not try to
isolate such settings, but rather to measure an algorithm’s
sensitivity to parameter variations. Let us consider the
results of a single clustering algorithm (ALG). If in any run
ALG assigns a pair P of objects to at least one cluster, then
we define P’s robustness to be the proportion of clustering
runs in which P appears together in any cluster. Thus, for
example, if genes A and B appear together (in any cluster)
in 17 of 23 clustering runs, then the score for that pair is
17 / 23 = 0.7391. We extend this from P to ALG by defin-
ing ALG’s robustness, R, as the average score of all such
candidates for P. In this fashion, robustness is measured
for one algorithm and for one dataset, but over multiple
runs (setting values).

Formally, we therefore set R = ¢/(dr), where ¢ denotes
the total number of (not necessarily distinct) pairs of
objects that appear together in some cluster summed over
all runs, d represents the number of distinct pairs of
objects that appear together in some cluster produced by
some run, and r is the number of times the clustering
algorithm was run, each run using a different value for
some setting of interest. In other words, robustness is the
proportion of clustering runs in which a pair of entities
appears together in some cluster, given that they appear
together in a cluster in at least one run, averaged over all
such pairs. R thus lies in the interval (0, 1] and, when all
else is equal, we seek algorithms with R values as high as
possible. Note that the effect of a pair appearing (or fail-
ing to appear) in a cluster is typically minor as it only
reduces by one the denominator in the above formula. In
order to compare robustness values fairly, we were care-
ful to select a range of values that produced clusters of
the same scale. The number of clusters was not a consid-
eration, except of course for algorithms such as k-means
where the number of clusters is itself the parameter being
varied.

We illustrate the notion of robustness with an ele-
mentary example based on three runs of some arbi-
trary clustering algorithm. As shown in Fig. 1, pair (A,B)
appears in some cluster in all three runs. Its robust-
ness score is therefore 3/3. Pair (C,D), on the other
hand, appears in some cluster in only two of three
runs. Its score is thus 2/3. Robustness scores for all
pairs that appear in at least one cluster are as follows:
(A,B): 3/3; (A,C): 1/3; (A,D): 1/3; (B,C): 1/3; (B,D): 1/3;
(C,D): 2/3; (C,E): 1/3; (D,F): 1/3; and (E,F): 2/3. We now
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simply average these scores to compute R, making the
robustness of the algorithm that produced these clusters
0.481.

We tested several sorts of clustering algorithms, from
conventional hierarchical clustering [19], to partitioning
methods such as k-means [20] and Quality Threshold
Clustering (QT Clustering) [21], to graph-based meth-
ods such as paraclique [22, 23], CLuster Identification
via Connectivity Kernels (CLICK) [24], NNN [18] and
Weighted Correlation Network Analysis (WGCNA) [25].
We also included Self-Organizing Maps (SOM) [26], a
neural network method. Hierarchical clustering assigns
items to clusters using a measure of similarity between
clusters. Assignments are irrevocable; once an item has
been placed in a cluster, it will remain in that cluster.
Hierarchical clustering generally comes in two variants:
bottom-up (agglomerative), which starts with size one
clusters and iteratively combines clusters until only one
is left, and top-down, which begins with all genes in one
cluster, and then iteratively divides clusters until all clus-
ters are size one. Agglomerative clustering is the simpler
and more popular of the two, needing only a linkage cri-
terion to compute cluster similarity. We therefore tested
the agglomerative approach with four such criteria: aver-
age linkage [27], complete linkage [28], McQuitty [29], and
Ward [30].

Graph-based methods model items as vertices, with
edges between items determined based again on some
sort of similarity measure. To create graphs for transcrip-
tomic data on which to run the paraclique method, we
constructed co-expression networks as described in [31].
Genes were thus represented by vertices, while edges were
weighted by Pearson product-moment correlation coeffi-
cients. A threshold was then applied to the network, so
that an edge was retained if and only if its weight was
at or above this threshold. In some circles, it has been
fashionable to choose an arbitrary threshold, for exam-
ple 0.85, based on previous experience [32—34]. We prefer
a more mathematical and unbiased treatment based on
spectral graph theory, whereby eigenvalues are computed
over a range of potential thresholds, with the final thresh-
old set using inflection points in network topology [35].
After thresholding, the paraclique method employs clique
to help find extremely densely-connected subgraphs, but
ones that may be missing a small number of edges [22, 23].
To generate such a cluster, paraclique isolates a maximum
clique, then uses a controlled strategy to combine other
vertices with high connectivity. Paraclique vertices are
then removed from the graph, and the process repeated
to find subsequent paraclique clusters. CLICK uses a
graph-based statistical method to identify kernels and
then expands them into full clusters with several heuris-
tic approaches [24]. NNN, like paraclique, depends upon
finding cliques, but only cliques of a specified (typically
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small) size. It edits a graph by connecting each vertex
only to the k most similar other vertices according to
some metric such as Pearson correlation, where k is a
user-selected value. NNN merges overlapping cliques in
the resulting graph to form an initial set of networks.
It then divides the preliminary network at any existing
articulation points, and ensures that no cluster is larger
than half the number of input vertices. WGCNA oper-
ates on weighted networks using a soft threshold, raising
the similarity matrix to a user-selected power in order
to calculate extended adjacencies [25]. It then identifies
gene modules using average linkage hierarchical cluster-
ing and dynamic tree cut methods. K-means clustering
[20, 36] randomly selects k centroids and assigns genes to
the nearest centroid, iteratively reassigning and recalculat-
ing centroids until it converges. QT Clustering is a method
developed specifically for gene expression data [21]. It
builds a cluster for each gene, outputs the largest cluster,
then removes these genes and repeats the process until no
genes remain. SOM is a machine learning approach that
groups genes using unsupervised neural networks. SOM
repeatedly assigns genes to the most similar node until the
algorithm converges [26].

In all, we tested four hierarchical methods, four graph-
based methods, two partitioning methods, and one neural
network method. We used publicly available versions of
each technique. Most are available in R [37]. Table 1 pro-
vides a summary, along with the setting we varied for each
algorithm.

Data

In previous work [1] we used Saccharomyces cerevisiae
data from [38] to test cluster quality. In this paper,
we expand the test suite to 24 gene co-expression
datasets from GEO, including the species Drosophila
melanogaster, Escherichia coli, Mus musculus and Penicil-
lium chrysogenum. Data from these organisms have been
well-studied and annotated. All data are log2 transformed.
Table 2 provides an overview of these datasets, along with
the threshold selected using the aforementioned spectral
techniques.

Comparisons

To compare algorithmic robustness, we altered a common
setting for each method as specified in Table 1, select-
ing a range of values that produced clusters of the same
scale. We transformed the myriad of output formats to
simple cluster/gene membership lists. We also controlled
1, the number of runs (values for each setting), to reduce
its influence on our results. Runtime performance was
not a consideration, although one algorithm, QT Cluster-
ing, never finished on dataset GDS5010, even after two
weeks. We did not therefore obtain QT Clustering robust-
ness for that input. The robustness of each algorithm on
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Run 3 ABCD @
Fig. 1 Clusters produced by three runs of a clustering algorithm

each dataset was calculated for all runs over the range of
settings.

Three algorithms (k-means clustering, hierarchical clus-
tering and SOM) take the desired number of clusters as
input. We thus selected this as the most appropriate set-
ting to alter, and tested values from 200 to 300 so as
to produce a range of average cluster sizes in line with
the other algorithms. For example, hierarchical clustering
produces a tree of clusters, and one obtains a list of dis-
joint clusters by choosing an articulation point in the tree.
For SOM, we transformed the number of clusters to grid
size. For example, when using 35 as the number of clusters
(for dataset GDS344), the grid size was 5*7. We tested five
grid sizes and two grid types (rectangular and hexagonal)
for each dataset. We applied ten different powers (2,4, 6, 8,
10, 14, 18, 22, 26 and 30) for WGCNA. For QT Clustering,
we picked up ten different maximum cluster diameters
from 0.05 to 0.5 with interval 0.05. For NNN, we chose
ten different minimum neighborhood sizes ranging from
16 to 25. For CLICK, we applied nine homogeneity values
(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9). For paraclique,

Table 1 Clustering methods tested for robustness

Algorithm Type Setting Implementation
Average Hierarchical Number of clusters R3.23
Complete Hierarchical Number of clusters R323
Mcquitty Hierarchical Number of clusters R3.23
Ward Hierarchical Number of clusters R3.23
CLICK Graph-based  Cluster homogeneity — Expander4
NNN Graph-based ~ Min neighborhood size Java
Paraclique Graph-based  Starting clique C++
WGCNA Graph-based  Power R3.23
K-means Partitioning Number of clusters R3.23

QT Clustering Partitioning Max cluster diameter  R3.2.3
SOM Neural network Grid type/size R3.23

we created graphs in the usual fashion, by calculating all
pairwise correlations and placing edges between pairs cor-
related at or above a selected threshold. We controlled the
number of paracliques generated so that they are in the
same scale with other algorithms. We used the choice of
maximum clique as the setting to vary. Dataset GDS772,
for example, at threshold 0.94, resulted in a graph with
nine maximum cliques. And so it was these nine cliques
that provided variation. As can be seen from Table 2,
over all inputs the threshold selected by spectral methods
ranged from 0.8 to 0.95.

Table 2 Gene expression datasets tested in this study

Dataset Organism Threshold  Edges  Vertices
GDS516 Drosophila melanogaster ~ 0.89 3980 195322
GDS2485  Drosophila melanogaster  0.91 4604 30412
GDS2504  Drosophila melanogaster  0.81 7888 191715
GDS2674  Drosophila melanogaster  0.95 3334 5820
GDS1842  Drosophila melanogaster ~ 0.91 2307 4589
GDS653 Drosophila melanogaster ~ 0.95 1688 3368
GDS664 Drosophila melanogaster 0.8 14008 2298635
GDS1399  Escherichia coli 095 2880 5614
GDS5160  Escherichia coli 094 4826 74819
GDS5162  Escherichia coli 0.95 5038 293061
GDS5010  Mus musculus 0.9 10269 120907
GDS3870  Penicillium chrysogenum  0.94 6826 62431
GDS344 Saccharomyces cerevisiae  0.95 3071 6303
GDS772 Saccharomyces cerevisiae  0.94 1463 3785
GDS777 Saccharomyces cerevisiae 091 2244 11916
GDS1013  Saccharomyces cerevisiae  0.81 5312 555852
GDS1103  Saccharomyces cerevisiae  0.95 4215 38139
GDS1534  Saccharomyces cerevisiae 0.8 9335 1470003
GDS1674  Saccharomyces cerevisiae  0.93 3839 11904
GDS2267  Saccharomyces cerevisiae  0.83 4676 302104
GDS2508  Saccharomyces cerevisiae 0.9 3069 10485
GDS2663  Saccharomyces cerevisiae 0.8 9335 2617139
GDS3332  Saccharomyces cerevisiae  0.86 7290 572118
GDS2969  Saccharomyces cerevisiae  0.95 1679 5206
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Results

Figure 2 shows robustness results for the four hierarchi-
cal algorithms, as tested across the 24 datasets previously
described. Because all have robustness above 0.72, we
averaged their scores to simplify Fig. 3, which shows
robustness results for all algorithms tested. As can be
seen from this figure, hierarchical clustering and para-
clique exhibit higher robustness than other algorithms. In
fact, hierarchical clustering and paraclique have average
robustness scores above 0.87, while all others are below
0.5. Figure 4 summarizes the results into an average
robustness of each algorithm.

We also calculated the coefficient of variation (CV), the
ratio of the standard deviation to the mean, as a measure
of the stability of an algorithm’s robustness. Hierarchical
clustering exhibits the lowest CV, meaning that its robust-
ness varies little across different datasets, whereas CLICK
exhibits the highest CV. See Fig. 5.

Discussion

It is not unexpected that hierarchical methods display
the highest overall robustness. After all, results thereby
produced form a hierarchical tree of successively merged
clusters, so that varying the number of clusters simply
cuts the tree at a different height, while the tree itself
does not change. Once a pair of items appears together
in some cluster, any decrease in the number of clusters
on subsequent runs will continue to place that pair into
the same cluster. One might expect similar behavior from
WGCNA, since it uses hierarchical clustering to identify
modules. Because WGCNA uses soft-power to construct
its network, however, the topology of each weighted net-
work changes with different powers, so that item pairs are
not at all stable. For k-means, as one alters the number of
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clusters (and hence centroids), the centroid with which a
particular item is associated can change, while not chang-
ing an item’s neighbors’ centroids. Thus, items often shift
to different clusters as the number of clusters changes.
SOM and QT Clustering behave in similar fashion, in that
grid size has a large effect on SOM while the partitioning
performed by QT Clustering can divide pairs of formerly
clustered items. Of the graph-based methods, CLICK and
NNN first try to find a base cluster and then absorb
other items into it. The absorbed items may change with
different settings, affecting the clusters generated. For par-
aclique, the high robustness with different starting cliques
is likely due in part to the fact that many of these cliques
have significant overlap [39], at least on transcriptomic
data. Many gene pairs may thus be included in a given
cluster, no matter which maximum clique is selected. We
have also observed quite similar overlap in graphs derived
from many diverse types of data, including for example
that derived from social and communications networks.

It is probably worth noting how robustness compares
to accuracy and sensitivity [40], two popular cluster-
ing metrics. Accuracy measures faithfulness to ground
truth. We make no assumptions, however, that ground
truth is available or that it can even be known. Sensi-
tivity most commonly refers to random noise or out-
liers. Robustness is not really related to either. A clus-
tering algorithm could be highly sensitive to random
noise, for example, and still have either high or low
robustness.

This brings us to interpretation. How is the user to make
sense of all this information? In our opinion, an algorithm
with high robustness is generally preferable whenever it is
difficult to determine optimum parameter settings. This
is of course because its results are unlikely to vary greatly
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across an entire range of these settings. As a case in point,
if ground truth is largely unknown, or if hierarchical struc-
ture is implicit in the data under study, then hierarchical
clustering can serve at least as a good starting candidate
given its excellent robustness, relative simplicity and intu-
itive appeal. For more complex clustering tasks, however,
we would endorse instead a graph-theoretical method
such as paraclique due its solid overall robustness and its
much improved potential for biological fidelity [1].

Conclusions

We have introduced a new clustering metric, termed
“robustness’, in an effort to provide the research commu-
nity with a simple, intuitive and informative measure of
the stability and predictability of a clustering algorithm’s
behavior. To demonstrate its use, we have employed a suite
of transcriptomic datasets as an unbiased testbed for algo-
rithmic variation and evaluation. Widely-available data
such as this provides a well-understood basis on which to
introduce, explain and illustrate the use of the robustness
metric. We hasten to add that robustness can, quite nat-
urally, be applied to virtually any sort of omics data, or in
fact to practically any sort of data on which clustering may
be performed.

Simple hierarchical clustering displayed the highest
overall robustness, due no doubt to the rigidly fixed tree
structure of its clusters. Of the more sophisticated meth-
ods tested, only paraclique demonstrated similar robust-
ness, thus demonstrating its resilience to the choice of
starting maximum clique. In practice, one might expect
that selecting such a clique with, say, the highest overall
edge weight would be preferable. And certainly that has
much intuitive appeal. Nevertheless, our results show that
it does not really much seem to matter, at least on data
akin to those we’ve employed here.

Open questions abound. Note, for example, that robust-
ness can be applied to virtually any non-overlapping clus-
tering algorithm. All one needs is a reasonable settings
range. What then of powerful clustering algorithms like
clique? Clique is nonparametric and thus without settings.
And one of its core strengths is actually its propensity
to produce overlapping clusters on biological data (genes,
for example, are very often pleiotropic, and thus likely
to belong to multiple clusters). We are studying these
and other related questions, and observe that for meth-
ods such as clique, in fact for essentially all clustering
methods, an alternate notion of robustness might try to
capture output predictability as the underlying network is
perturbed.

Abbreviations

ALG: A single clustering algorithm; CLICK: Cluster identification via connectivity
kernels; CV: Coefficient of variation; GEO: Gene expression omnibus; GO: Gene
ontology; KEGG: Kyoto encyclopedia of genes and genomes; NNN: Nearest

neighbor networks; QT Clustering: Quality threshold clustering; SOM:
Self-organizing maps; WGCNA: Weighted correlation network analysis
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