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ABSTRACT: The major oil fields are currently in the middle and
late stages of waterflooding. The water channels between the wells
are serious, and the injected water does little effect. The
importance of profile control and water blocking has been
identified. In this paper, the decision-making technique for water
shutoff is investigated by the fuzzy evaluation method, FEM, which
is improved using a random forest, RF, classification model. A
machine learning random forest algorithm was developed to
identify candidate wells and to predict the well performance for
water shutoff operation. A data set consisting of 21 production
wells with three-year production history is used, where out of the mentioned well data, 70% of them are implemented for training
and the remaining are used for testing the model. After fitting the model, the new weights for the factors are established and
decision-making is made. Accordingly, 16 wells out of 21 wells are selected by the FEM where 8 wells out of 21 wells are selected by
the new factor weight created by RF for water shutoff. A numerical simulation model is established to plug the selected wells by both
methods after which the influence of plugging on water cut, daily oil production, and cumulative oil production is compared. The
paper shows that the reservoir had a better performance after eight wells were selected using a new weighting system created by RF
instead of the 16 wells that were selected using the FEM model. The paper also states that the new weighting model’s accuracy
improved the decision-making abilities of the wells.

1. INTRODUCTION

The world’s oil reserves are widely dependent on the
exploitation and production of these resources. The various
economic sectors rely on these commodities for their growth.
The management of these reserves is one of the most critical
factors that can affect the profitability of the oil industry.1 As
the oil reservoir’s production rate is gradually declining,
enhanced oil recovery (EOR) techniques are becoming more
prevalent in the oil industry. These techniques can help
maintain the reservoir’s production capacity.2,3

It is very simplistic to judge the need for plugging an oil well
based on the water cut.4 From a block perspective, when
multiple oil wells produce water at the same time, due to
different reasons for water discharge, not every water well
needs to be blocked. Thus, systematic well selection is
required. The traditional method of blindly selecting wells
based on experience sometimes exacerbates the water
production of other oil wells and worsens the water production
of oil wells throughout the block.5 Hence, there is an urgent
need to develop an accurate and simple well plugging method.
A water shutoff system entirely extracts the remaining oil and
can effectively enhance oil recovery.6,7 A series of decision-
making systems are required for water shutoff in one way to
utilize the maximum possible remaining oil and in another way
to facilitate the procedure for optimization.8

There are two main methods for selecting wells for plugging.
One is through qualitative analysis using the field experience,9

while the other is with decision-making existing software. The
fuzzy math decision-making method is a commonly used
method in the oil and gas industry. It involves using a series of
indicators to make well selection decisions.10−12 The key
component of the method is the weight factor calculation.13

Liu et al.14 utilized the software called RS to optimize multiple
well profile controls and water shutoff treatments. This
software combines reservoir engineering and numerical
modeling to provide a simple and efficient way to select and
optimize wells.13

The fuzzy clustering algorithm is a type of data collection
method that was used by Jiang et al.15 for early warning well
selection decisions. This study presents an improved fuzzy
clustering algorithm that can provide better results in terms of
reducing the objective functions. During the high water cut
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stage, wells with similar characteristics can be tuned to have a
profile. The clustering algorithm can then be used to identify
the similarities among different types of wells. Xia et al.8

present a clustering model that can be used to select well
candidates for plugging to the actual oilfield. Li16 has used the
theory of solving matrix in the fuzzy mathematics method to
solve statistical weighting.17,18 The pressure index decision-
making technique was used by Wang19 and other researchers
to evaluate the candidate well selection that they need for
plugging or not.20−22 The technique was developed using the
transient well test theory. Generally, well selection can be done
by analyzing the well bore problem, well bore evaluation, and
decision-making techniques.23

In this paper, first, the candidate wells are selected for water
shutoff through the fuzzy evaluation method, FEM, and the
decision-making technique has been established. In the FEM,
the factors affecting the judgment of well plugging have been
created. The weight system for the created factors has been
considered. To achieve the decision-making for a well-plugging
result, the evaluation set has been made. Determination of the
weight of each factor, which is a significant part of the
calculation, can be a great challenge in the FEM. In the FEM,
there is no sufficient mechanism to calculate the accurate
weighting system for each factor. In this method, the factor
weight will be taken subjectively. As weight is an important
part of this evaluation, it will heavily influence the final
decision-making result. Thus, the results of well selection of
this kind of weighting system can be inaccurate.
In order to increase the correctness of well selection

decision-making, the machine learning random forest RF
algorithm is used to create a high-accuracy factor weight. In the
RF calculation, the same factors used in the fuzzy evaluation
method (FEM) are considered as features and the decision
result obtained from this calculation is used as a label. In a
machine learning RF algorithm, the weight of the factors can
be calculated and a high-accuracy weighing system may be
provided. As the weighting system is provided by the machine,
it could be accurate. Using the RF algorithm, the factors are
improved by the historical production data of each well.

In the last part of this paper, a numerical simulation study is
considered to verify the new method contrast. The actual
production rate of three simulated models is compared by a
numerical simulation. A base model that has no wells are
selected for plugging and normally the production process is
resumed until 2040; 16 wells selected by the FEM are plugged
models, and 8 wells selected by the weight of new factor
created by the RF model are plugged. Finally, the weight
calculation method proposed in this paper is compared with
the entropy method presented by Weiguo and Gichong24 in
2009.

2. MATERIALS AND METHODS

In this paper, the random forest (RF) machine learning
method is selected to create the factor weight in order to
develop the decision-making of production wells for water
shutoff. In RF, the same factors, the pressure build-up decision-
making factor value (PBD), rising index of oil well water cut
(WI), and residual oil saturation (Sor), used in the fuzzy
evaluation method (FEM) were considered as variables and
the outcome obtained from the FEM was measured as a label.
The purpose of using this algorithm is to generate a new factor
weight, so it can enhance the accuracy of the decision-making
of well selection. The result achieved by the FEM can be
inaccurate; however, using RF, the machine will calculate the
importance of the features. As the factor weight or the feature
importance is a part of the calculation, it will definitely affect
the final result. In machine learning beyond the methods,
preparing a result can be more complicated in order to apply it
to the oil and gas field.25 Through the random selection of
both the input data and the variables, the RF is able to generate
decision trees. During the prediction procedure, those features
that do not imply any significance of the final result can be
ignored.26

Figure 1 illustrates the creation process of the new factor
weight by the RF classification model for a decision-making
study. The process starts from establishing a factor, creating a
weight set, to creating an evaluation set through the FEM.
Using the FEM, a comprehensive evaluation is conducted and
decision-making is established. The next step is using RF to

Figure 1. Diagram of factor weight creation and the decision-making procedure of the RF model.
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create a new weight for the factors of each well. To achieve an
accurate weight result for each well, the historical production
of the wells is also used. The production history data of 3 years
are used for this calculation. The PBD, WI, and Sor values are
created for 36 months by using geologic and production data
provided from the oilfield. The well selection results are
determined for each month by the FEM. By using this monthly
result and the factor value, the new factor weight is calculated
by RF as shown in Table 2.
After obtaining the new weight results from the RF

algorithm, the comprehensive evaluation is applied to them
and a final decision-making result has been conducted. The
four stages considered in this study are as follows: (1) the
preparation of the dataset for the FEM, (2) prediction of the
data by RF, (3) computation of the factor weight (feature
importance), and (4) comprehensive evaluation of weight and
factors in order to get the final decision result. Based on the
calculated parameters, the factors’ data, and the decision-
making result by the FEM, a table is created in an MS Excel
format as illustrated in Table 2. The data table contains three
indicators, PBD, WI, and Sor values, used as features, while the
decision-making result via the FEM is used as a label (remark).
For calculations, the Python environment has been chosen.
The choice of Python has been based on its extensive
capabilities for working with data arrays as matrices, provided
by the NumPy library.27 To work on exporting and importing
data to the MS Excel format, the Pandas library has been
used.28,29 RF uses the implementation of scikit-learn.30,31 The
performance of the libraries used fell within the requirements
of the “on-demand” computing time. These calculations have
been performed on a 64-bit windows PC.
2.1. Decision-Making by the FEM. In the FEM, to make

a comprehensive decision, the index parameters should be
normalized, the degree of membership is introduced to
represent the size of each decision factor, and the membership
function is selected using a trapezoidal distribution.12,14,15,19,32

The greater the value of residual oil saturation Sor and oil well
water cut index WI, the more the oil wells need to be plugged.
Thus, the above two factors are selected to be expressed as a
half-trapezoid distribution. The oil wells with a larger pressure
build-up value, PBD, do not need to block water, so they are
expressed by a half-trapezoidal distribution.16

2.1.1. Establishing Factor Sets. A set of three factors that
affect the choice of water blocking of production wells are
considered as follows:

=U PBD WI S( , , )or (1)

In the formula, PBD is the pressure build-up decision-
making factor, WI is the rising index of oil well water cut, and
-Sor is the residual oil saturation.
From Horner’s33 analysis method for the pressure build-up

well test, eq 2 was obtained as follows.
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In the formula, Pws (t) is the bottom hole pressure at the
time of closing the well, MPa; Pi is the bottom hole pressure, i
is infinite shut-in time, MPa; q is the oil well output, m3/d; μ is
the underground crude oil viscosity, mPa·s; K is the oil
absolute permeability of the reservoir, μm2; h is the effective
thickness of the oil layer, m; T is the stable production time of
the oil well, h.

Taking Pws (t) as the ordinate,
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is the x axis, and a

semi-log Horner curve is obtained, whose slope is k and the
intercept is Pi. In 1956, Perrine34 proposed the pressure theory
to describe the multiphase flow law of water-filled reservoirs.
The concept of the two-phase fluid flow law is the same as the
single-phase flow law. When the oil well is shut in for a short
time, the bottom hole pressure drop can be replaced by the
actual pressure drop. This eliminates the need for the skin
effect calculation as the following eq 3.
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In the formula, Pwf (0) is the instantaneous bottom hole
pressure in the closed well, MPa; λt is the sum of the fluidity of
the two-phase fluid, μm2/(mPa·s); η is the function of the
boundary effect of a well and of the production time; ϕ is the
porosity of the reservoir, decimal; Ct is the effective elastic
compression coefficient, MPa−1; rw is the radius of the oil well,
m; B is the ground layer volume coefficient, m3/m3.
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In the formula, f w is the water content, decimal; qw and qo are
the water flow and oil flow through the cross-sectional area of
the seepage through the rock layer, m3/d, respectively; Kw and
Ko are the effective permeability of the water phase and the oil
phase, μm2, respectively; μw and μo are the viscosity of
formation of water and oil, mPa·s, respectively; Krw and Kro are
the relative permeability of the water phase and the oil phase,
μm2, respectively. From eq 4, the oil relative permeability is
obtained as follows.
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The pressure build-up decision-maker factor or PBD is a
decision index that shows the properties of the fluid and the
formation. It can be obtained by combining the formation and
recovery curve values.
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In the formula, PBD is the pressure build-up decision-
making factor. The PBD value is inversely proportional to the
water permeability, inversely proportional to the effective
thickness of the formation, inversely proportional to the
fluidity of water, and inversely proportional to the coefficient
hKw. The PBD value can be used to select oil wells that need to
be blocked.
From the water cut curves of each oil production well, the

definite integral is solved according to the relevant calculation
software, and the WI value of each oil well is calculated. The
larger the WI value is more water plugging measures are
required for the corresponding oil production well. Oil well
water cut rise index is calculated based on eq 9.

=
∫

WI
f t t

t

( )dt
w0

(9)

where WI is the water cut index of the oil well, f w (t) is the
function of the water cut of the oil well over time, and t is time.
2.1.2. Creating a Weight Set. Different factors have

different importance for the selection of water blocking wells,
so different factor weights are assigned to represent the
importance of the influence of each factor on the selection of
water blocking wells.

= ==A a a a a( ) ( , , ..., )i i
n

n1 1 2 (10)

In the formula, A is the weight set and ai represents the
corresponding weight of each factor (i = 1, 2, ..., n; n is the
dimension of the factor). The weight of each factor should
meet

∑ = ≥a a1, 0i i (11)

In the selection process of water plugging wells, a high
residual oil saturation Sor value is the most important
prerequisite for water plugging oil wells. The rising water cut
index WI is related to the urgency of water plugging oil wells,
and the PBD value is a reference indicator for the selection of
water plugging oil wells.
2.1.3. Creating Evaluation Set. For the single-factor

evaluation set, the following equations are considered:
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In eq 12, rij is the evaluation value of each factor (i = 1, 2, ...,
n and j = 1, 2, ..., m; n and m are integers. m is the number of
factor and n is the dimension of the factor.)
The single factor evaluation matrix is as follows:
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The comprehensive evaluation set B is the product of the
weight set A and the evaluation matrix R.
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In the formula, Bi is the comprehensive evaluation value of
each evaluation factor, that is, the comprehensive decision
value of the oil well. The comprehensive decision-making
average value B̅ of the oil well is obtained by the following
formula:

̅ =
∑ =B

B

m
j
m

j1

(15)

2.1.4. Application of the FEM on the North Liuzan
Oilfield. 2.1.4.1. The North Liuzan Block. The north Liuzan
block is a layered fault-block oil reservoir with a porosity of
20% and a permeability of about 265 × 10−3 μm2. Its
development method is water flooding. The total recoverable
reserves of this oil reservoir are 322.8 × 104 t. This oil reservoir
was discovered in 1990 and has experienced 30 years of
development. The comprehensive water cut rate for the
reservoir was 91.5% in January 2020. The recovery level was
18.2%. The operational area is divided into three parts. In the
north and west, fracking is conducted to enhance production,
while in the central profile control area, the recovery rate is
25.5% and the water cut is 87.1%.

Figure 2. Cross section of the oil-bearing distribution of oil groups IV1 and IV2 in Liubei LB1−6 well groups.
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The middle section of the Liuzan block is mainly composed
of oil layers that are distributed in the two different oil groups,
the IV1 and the IV2. The water content in the horizontal
direction is shown in Figure 2. In Figure 2, the left picture
shows the IV1 oil group and the right picture indicates the IV2
oil group. The average oil saturation of the IV1 oil group is
about 40%, of which the water content in the middle is higher;
the remaining oil potential is small, the remaining oil saturation
in the marginal area is greater, and the profile control and
water shutoff potential are greater. The remaining oil in the
IV2 oil group is widely distributed, but as the eastern part of
the block has a relatively complete well pattern and a good
injection−production relationship, it is better to focus on the
well groups that can form a plugging control combination for
plugging control operations.
2.1.4.2. Decision-Making for Water Shutoff by the FEM.

Through the preliminary analysis of the oil wells in the north
Liuzan block excluding some invalid data wells, 21 oil wells
were identified as candidates for water shutoff. They were L13-
19, L15-18, L17-16, L17-21, LB1-5, LB1-7, LB1-11, LB1-15-
13, LB1-15-20, LB1-15, LB1-17, LB1-19, LB1-21, LB1-23,
LB1-25, LB1-26, LB1-29, LB1-31, LB1-35, LB2-15-21, and
LBJ1-24. Vertically, the production horizons of each well are
not the same and range from 12 to 50 layers. The data of the
pressure build-up decision-making value (PBD) are calculated
from the obtained oilfield production data. Since the
production data of each layer are not the same, each well
must calculate its PBD value separately using porosity,
permeability, saturation, and thickness of the production
layer of each well so that the value can be obtained. In addition
to the aforementioned parameters, the relative permeability
curve is also required to calculate the PBD value. WI, the rising
index of oil wells, is calculated from the water cut obtained
from the production data of each well, and Sor is the residual oil
saturation value obtained from geological data. The oil
production rate, Q, layer thickness, h, pressure build-up factor
value, PBD, the rising index of oil well, WI, and residual oil
saturation, Sor factors are calculated for each well and are
reported in Table 1. The weight value in this calculation is
considered as PBD weight value = 0.3, WI weight value = 0.3,
and Sor weight value = 0.4. The well selection calculation
procedure is explained in Figure 3. In Figure 3, it can be
observed that the final decision-making for a group of three
wells is generated. As the comprehensive decision-making
average value is B̅= 0.591, wells with B values of 0.618 and
0.644 are not selected for water shutoff.
2.2. Factor Weight Creation by RF. Random forests, RF,

are ensemble classifiers that are based on decision trees. They
are constructed using random bootstrapped data.35 The main
idea of the algorithm is to predict the importance of a variable
by looking at how much error of prediction it increases when
out-of-bag data are used.36,37 The RF predicts the importance
of variables by looking at how much the error of prediction
increases when out-of-bag data for that variable are permuted,
while all others are left fixed.36,37 The RF used two parameters,
the number of variables and the number of trees, in order to be
modified.38 The diagram illustrated in Figure 4 explains the
working procedure of the RF algorithm.39

Techniques that predict a target variable and determine a
mark to input features are called feature importance. For
instance, coefficients calculated as part of linear models,
decision trees, permutation importance scores, and statistical
correlation scores can be types of feature importance. The

feature importance scores enable us to generate our predictive
modeling project by preparing data, generating a model,
decreasing dimensionality reduction, and enhancing the
performance of our predictive model on the problem.40 The
RF algorithm is applied in scikit-learn for both random forest
regressor and random forest classifier categories. When the

Table 1. List of the Candidate Wells for Water Shutoff
Operation

no. well-ID Q (m3/d) haverage (m) PBD WI Sor

1 L13-19 8794 7.80 0.36 0.98 0.54
2 L15-18 13,913 5.507 0.17 0.91 0.47
3 L17-16 13,918 3.563 0.77 0.71 0.50
4 L17-21 28,361 10.16 15.08 0.99 0.30
5 LB1-5 14,395 11.93 2.61 0.95 0.53
6 LB1-7 8340 3.56 0.62 0.72 0.39
7 LB1-11 9605 8.17 2.22 0.91 0.39
8 LB1-15-13 4129 4.47 0.10 0.97 0.39
9 LB1-15-20 16,086 11.62 0.24 0.93 0.34
10 LB1-15 64,697 11.80 0.34 0.85 0.35
11 LB1-17 47,950 11.95 2.65 0.98 0.41
12 LB1-19 20,702 10.40 0.71 0.96 0.15
13 LB1-21 15,601 5.93 0.17 0.72 0.35
14 LB1-23 12,983 5.37 0.31 0.65 0.27
15 LB1-25 8585 4.88 0.45 0.63 0.37
16 LB1-26 12,099 7.63 0.65 0.92 0.24
17 LB1-29 4322 8.00 10.30 0.28 0.13
18 LB1-31 32,822 6.31 0.39 0.98 0.20
19 LB1-35 4126 7.50 0.55 0.80 0.24
20 LB2-15-21 52,368 10.13 0.41 0.96 0.52
21 LBJ1-24 61,458 5.08 1.20 0.88 0.53

Figure 3. Example of the decision-making well selection calculation
procedure for a group of three wells.

Figure 4. RF algorithm working procedure.
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model is arranged, it prepares a feature importance property
that will gain the relative significance scores for every input
feature.40

Figure 5 depicts the result of factor weights (feature
importance) of three factors PBD, WI, and Sor created by the

machine learning RF algorithm for every single well. The factor
weights illustrated in Figure 5 are created using 3 year oilfield
geology and production data. The factors calculated for each
month and 36 values for PBD,WI, and Sor are created based on
the mentioned oilfield historical production data. Based on this
monthly factor value, the decision-making by the FEM is
established. The result of the FEM was used as a remark in the
RF to obtain the new factor weight. Figure 6 illustrates the well

selection calculation procedure for three wells using the new
weighting system generated by RF. In Figure 6, first, the
monthly factor values are created for 3 years using available
oilfield history data. Then, the new factor weight is generated
by RF. The last part is the comprehensive evaluation to
establish the decision-making well selection for water shutoff.
Table 2 outlines an example of the monthly calculated factor
value and result established for each moth through the new
factor weight created by RF for a single well (Well13-19). It
seems from Table 2 that the result for 15 months out of 26
months historical production data are confirmed as not
selected for water shutoff. Therefore, the Well13-19 was not
considered for water plugging in this method.
2.3. Numerical Simulation. 2.3.1. Establishment of a

Geological Model and Parameter Preparation. The oil
reservoir in the north Liuzan block is a key development block
of Jidong Oilfield, with an exploration area of 50 km2. Since the
discovery of the block in 1990, it has undergone rolling
exploration and development, encryption, and improvements.

The total number of wells in the simulation area is 124 with an
area of 6.8 km2. According to the actual situation of the oilfield
structure, the following principles should be followed when
dividing the grid. The grid direction should be parallel or
orthogonal to the regional boundary and well row direction as
much as possible, and the grid edge should coincide with the
boundary and fault as much as possible. In addition, the grid
direction considers the direction of changes in reservoir
properties, and the coordinate system is parallel or
perpendicular to the main flow direction of the fluid in the
reservoir. The grid direction and size are compatible with
existing well positions and new drilling positions. The well
positions are arranged in the center of the grid as much as
possible, and there is only one well in a grid. Under the
premise considering the abovementioned dividing principle
and calculation speed, the grid is divided. The steps in the x
and y directions in the plane are both 100 m. In the vertical
direction, 30 small layers are divided according to the principle
that the permeability difference between layers does not exceed

Figure 5. Factor weight created by the RF model for every single well
using 3 year historical production data.

Figure 6. Example of the three wells’ selection procedure by the new
weighting system created by the RF model.

Table 2. PBD, WI, and Sor Using Production History for
One Well, Well L13-19

Well-
ID date PBD WI Sor remark

L13-19 1/31/2017 0.33 0.99 0.40 selected for water shutoff
L13-19 2/28/2017 0.32 0.99 0.40 selected for water shutoff
L13-19 3/31/2017 0.37 0.99 0.40 not selected for water

shutoff
L13-19 4/30/2017 0.35 0.97 0.40 selected for water shutoff
L13-19 5/31/2017 0.38 0.98 0.39 not selected for water

shutoff
L13-19 6/30/2017 0.35 0.98 0.39 selected for water shutoff
L13-19 7/31/2017 0.36 0.96 0.39 selected for water shutoff
L13-19 8/31/2017 0.39 0.92 0.39 selected for water shutoff
L13-19 9/30/2017 0.39 0.95 0.39 not selected for water

shutoff
L13-19 10/31/

2017
0.38 0.95 0.39 not selected for water

shutoff
L13-19 11/30/

2017
0.35 0.97 0.39 selected for water shutoff

L13-19 12/31/
2017

0.36 0.97 0.39 selected for water shutoff

L13-19 1/31/2018 0.36 0.98 0.39 not selected for water
shutoff

L13-19 2/28/2018 0.32 0.99 0.39 selected for water shutoff
L13-19 3/31/2018 0.36 0.99 0.39 not selected for water

shutoff
L13-19 4/30/2018 0.36 0.99 0.39 not selected for water

shutoff
L13-19 2/28/2019 0.36 0.99 0.38 not selected for water

shutoff
L13-19 3/31/2019 0.36 0.99 0.38 not selected for water

shutoff
L13-19 4/30/2019 0.35 0.98 0.38 selected for water shutoff
L13-19 5/31/2019 0.36 0.99 0.38 not selected for water

shutoff
L13-19 6/30/2019 0.35 0.99 0.38 not selected for water

shutoff
L13-19 7/31/2019 0.35 0.99 0.38 not selected for water

shutoff
L13-19 8/31/2019 0.34 0.99 0.38 selected for water shutoff
L13-19 9/30/2019 0.36 0.99 0.39 not selected for water

shutoff
L13-19 10/31/

2019
0.36 0.99 0.39 not selected for water

shutoff
L13-19 11/30/

2019
0.36 0.99 0.39 not selected for water

shutoff
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3. The microstructure map of the small and sand bodies of the
rhythm sections in the north Liuzan block is used to control
the tectonic fluctuations of the area. The Liuzan block is
divided into 30 × 60 × 30 = 54,000 grids.
2.3.2. The Establishment of the Initial Static Parameter.

The establishment of the initial static parameter field involves
defining the spatial position of the grid used in the reservoir
simulation, reservoir properties (porosity, permeability,
effective thickness, or net-to-gross ratio), fluid distribution
(water cut and oil saturation), temperature and pressure
systems (temperature and pressure), rock and fluid compres-
sibility, volume coefficient and viscosity, and relative
permeability. Combining the composition characteristics of
the CMG simulation module and the parameter definition
process, the parameter definition is divided into four categories
of parameters: the geological model, fluid model, fluid physical
and petrophysical properties, and the field initial parameter
defined one by one.
2.3.3. Reservoir Production Dynamic Parameters. Dynam-

ic data refer to all time-related data, including well completion
and workover data, production data, and pressure data.
Completion data mainly include perforation, reperforation,
horizon, well diameter, and the skin coefficient. The
production data mainly include average monthly oil
production and average monthly water production. The
pressure data mainly include bottom hole pressure, shut-in
static pressure, and formation pressure. There are 124 wells in
the block, and the production time ranges from January 1990
to January 2040. One month is the time step, with a total of
600 time steps.
2.3.4. Production History Matching. 2.3.4.1. Reserve

Fitting. Based on the grid system division, the parameter
interpolation operation is performed to obtain the data field of
each parameter, where the balance of gravity and capillary
pressure initializes the system, and the geological reserves of
crude oil are compared and tested. In order to verify the
geological reserves of each layer, the total geological reserves of
the digital model area and the geological reserves of each
district are calculated.
The main oil-producing sub-layers in the north Liuzan block

are the IV1 oil group and the IV2 oil group. The relative error
of the reserve fitting in the entire area is −0.52%, and the
fitting accuracy is high. As shown in Table 3, the error of the
single-layer reserves’ fitting is also less than 3%, which meets
the accuracy requirements.

2.3.4.2. Production History Matching. The actual cumu-
lative oil production in the entire region is 88.1 × 104 t, the
cumulative water production is 315 × 104 t, the calculated
values of the model are 97.3 × 104 t and 331 × 104 t, and the
relative errors are 9 and 5%, respectively. The research block
contains a total of 124 wells, of which about 50 wells have been
in production or water injection over the past 5 years.
According to the production data obtained in the past 3 years,

we have performed the fitting of production and water cut for
the measure well and its surrounding wells.

(1) Fluid production fitting
After adjusting the relative permeability and produc-

tion measures of the numerical simulation model in the
north Liuzan block, the fluid production of oil wells in
the LB1-6 well group fitted over the past 3 years is
shown in Figure 7. As shown in Figure 7, the average

daily fluid production of well LB1-15 over the past 3
years is about 60 m3, and the simulated average fluid
production is about 57 m3. The errors of the two are
within the allowable range.

(2) Water-bearing fitting
After adjusting the relative permeability and produc-

tion measures of the numerical simulation model in the
north Liuzan block, we fitted the water cut of the oil
wells in the LB1-6 well group in the 3 year production
data. As shown in Figure 8, the average water cut of well
LB1-15 is about 86%, and the simulated average water

cut is about 90%. The errors of the two are within the
allowable range.

2.3.5. Influence of Well Plugging. The gel used in this
numerical simulation study is a polymer system composed of
polyacrylamide with phenol and formaldehyde X-linkers.41−44

Initially, the simulation is applied to the wells judged to be
blocked by the FEM. Then, the recovery factor of the selected
wells by the new factor weight created by the RF model is
compared with the FEM result and its effect on production is
analyzed.

Table 3. Reserve Calculation

oil
group

geological reserves,
×104 t

simulation calculation of
reserves, ×104 t error %

IV1 79.96 77.86 −2.63
IV2 92.58 93.79 1.31
total 172.54 171.65 −0.52

Figure 7. LB1-15 oil well fluid production fitting.

Figure 8. LB1-15 oil well water cut fitting.
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In the simulation model, the production wells selected for
plugging are converted to gel injection wells with the gel
injected for 3 days. The wells are kept shut-in for another 2
days for the polymer and X-linker to process, after which the
production wells are opened to resume production. In the
simulation, 16 wells selected by the FEM and 8 wells selected
by the new factor weight created by the RF model have been
plugged by in-suite gel. The components of injection fluid
mole fractions are as follows: water is 0.999731, the polymer is
5.43 × 10−6, and the X-linker is 0.000264; they were injected
in the production wells. The injection surface water rate has
been considered 50 m3/day.

3. RESULTS AND DISCUSSION
3.1. Fuzzy Evaluation Method (FEM) Result. Based on

the FEM, the comprehensive decision-making average value
calculated and shown in Figure 9 is B̅= 1.025. If the

comprehensive evaluation value (B) is bigger than the average
value (B̅), the well will not need to consider for water shutoff.
From the result, it is observed that the wells with the higher
PBD value are not considered for the water shutoff. The result
in Figure 9 illustrates that the PBD value has direct influence to
the well selection process. Figure 9 shows that 16 wells out of
21 candidate wells have been selected for water shutoff, while
wells L17-21, LB1-5, LB1-11, LB1-17, and LB1-29 have not
been selected for well-plugging water shutoff.
3.2. Random Forest (RF) Result. Table 4 reports the final

well selection results using the new factor weight created by
the RF algorithm. It can be observed that from 21 candidate
wells, eight wells are selected for water plugging and further
water shutoff treatments.
3.3. Numerical Simulation Result. To evaluate the

efficiency of well plugging of the wells selected by both models,
the length of the effective period, water reduction and oil
increment in the effective period, average water reduction per
day and average oil increment per day in the effective period,
and cumulative oil production at 5 years after gel injection
have been compared. The effective period refers to the time
from the reopening of the producer to the time when water cut
rebounds to the point when the producer was shut in. The
effective period can be seen as the length of the days that gel
treatment has an influence on water reduction.
After 5 days of the gel injection and waiting time for the

plugging process, the producer wells are reopened. The
producer wells take a longer time to reach water cut as the
value of the water cut increases. However, in terms of reducing
production water during the effective period, the wells selected
by the new factor weight created by the RF model, water cut

has a better effect. Considering increasing the oil production
during the effective period, the wells selected by the FEM,
water cut can achieve the best result. The well-plugging result
for the wells selected by the FEM, water cut is very low
compared to the new factor weight created by the RF model,
and the effective period can be 1800 days. Figure 10 compares
the two methods FEM and new factor weight created by RF in
terms of water cut, the cumulative oil production rate, and
daily oil production rate. Regarding average values in the
effective period of water reduction and oil increment per day,
the best results are from the new factor weight created by the
RF model well selection. The average values belong to the
efficiency of the effects the gel injection makes. The case with
wells selected by the new factor weight created by the RF
model has better efficiency in reducing water and increasing
oil. Table 5 outlines the cumulative oil production rate, daily
oil rate average production rate, and water cut average of the
base model, FEM, and using new factor weight created by the
RF model.
The well plugging influences in terms of cumulative oil

production rate, daily oil production rate, and water cut of well
LB1-7 selected by the FEM plus well LB1-17 selected to be
plugged using the new factor weight created by RF are
illustrated in Figures 11 and 12, respectively. Figure 11 displays
the cumulative oil production rate, daily oil production rate,
and water cut rate of well LB1-7 for the base model and FEM.
Comparing the graphs illustrated in Figure 11, it can be
observed that the production rate has grown compared to the
base model, while water cut has diminished. This is one of the
best results among the 16 wells selected by the FEM. However,
the influence of the well plugging by gel has been very low in
most of the wells selected by the mentioned method. Figure 12
illustrates the cumulative oil production rate, daily oil
production rate, and water cut rate of well LB1-17 for the
base model and using the new factor weight created by the RF

Figure 9. Well selection results for water shutoff by the FEM.

Table 4. Well Selection for Water Shutoff Using the New
Factor Weight Created by the RF Model Using 3 Year
Production History Data

no well-ID
well selection results using the new factor weight created

by RF

1 L13-19 not selected
2 L15-18 not selected
3 L17-16 not selected
4 L17-21 selected
5 LB1-11 selected
6 LB1-15-13 not selected
7 LB1-15 not selected
8 LB1-17 selected
9 LB1-19 selected
10 LB1-21 selected
11 LB1-23 not selected
12 LB1-25 selected
13 LB1-26 selected
14 LB1-29 not selected
15 LB1-31 not selected
16 LB1-35 selected
17 LB1-7 not selected
18 LB2-15-21 not selected
19 LBJ1-24 not selected
20 LB1-5 not selected
21 LB1-15-13 not selected
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model. The comparison of the graphs illustrated in Figure 12
indicates that there is a very small change in terms of the
production rate and water cut compared to the base model.
Various methods may be used to calculate the factor weight

in the FEM. Some of these include the entropy method, the
analytic hierarchy process, the criterion importance method,

and the inter-criteria correlation.44−53 In this paper, the weight
of entropy is compared with the result derived from the FEM
and RF method. In 2009, Weiguo et al.24 introduced the
entropy method to determine the factor weight. It does so by
estimating the amount of information that is available in a
given system.
The weight calculation by the entropy method is compared

to the procedure presented in this paper. The calculation of the
weight by the entropy method is performed on the same set of
data as the FEM, and the PBD, WI, and Sor values are 0.66,
0.23, and 0.11, respectively. The well selection result obtained
by the entropy method is equal to the FEM; however, it has a
significant difference from the RF method. In the RF method,
it is very simple to expand the data and calculate the factor
weight using production history. Unfortunately, the traditional
factor weight calculation methods are still not very accurate
and time-consuming. This paper proposes a new method called
RF, which is more advantageous and simple to use.

Figure 10. Influence of gel plugging on (a) cumulative oil production,
(b) oil rate daily production, and (c) water cut of the reservoir for
wells selected by the FEM, new factor weight created by RF, and base
models.

Table 5. Influence of Gel Plugging Results of the Two
Models and a Comparison with the Base Model

model

cumulative oil
production (m3)
1/1/2020−
1/1/2025

oil rate daily
(m3/day) production
average 1/1/2020−

1/1/2025

water cut
SC-% average
1/1/2020−
1/1/2025

base model 316,763 173.37 69.543
wells selected
by the FEM

319,292 174.75 69.345

wells selected
by using the
new factor
weight

320,518 175.42 69.042

Figure 11. Influence of gel plugging on (a) cumulative oil production,
(b) oil rate daily production, and (c) water cut of the well LB1-7
selected based on the FEM.
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4. CONCLUSIONS
In this paper, a decision-making method for water shutoff well
selection is established. The main controlling factors affecting
water shutoff are clarified. By combining a machine learning
random forest (RF) algorithm and fuzzy evaluation method
(FEM), a well selection decision-making model was estab-
lished. The injection parameters for the water shutoff of a
typical well group were given. After the water shutoff of the
well group is implemented, the oilfield reduced water and
increased oil production, while the surrounding oil wells have
obvious effects. After the water shutoff of the wells selected by
the FEM and using the new factor weight created by RF, the
cumulative oil increases during the effective periods are 2529
m3 (0.8%) and 3755 m3 (1.2%), respectively. The major
conclusion obtained from this research are as follows:

(1) The machine learning RF algorithm uses the historical
production data of the oilfield to calculate accurate
factor weight.

(2) By comparing the well selection made by the FEM and
the factor weight created by RF through the numerical

simulation model, it has been concluded that the
creation of the new factor weight can provide a sufficient
effect on the water cut and oil production rate.

(3) The predictive decision-making model is suggested for
water shutoff, which can be used by reservoir engineers
to decide which well needs to be plugged.

(4) The results of the new factor weight created by the RF
method and FEM are compared with the entropy factor
weight method.

■ AUTHOR INFORMATION
Corresponding Authors

Khwaja Naweed Seddiqi − The Unconventional Oil and Gas
Institute, China University of Petroleum−Beijing, Changping,
Beijing 102249, China; orcid.org/0000-0003-3871-
6445; Email: naweed.cedeqe@gmail.com

Hongda Hao − School of Petroleum Engineering, Changzhou
University, Changzhou, Jiangsu 213164, China;
Email: haohongda90@126.com

Jirui Hou − The Unconventional Oil and Gas Institute, China
University of Petroleum-Beijing, Changping, Beijing 102249,
China; Email: houjirui@126.com

Author
Huaizhu Liu − Drilling & Production Technology Research
Institute, Jidong Oilfeld Company, China National Petroleum
Corporation, CNPC, Tangshan, Hebei 063000, China

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.1c03973

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors gratefully thank the China University of
Petroleum−Beijing for providing an excellent environment
for research.

■ REFERENCES
(1) Khojastehmehr, M.; Madani, M.; Daryasafar, A. Screening of
enhanced oil recovery techniques for Iranian oil reservoirs using
TOPSIS algorithm. Energy Reports. 2019, 5, 529−544.
(2) Höök, M.; Hirsch, R.; Aleklett, K. Giant oil field decline rates
and their influence on world oil production. Energy Policy. 2009, 37,
2262−2272.
(3) Höök, M.; Xu, T.; Xiongqi, P.; Aleklett, K. Development journey
and outlook of Chinese giant oil fields. Pet. Explor. Dev. 2010, 37,
237−249.
(4) Luo, P. The method of profile control for water injection wells.
Oil and Gas Well Testing 2005, 14, 42−43. original in Chinese.
(5) Qiao, E.; Li, Y.; Liu, P. Oilfield block overall profile control
pressure index decision-making technology and its application. Drill
Mining Technology 2000, 23, 28−31. Original in Chinese
(6) Song, W.; Yang, C.; Han, D.; Qu, Z.; Wang, B.; Jia, W. Alkaline-
surfactant-polymer Combination Flooding for Improving Recovery of
the Oil with High Acid Value. SPE-29905. 1995, International
Meeting on Petroleum Engineering held in Beijing, PR China, at 14−
17 November 1995.
(7) Grigg, R.B.; Schechter, D.S. State of the Industry in CO2 Floods.
SPE-38849. 1997, presented at the SPE Annual Technical Conference
and Exhibition held in San Antonio, Texas, USA, 5−8 October 1997.
(8) Xia, T.; Feng, Q.; Wang, S.; Zhang, X.; Ma, Z. Decision-Making
Technology of Well Candidates Selection in In-depth Profile Control
Based on Projection Pursuit Clustering Model. Proceedings of the
International Field Exploration and Development Conference 2019.

Figure 12. Influence of gel plugging on (a) cumulative oil production,
(b) oil rate daily production, and (c) water cut of the well LB1-17
selected based on the new factor weight created by the RF algorithm.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c03973
ACS Omega 2021, 6, 34327−34338

34336

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Khwaja+Naweed+Seddiqi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-3871-6445
https://orcid.org/0000-0003-3871-6445
mailto:naweed.cedeqe@gmail.com
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hongda+Hao"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:haohongda90@126.com
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jirui+Hou"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:houjirui@126.com
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Huaizhu+Liu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c03973?ref=pdf
https://doi.org/10.1016/j.egyr.2019.04.011
https://doi.org/10.1016/j.egyr.2019.04.011
https://doi.org/10.1016/j.egyr.2019.04.011
https://doi.org/10.1016/j.enpol.2009.02.020
https://doi.org/10.1016/j.enpol.2009.02.020
https://doi.org/10.1016/S1876-3804(10)60030-4
https://doi.org/10.1016/S1876-3804(10)60030-4
https://pubs.acs.org/doi/10.1021/acsomega.1c03973?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c03973?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c03973?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c03973?fig=fig12&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c03973?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


IFEDC. 2020, Springer Series in Geomechanics and Geoengineering.
Springer, Singapore.
(9) Su, Y.; Li, Y.; Wang, L.; He, Y. Experimental and pilot tests of
deep profile control by injecting small slug-size nano-microsphere in
offshore oil fields. Offshore Technology Conference. 2019.
(10) Qiu, Y.; Wei, M.; Bai, B.; Mao, C. Data analysis and application
guidelines for the microgel field applications. Fuel 2017, 210, 557−
568.
(11) Qiu, Y.; Wei, M.; Bai, B. Descriptive statistical analysis for the
PPG field applications in China: screening guidelines, design
considerations, and performances. J. Pet. Sci. Eng. 2017, 153, 1−11.
(12) Feng, Q.; Chen, Y.; Jiang, H.; Wang, S. Application of fuzzy
mathematics to block-wide injection profile control. Pet. Explor. Dev.
1998, 25, 76−79.
(13) Liu, Y.Z.; Bai, B. Optimization Design for Conformance
Control Based on Profile Modification Treatments of Multiple
Injectors in a Reservoir. SPE-64731. 2000, presented at the SPE
International Oil and Gas Conference and Exhibition in China held in
Beijing, China, 7−10 November 2000.
(14) Liu, Y. Z.; Bai, B.; Li, Y. X.; Coste, J. P.; Guo, X. H.
Optimization Design for Conformance Control Based on Profile
Modification Treatments of Multiple Injectors in a Reservoir. SPE-
64731-MS. 2000, Presented at the International Oil and Gas
Conference and Exhibition in China, Beijing, China, November 2000.
(15) Jiang, H. Q.; Wang, S. L.; Zhang, Y. Pre-Warning and Decision
Making of Water Breakthrough for Higher Water-Cut Oil Field. Adv.
Mater. Res. 2011, 347−353, 688−693.
(16) Li, X. Application of Fuzzy Mathematics Evaluation Method in
Prediction of Comprehensive Efficiency of Low-Efficiency Oil Wells.
IOP Conference Series Earth and Environmental Science 2019, 384,
No. 012012.
(17) Zhang, X.; Li, Q.; Li, X. The application of fuzzy mathematics
in the optimization of oilfield development scheme. Northwest Geol.
2002, 1, 76−80.
(18) Tang, H.; Huang, B.; Li, D. Fuzzy comprehensive evaluation
method to determine the potential of reservoir water flooding
development. Pet. Explor. Dev. 2002, 2, 97−99.
(19) Wang, Y. Application of PI decision-making technology in
Zhongyuan oil field. Pet. Explor. Dev. 1999, 26, 81−83.
(20) Li, Y. K. Pressure Index Decision Technology for Integrated
Profile Control in a Block. J. Univ. Pet. China. 1997, 21, 39−42.
(21) Qin, G.; Pan, P.; Tao, H. The analysis and application of PI
decision making technology. Neimenggu Shiyou Huagong. 2005, 8,
120−123. (In Chinese)
(22) Yu, Z. PI decision technology in Gudong Oilfield application.
Xibu Tankuang Gongcheng. 2005, 8, 53−54. (In Chinese)
(23) Liu, Y.; Bai, B.; Wang, Y. Applied Technologies and Prospects
of Conformance Control Treatments in China. Oil & Gas Science and
Technology - Revued’IFP Energies nouvelles, Institut Franca̧is du Pet́role.
2010, 65, 859−878.
(24) Weiguo, Z.; Gichong, T. The Application of Entropy Method
and AHP in Weight Determining. Computer Program Skills and
Maintenance. 2009, 22, 19−20.
(25) Krasnov, F.; Glavnov, N.; Sitnikov, A. Application of
Multidimensional Interpolation and Random Forest Regression to
Enhanced Oil Recovery Modeling. ACM Comput. Entertain. 2017, 9,
9.
(26) Donges, N. A complete guide to the random forest algorithm.
https://builtin.com/data-science/random-forest-algorithm. June,
2019, update, July 2021.
(27) Walt, S. V. D.; Colbert, S. C.; Varoquaux, G. The NumPy
Array: A Structure for Efficient Numerical Computation. Comput. Sci.
Eng. 2011, 13, 22−30.
(28) McKinney, W. Data structures for statistical computing in python.
Proceedings of the 9th Python in Science Conference. 2010, 445. SciPy
Austin, TX, 51−56, DOI: 10.25080/Majora-92bf1922-00a.
(29) Jones, E.; Oliphant, T.; Peterson, P. SciPy. open source
scientific tools for Python. 2014.

(30) Pedregosa, F.; Varoquau, G.; Gramfort, A.; Michel, V.; Thirion,
B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
Vanderplas, J.; Passos, A.; Cournapeau, D. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research. 2011, 12,
2825−2830.
(31) Millman, K. J.; Aivazis, M. Python for Scientists and Engineers.
Comput. Sci. Eng. 2011, 13, 9−12.
(32) Li, Z. C. The PI Decision Theory Application of Multi-Round
Profile Control. Appl. Mech. Mater. 2013, 295-298, 3302−3305.
(33) Horner, D. R. Pressure Buildup in Wells, Proc., Third World
Pet. Congo. 1951, Sect. II, 503.
(34) Perrine, R. L. Analysis of pressure buildup curves. drilling and
production practice. API 1956, 482−509.
(35) Breiman, L. Random Forests. Machine Learning. 2001, 45, 5−
32.
(36) Catani, F.; Lagomarsino, D.; Segoni, S.; Tofani, V. Landslide
susceptibility estimation by random forests technique: sensitivity and
scaling issues. Nat Hazards Earth Syst Sci. 2013, 13, 2815−2831.
(37) Liaw, A.; Wiener, M. Classification and regression by random
forest. R News. 2002, 2, 18−22.
(38) Naghibi, S. A.; Ahmadi, K.; Daneshi, A. Application of Support
Vector Machine, Random Forest, and Genetic Algorithm Optimized
Random Forest Models in Groundwater Potential Mapping. Water
Resour. Manage. Ser. 2017, 31, 2761−2775.
(39) Random Forest Algorithm, Java T point. https://www.javatpoint.
com/machine-learning-random-forest-algorithm, this subject taken at
July, 2021.
(40) Brownlee, J. How to Calculate Feature Importance With
Py t hon . Mach i n e l e a r n i n g ma s t e r y . 2020 h t t p s : / /
machinelearningmastery.com/calculate-feature-importance-with-
python/.
(41) Zhu, D.; Bai, B.; Hou, J. Polymer Gel Systems for Water
Management in High-Temperature Petroleum Reservoirs: A Chem-
ical Review. Energy Fuels 2017, 31, 13063−13087.
(42) Zhu, D.; Hou, J.; Meng, X.; Zheng, Z.; Wei, Q.; Chen, Y.; Bai,
B. Effect of Different Phenolic Compounds on Performance of
Organically Cross-Linked Terpolymer Gel Systems at Extremely High
Temperatures. Energy Fuels 2017, 31, 8120−8130.
(43) Wei, J.; Zhou, X.; Zhang, D.; Li, J. Laboratory Experimental
Optimization of Gel Flooding Parameters to Enhance Oil Recovery
during Field Applications. ACS Omega 2021, 6, 14968−14976.
(44) Bai, B.; Zhou, J.; Yin, M. A comprehensive review of
polyacrylamide polymer gels for conformance control. Pet. Explor.
Dev. 2015, 42, 525−532.
(45) Liu, L.; Zhou, J.; An, X.; Zhang, Y.; Yang, L. Using fuzzy theory
and information entropy for water quality assessment in Three Gorges
region, China. Expert System with Application. 2010, 37, 2517−2521.
(46) Amiri, V.; Rezaei, M.; Sohrabi, N. Groundwater quality
assessment using entropy weighted water quality index (EWQI) in
Lenjanat. Iran. Environ. Earth Sci. 2014, 72, 3479−3490.
(47) Zhang, P.; Feng, G. Application of fuzzy comprehensive
evaluation to evaluate the efect of water fooding development. J. Pet.
Explor. Prod. Technol. 2018, 8, 1455−1463.
(48) Hsu, L. Using a Decision-Making Process to Evaluate Efficiency
and Operating Performance for Listed Semiconductor Companies.
Technological and Economic Development of Economy. 2017, 21, 301−
331.
(49) Zhang, H. Application on the Entropy Method for
Determination of Weight of Evaluating Index in Fuzzy Mathematics
for Wine Quality Assessment. Adv. J. Food Sci. Technol. 2015, 7, 195−
198.
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