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Gametogenesis, the production of eggs and sperm, is a fundamental process in sexually
reproducing animals. Following gametogenesis commitment and sexual fate decision,
germ cells undergo several developmental processes to halve their genomic size and
acquire sex-specific characteristics of gametes, including cellular size, motility, and cell
polarity. However, it remains unclear how different gametogenesis processes are initially
integrated. With the advantages of the teleost fish medaka (Oryzias latipes), in which
germline stem cells continuously produce eggs and sperm in mature gonads and a sexual
switch gene in germ cells is identified, we found that distinct pathways initiate
gametogenesis cooperatively after commitment to gametogenesis. This evokes the
concept of functional modules, in which functionally interlocked genes are grouped to
yield distinct gamete characteristics. The various combinations of modules may allow us to
explain the evolution of diverse reproductive systems, such as parthenogenesis and
hermaphroditism.
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INTRODUCTION

For sexually reproductive organisms, life begins with the fusion of two haploid gametes, an egg and a
sperm. Gametes are generated from common germline stem cells through tightly regulated
developmental processes. Once germline stem cells undergo gametogenesis commitment and
sperm-egg fate decisions, the cells halve their genomic size through meiosis. Germline stem cells
go through folliculogenesis or spermatogenesis to acquire sex-specific characteristics such as cellular
size, motility, and polarity. Although the mechanisms underlying the development of eggs and sperm
have been well studied, the initial integration of meiosis, sexually dimorphic folliculogenesis, and
spermatogenesis remains elusive.

In mice, the first sexual difference in germ cell development is indicated by the timing of meiosis
initiation. Ovarian germ cells initiate meiosis before birth, whereas testicular germ cells do not
embark on meiosis until puberty (Spiller and Bowles, 2019). Several signaling pathways involved in
meiotic initiation have been identified. One is retinoic acid (RA) signaling, which activates the
downstream transcription factor Stra8 (stimulated by retinoic acid 8) andMeiosin (meiosis initiator)
to drive meiotic gene expression (Bowles et al., 2006; Koubova et al., 2006; Ishiguro et al., 2020).
Another is BMP (bone morphogenetic protein) signaling, which is essential for meiosis initiation in
vivo and in vitro, and ligands are presumably secreted from ovarian somatic cells (Wu et al., 2016;
Miyauchi et al., 2017; Nagaoka et al., 2020). The other is WNT/β-catenin signaling, which is required
for Stra8 expression in germ cells, although whether this signaling acts on germ cells directly or
indirectly remains unclear (Tomizuka et al., 2008; Naillat et al., 2010; Chassot et al., 2011). In
contrast, in the testes, RA is degraded by Cyp26b1 (cytochrome P450 family 26 subfamily B member
1) expressed in somatic cells, thereby preventing germ cells from entering meiosis during
embryogenesis (Bowles et al., 2006; Koubova et al., 2006). Additionally, male-specific Fgf9
(fibroblast growth factor 9) also contributes to meiosis suppression via the upregulation of
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Nanos2 (nanos C2HC-type zinc finger 2) in germ cells, thereby
making them less responsive to RA (Suzuki and Saga, 2008;
Bowles et al., 2010). Instead, germ cells enter mitotic arrest and
are specified as spermatogonial cells (Spiller and Bowles, 2019).

Although the molecular mechanisms that promote or suppress
meiosis have been investigated intensively in mice, it is difficult to
identify germ cell sex determinants hidden among intertwined
developmental processes. Meiosis initiation per se is not a female-
specific event; thus, it is not equivalent to germline feminization.
The absence of mouse ovarian germline stem cells also makes the
sexual fate decision of the germline difficult to be clarified
(Tanaka, 2016). In male mice, certain genes, including Nanos2,
Piwil4 (piwi like RNA-mediated gene silencing 4), and Dnmt3l
(DNA methyltransferase 3 like), are specifically induced when
germ cells are fated to undergo spermatogenesis (Tsuda et al.,
2003; La Salle et al., 2004; Aravin et al., 2008). However, in some
teleost species, nanos2 is expressed not only in spermatogonia,
but also in oogonia (Aoki et al., 2009; Nakamura et al., 2010; Beer
and Draper, 2013), suggesting that a gene(s) induced in male
germ cells can be recognized as the acquisition of stemness rather
than germline masculinization.

The teleost fish medaka (Oryzias latipes) is one of the ideal
vertebrate models, in which the presence of germline stem cells in
both ovaries and testes has been proven experimentally
(Nakamura et al., 2010). This makes it possible to analyze the
initial step of sexual development by comparing the profiles of
ovarian and testicular germline stem cells. Consequently, we are
beginning to understand the presence of a modular structure in
gametogenesis that yields sex- and gamete-specific
characteristics. This view may explain the diversity observed
among reproductive systems.

GERM CELL PROLIFERATION IN EARLY
GAMETOGENESIS

Germline stem cells produce progenitor cells that proliferate
mitotically and enter meiosis (Wu et al., 2013). In diverse
organisms, germline stem cells undergo two types of mitotic
cell division. One is stem-type cell division that produces isolated
daughter cells. The other is transit-amplifying cell division, in
which several rounds of cell division followed by incomplete
cytokinesis form a cluster of cells that are connected via
intercellular bridges (Pepling et al., 1999; Spradling et al., 2011).

In medaka, stem-type and transit-amplifying cell divisions are
referred to as type-I and type-II cell divisions, respectively (Saito
et al., 2007; Nakamura et al., 2010; Sumita et al., 2021). Type I/II
cell division can be observed in adult testes and ovaries,
supporting the presence of germline stem cells in both sexes
(Nakamura et al., 2010; Sumita et al., 2021). Importantly, medaka
germ cells transplanted into gonads of the other sex give rise to
gametes according to the recipient sex, suggesting that germline
stem cells are sexually undifferentiated (Tanaka, 2016). In other
words, medaka germline stem cells continuously make sexual fate
decisions at the time of their commitment to gametogenesis
throughout their reproductive life. This prompted us to

explore the germ cell sex determinants acting on
gametogenesis-committed germ cell types.

Of note, stra8 has been lost from the medaka genome
(Pasquier et al., 2016). In addition, medaka germ cells are not
responsive to RA signaling at the time of sex determination
(Adolfi et al., 2016; Adolfi et al., 2021). Therefore, factors
other than RA signaling components are involved in germline
sex determination in medaka.

ROLE OF FOXL3 IN GERM CELL SEX
DETERMINATION IN MEDAKA

By comparing the transcriptomes of medaka germ cells between
genetic males (XY) and females (XX), a switch gene for the sexual
fate decision of germ cells, foxl3 (forkhead box L3), has been
identified (Nishimura et al., 2015). Foxl3 is initially expressed in
type I germ cells in both sexes, but its expression is maintained
only in female type II germ cells (Nishimura et al., 2015;
Nishimura and Tanaka, 2016). A loss-of-function mutant of
foxl3 leads to germ cell-specific sex reversal in XX gonads and
spermatogenesis in the ovarian environment (Nishimura et al.,
2015). In addition, transplantation of foxl3−/− germ cells into
wild-type ovaries results in spermatogenesis of foxl3−/− germ cells,
showing that Foxl3 functions in a cell-autonomous manner as a
germ cell sex determinant in medaka ovaries (Nishimura et al.,
2015).

Foxl3 is widely conserved in vertebrate genomes except for
placental mammals (Bertho et al., 2016). Although the role of
Foxl3 in other vertebrate species remains largely unknown, its
expression in germ cells has been reported in some teleost species
including Nile tilapia (Oreochromis niloticus) and Japanese eel
(Anguilla Japonica) (Wu et al., 2019; Dai et al., 2021).
Furthermore, a loss-of-function mutant of tilapia foxl3 leads to
production of spermatogenic cells in XX ovaries (Dai et al., 2021),
suggesting a conserved role of foxl3 in germ cell feminization.

Dmrt1 may play an important role in germline sexual
development by antagonizing foxl3 function. In tilapia, loss of
foxl3 leads to dmrt1 expression in XX gonads, whereas dmrt1
mutation causes ectopic foxl3 expression in XY gonads. This
suggests that sexual fate of tilapia germline is regulated by
antagonistic roles of foxl3 and dmrt1 (Dai et al., 2021).
Another important player in germline sexual development is
germ cell itself. In medaka, germ cells have an inherent feminizing
effect during early gonadal development, which acts
independently of developmental stage and sex of germ cells
(Kurokawa et al., 2007; Morinaga et al., 2007; Nakamura et al.,
2012; Nishimura et al., 2018). The same effect of germ cells has
been reported in zebrafish (Slanchev et al., 2005; Tzung et al.,
2015), where germ cell apoptosis triggers testis differentiation
from juvenile ovaries (Uchida et al., 2002). This could be
explained by two juxtacrine signaling pathways. One secreted
from germ cells suppresses gonadal masculinization via dmrt1
downregulation, while the dmrt1-downstream signal secreted
from somatic cells suppresses germline feminization via foxl3
downregulation in germ cells.
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Although a full view of the Foxl3 regulatory network remains
elusive, RNA sequencing has revealed genes downstream of foxl3
(Kikuchi et al., 2019). Comparative transcriptome analysis
between wild-type and foxl3−/− XX germ cells identified 1,480
differentially expressed genes (DEGs), comprising 600
upregulated and 880 downregulated genes. Gene ontology and
pathway enrichment analyses suggest that, in female germ cells,
pathways related to the extracellular matrix, oogenesis, and RNA
regulation are activated, while the cytoskeletal network and cell
cycle pathway are suppressed. These results indicate that Foxl3
may promote germ cell feminization via the transcriptional
activation of oogenesis-related genes and reorganization of the
microtubule network.

In addition, discovery of the Foxl3-binding motif (5′-
DHAAACAA-3′) and in silico searches for the motif within
DEG promoter regions suggest that Foxl3 may bind to most
DEG promoters and directly regulate their expression (Kikuchi
et al., 2019). Foxl3 likely initiates regulatory events as a pioneer
transcription factor that determines the sexual fate of germ cells
by targeting silent chromatin and enabling states of its
competence to be activated or repressed (Zaret and Mango,
2016). Many pioneer factors are involved in cell fate decisions,
as exemplified by FoxA, which persists at enhancer elements in
chromatin as endoderm is induced to liver fate (Gualdi et al.,
1996; Bossard and Zaret, 2000; Lee et al., 2005).

FOXL3 INITIATES DISTINCT GENETIC
PATHWAYS REGULATING MEIOSIS AND
FOLLICULOGENESIS
The following question arises: Which developmental processes
does Foxl3 initiate to yield egg characteristics? Recent studies
have revealed two genes, rec8a (REC8 meiotic recombination
protein a) and fbxo47 (F-box protein 47) to be direct targets of
Foxl3. Similar to foxl3, rec8a and fbxo47 are expressed in female
type II germ cells, and loss-of-function mutations cause female-
specific sterility and ovarian dysgenesis, suggesting their crucial
roles in oogenesis (Kikuchi et al., 2019; Kikuchi et al., 2020).

Medaka rec8a is one of two mammalian Rec8 orthologs
originating from a teleost-specific whole-genome duplication
event (Braasch et al., 2016). rec8a encodes an α-kleisin subunit
of the meiotic cohesin. The cohesin complex forms a ring-like
structure that holds sister chromatids during mitosis and meiosis.
Meiotic cohesin is required not only for sister chromatid
cohesion, but also for chromosomal axis formation, association
of homologous chromosomes, meiotic recombination, and
accurate chromosome segregation (Ishiguro, 2019). Mouse
Rec8-null mutants of both sexes fail to complete meiotic
prophase I and become sterile (Bannister et al., 2004; Xu et al.,
2005). Similarly, medaka rec8a–/– fish display defects in synapsis
between homologous chromosomes during meiotic prophase I,
which results in meiotic arrest at the pachytene-like stage. The
phenotypes of medaka rec8a–/– are female specific: medaka
rec8a–/– males are fertile and develop normal testes containing
mature sperm (Kikuchi et al., 2020). It seems likely that the rec8a
paralogous gene rec8b contributes to spermatogenesis.

Nevertheless, rec8a was the first gene to be identified as a
female-specific factor involved in meiosis and may provide a
clue to explore the molecular mechanisms regulating sexual
dimorphism in meiosis (Cahoon and Libuda, 2019; Sardell and
Kirkpatrick, 2020).

Another Foxl3 target, fbxo47, encodes a member of the F-box
protein family. The F-box protein is widely conserved in eukaryotes
and is involved in various cellular functions (Cardozo and Pagano,
2004). F-box proteins are known to act as components of Skp1/
Cullin/F-box-protein (SCF) E3 ubiquitin ligase or independently of
the ubiquitin-mediated pathway (Kipreos and Pagano, 2000). The
medaka fbxo47−/− mutant mimics the phenotype of foxl3−/−:
Precocious spermatogenesis in XX ovaries. Moreover, fbxo47 acts
genetically upstream of the folliculogenesis-related transcription
factors lhx8b, figla, and nobox (Kikuchi et al., 2020). These results
indicate that medaka fbxo47 is involved in the suppression of
spermatogenesis and progression of folliculogenesis.

Caenorhabditis elegans FBXO47 (also known as PROM-1)
mediates the mitosis-meiosis transition via ubiquitination and
degradation of cyclin E1 (CYE-1), and SCFPROM-1 also
promotes homologous chromosome pairing as a positive regulator
of CHK-2 serine/threonine kinase (Mohammad et al., 2018). In
addition, a recent study revealed that mouse Fbxo47 prevents
precocious disassembly of the synaptonemal complex
independently of SCF E3 ligase (Tanno et al., 2022). Thus,
Fbxo47 may have conserved roles in gametogenesis via
ubiquitination-dependent and ubiquitination-independent pathways.

Importantly, epistasis analysis revealed that pathways
involving rec8a and fbxo47 are genetically independent
(Kikuchi et al., 2020). Hence, the studies described above shed
light on two genetic pathways acting downstream of foxl3: one
promotes female-specific meiosis and the other regulates
folliculogenesis and suppression of spermatogenesis (Figure 1).
The mechanisms underlying the suppression of spermatogenesis
will be an important area for future research.

MODEL: FUNCTIONALLY DISTINCT
MODULES INTEGRATE GAMETOGENESIS

Accumulating evidence based on genetic analyses indicates that
meiosis, folliculogenesis, and spermatogenesis are genetically

FIGURE 1 |Genetically distinct pathways promote germline feminization
in medaka. In germline stem cells, foxl3, an intrinsic factor of germ cell sex,
directly activates expression of rec8a and fbxo47 to initiate meiosis and
folliculogenesis, respectively. Other female-specific pathways (e.g.,
atp1a3a) may also promote another module independently of foxl3.
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dissociable. In mice, Stra8-deficient ovarian germ cells develop
into oocyte-like cells without undergoing meiosis (Dokshin et al.,
2013). Loss-of-function mutants of medaka rec8a also lead to
meiotic arrest of ovarian germ cells at the pachytene-like stage,
but they still express transcription factors involved in
folliculogenesis, including lhx8b, figla, and nobox (Kikuchi
et al., 2020). Meanwhile, medaka dmc1−/− testes can produce a
small number of motile sperm with the ability to inseminate,
although the ploidy is abnormal (Chen et al., 2016). In contrast,
meiosis progresses when folliculogenesis or spermatogenesis is
disrupted. Lhx8−/− female mice display severe defects in
folliculogenesis, with no abnormalities involving meiotic
marker expression and chromosomal structures (Choi et al.,
2008). The same phenomenon occurs in medaka fbxo47−/−

ovaries, where folliculogenesis is severely disrupted, while the
meiotic gene rec8a is normally expressed and spermatogenesis
proceeds (Kikuchi et al., 2020). Collectively, these phenotypic
analyses clearly indicate that although meiosis is dispensable for
gametogenesis, processes driving folliculogenesis and
spermatogenesis can be activated in the absence of meiosis.

This evokes the concept of ‘functional modules’where expression
of a group of genes are tightly coordinated to act in the same
developmental process (Niehrs and Pollet, 1999; Szenker-Ravi et al.,
2022), featuring essential gamete characteristics. For example, a
module of meiosis contributes to halving the genome, whereas a
module of folliculogenesis and spermatogenesis renders gametes
feminized or masculinized, respectively.

This raises the interesting view that modules can be referred to as
the basis for creating various modes of reproduction during
evolution (Figure 2). In apomictic parthenogenesis (development
of embryos from unfertilized eggs), bypassing meiotic modules
allows gametogenesis to circumvent meiosis, resulting in the
production of diploid eggs (Lampert, 2008; Mirzaghaderi and
Horandl, 2016). This type of reproduction has been reported in
bdelloid rotifers and many arthropods (Simon et al., 2003). Another

unisexual mode of reproduction, hybridogenesis, could also be
explained by alterations to the meiotic module so that one of the
parental genomes is selectively transferred to the gametes, while the
other one is lost duringmeiosis (Lehtonen et al., 2013; Lavanchy and
Schwander, 2019). Hybridogenesis has been found in a diverge range
of animals, including fishes (Poeciliopsis lucida-monacha), frogs
(Pelophylax esculentus), and insects (Bacillus rossius-grandii)
(Schultz, 1969; Mantovani and Scali, 1992; Vorburger et al.,
2009). Additionally, hermaphrodites (e.g., Caenorhabditis elegans)
consecutively produce egg and sperm from germline stem cells by
acquiring a mechanism for switching a module of folliculogenesis
from that of spermatogenesis (Hubbard and Greenstein, 2000). In
addition, sexually dimorphic (anisogamous) gametes seem to have
descended from equal-sized (isogamous) gametes, which is common
in algae and protists (Kirk, 2006). Thus, during the course of
evolution, the folliculogenesis and spermatogenesis modules
might have been progressively evoked and selected to develop
large eggs and small sperm.

Regarding folliculogenesis, it is likely that this module diverges
into other submodules, leading to more specific gametogenic
characteristics, such as maternal RNA accumulation and
fertilization capability. Additionally, the finding of oogenesis-
specific, but foxl3-independent, gene expression suggests that
characteristics independent of meiosis and folliculogenesis are
also present. Atp1a3a (ATPase Na+/K+ transporting subunit
alpha 3a) is one of the genes that we found from our RNA-
seq data to be upregulated specifically in female germ cells but
independently of foxl3 (Kikuchi et al., 2019) (Figure 1). During
oogenesis, this cation-exchanging transporter could be involved
in cell enlargement by regulating osmotic pressure.

In conclusion, we propose a modular structure of
gametogenesis, in which genetically distinct modules build the
development of functional gametes. Modification and/or loss of
modules will provide a way to explain the diversification of
reproductive systems.

FIGURE 2 | Modular structure of gametogenesis. Initial events of gametogenesis-commitment and sperm-egg fate decision trigger distinct developmental
processes, corresponding to distinct modules (meiosis, folliculogenesis, and spermatogenesis). Gain, loss, or alteration of modules during evolution can explain adaptive
diversification of reproductive systems.
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