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Renal cell carcinoma (RCC) is a type of cancer with an increasing rate of morbidity and
mortality and is a serious threat to human health. The treatment of RCC, especially kidney
renal clear cell carcinoma (KIRC), has always been the focus of clinical treatment. Using
The Cancer Genome Atlas (TCGA) database as a starting point, we explored the feasibility
of applying the pyroptosis mechanism to KIRC treatment by searching for cancer markers
associated with pyroptosis and cancer treatment signatures. The obtained samples were
clustered using unsupervised clustering analysis to define the different KIRC subtypes with
different pyroptosis expression levels. Based on this, a gene expression analysis was
performed to explore the carcinogenic mechanism that is markedly related to pyroptosis.
The Genomics of Drug Sensitivity in Cancer database and single sample gene set
enrichment analysis (ssGSEA) algorithm were used to analyze the different treatment
methods of the current prominent KIRC to determine whether pyroptosis plays a role.
Finally, LASSO regression was used to screen for related genes and construct a model to
predict patient prognosis. The expression levels of GSDME, CASP3, CASP4, CASP5,
CHMP3, and CHMP4C were incorporated into the model construction. After verification,
the prediction accuracy of the 3-, 5-, 7- and 10 years survival rates of our prognostic model
were 0.66, 0.701, 0.719, and 0.728, respectively. Through the above analysis, we
demonstrated the feasibility of pyroptosis in the clinical treatment of KIRC and
provided novel ideas and suggestions for the clinical treatment of KIRC.
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INTRODUCTION

Kidney cancer is a common disease associated with tumors of the urinary system. According to
statistics, the number of kidney cancer cases is increasing annually, having reached 74,000 by 2020
(Sung et al., 2021). Clear cell renal cell carcinoma (ccRCC/KIRC) is the main type of kidney cancer,
accounting for 75% of cases (Cohen and McGovern, 2005). A particularly difficult challenge is that
kidney cancer is latent, and many patients are already at the middle or advanced stage when they are
diagnosed and do not respond well to surgery. Clinical data indicates that more than two-thirds of
patients are already clinically metastatic at the time of discovery, and approximately 40% of patients are
still at risk of recurrence after undergoing surgical treatment (Linehan and Ricketts, 2019). The
development of targeted immunotherapy has filled this gap in the treatment of advanced renal cancer.
However, as time passes, kidney cancer cells become resistant to targeted drugs and the uncertainty
brought by immunotherapy to disease progression. Therefore, the current treatment of kidney cancer,
especially KIRC, remains a challenge that must be overcome (Chen et al., 2016; Thompson et al., 2018;
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Xue et al., 2020). Our current focus is to find more suitable targets
for the treatment, enrich the reserves of targeted drugs, and have a
clear prediction of the prognosis of renal cancer.

Targeted cancer therapy has always been a popular topic in
cancer research. Since the discovery of apoptosis, various forms of
regulatory cell death (RCD) have been discovered and applied in
the treatment of cancer (Shi et al., 2017). In the early stage, the
mechanism of RCD applied to cancer is to eliminate cancer cells
by upregulating the expression of genes related to apoptosis or

other RCD in cancer or downregulating the signaling pathway
that inhibits RCD. With further study, the pyroptosis pathway
has been discovered, and its main biochemical characteristics
have become increasingly clear (Fang et al., 2020). As a newly
discovered type of RCD, pyroptosis is mainly caused by
inflammasome bodies, and cells show characteristics of
swelling, rupture of the cell membrane, and overflow of cell
contents. Early studies have suggested that the caspase family
regulates pyroptosis. With the discovery of the GSDM family of

FIGURE 1 | (A–B): The heatmap shows the CNVmutations of pyroptosis-related genes obtained in the pan-cancer project of TCGA database. The green color in A
indicates a higher degree of CNV gain, the brown color in B indicates a higher degree of CNV loss. The color bar on the right of the figure shows the specific values. (C):
The heatmap shows the SNVmutations of pyroptosis. The color bar on the right shows the color corresponding to the specific value: the greener the color, the closer it is
to 0.05, and the browner the color, the closer it is to 0.00. (D): The heatmap shows the expression levels of pyroptosis-related genes in 20 cancers, and the results
are processed by log2 fold change. A transition from green to brown corresponds to a value between −1.55 and 2.45. (E) This heatmap shows that all pyroptosis-related
genes are divided into three categories from the perspective of survival landscape: Risky genes (Green), protective genes (Brown), and no statistically significant genes
(White, p > 0.05). The categories of genes in KIRC are marked with a red box. (F) This includes the survival curve analysis of all statistically significant genes in KIRC in
TCGA samples. The upper right corner of each survival curve figure indicates that green represents the high expression group and brown represents the low expression
group. (G–H) The two graphs show the different degrees of methylation in each cancer and the correlation between methylation and mRNA expression levels. The color
depth of the ring on the right indicates the comparison between the p-value and 0.05, and the color bar indicates the degree of difference and correlation coefficient.
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executive proteins involved in pyroptosis, the occurrence and
specific execution process of pyroptosis became increasingly
understood (Kovacs and Miao, 2017). Pyroptosis mainly relies
on various membrane structures in cells to drill holes to destroy
the original structure and disrupt the homeostasis of the
environment, ultimately leading to cell death (Xia et al., 2020).

In this study, we focused on genes related to pyroptosis and
described the role of pyroptosis in KIRC by studying the
correlation between gene expression and the survival landscape
of cancer patients and their clinicopathological characteristics, as
well as the possibility of targeting pyroptosis to treat KIRC. At the
same time, we further guided the clinical diagnosis and treatment
of pyroptosis by constructing a prognostic model of KIRC.

RESULT

Widespread Genetic Mutations of
Pyroptosis Related Genes
We used patients with cancer in The Cancer Genome Atlas (TCGA)
database as sample data and heatmaps to plot the mutations of

pyroptosis genes, including CNV (Figures 1A,B), SNV (Figure 1C),
and mRNA expression (Figure 1D) levels. In general, genetic
mutations of pyroptosis are widely present in most cancer types,
except for individual cancers such as THCA, SARC, SKCM, and
other non-obviousmutations in pyroptosis-related genes. Correlation
analysis of gene expression and the survival landscape (Figure 1E)
indicated that pyroptosis-related genes were most closely associated
with KIRC, and most of the genes were risk factors in patients with
KIRC. The survival curve (Figure 1F) also indicated that high
expression of most pyroptosis-related genes was correlated with
poor patient prognosis. Differences in methylation of pyroptosis-
related genes in KIRC were extensive, and most were related to
differences in mRNA expression (Figures 1G,H).

The Three Clusters Correspond to the
Expression of Pyroptosis Related Genes
Using unsupervised cluster analysis, we classified the KIRC
patient samples obtained from TCGA, and we obtained three
clusters (Figure 2A). The heatmap shows that mRNA expression
levels of cluster1, which represents the high expression of

FIGURE 2 | (Continued).
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pyroptosis, were generally upregulated, and mRNA expression of
cluster3, representing the low expression of pyroptosis, was
generally upregulated. The enrichment scores (Figure 2B) and
survival curves (Figure 2C) of the three clustered pyroptosis-
related genes also proved this: cluster1 had a high concentration
of pyroptosis-related genes and poor prognosis; cluster3 had a
low concentration of pyroptosis genes and good prognosis, while
cluster2 was between the two.

Expression of Classical Oncogenes,
Histone Modified Genes, and Regulon
Figures 2D,E show how two histone-related genes (HDAC and
SIRT) were expressed in three clusters. The expression levels of
some HDAC protein family regulatory genes such as DNMT1,
HDAC1, HDAC3, HDAC7 and HDAC10 were markedly up-
regulated in cluster1, while the expression level of HDAC11 was
substantially down-regulated (Figure 2D). The regulation of

FIGURE 2 | (Continued). (A) All KIRC samples are divided into three groups according to different levels of pyroptosis-score: high expression group (cluster1),
medium expression group (cluster 2) and low expression group (cluster 3. Color changes in the color bar on the right represent different values: dark red represents up-
regulation of mRNA expression and dark blue represents down-regulation of mRNA expression. The closer the pyroptosis-score is to 0.4, the redder the color is, and the
closer it is to -0.6, the bluer the color is. The three groups formed through cluster analysis are represented by different colors: violet represents cluster1, olive green
represents cluster2, and purplish-blue represents cluster3. (B) The violin plots reveal the enrichment score of the three clusters, and the color differentiation was the
same as in (A) (C) Survival curves based on the three clusters. (D–F) The heatmap shows the expression of the three clusters of classic oncogenes and histone
deacetylation-related genes, with red represents high expression and blue represents low expression as indicated by the color block on the right. (G) The heatmap
shows the expression levels of upstream transcriptional regulators in the three clusters, with low expression in blue and high expression in yellow, as shown in the color
block on the right.
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FIGURE 3 | (A) Correlation between pyroptosis-score and immunotherapy predicted pathways. The color bar on the right indicates Pearson R that the redder the
color block is, the greater the correlation coefficient is, and the more purple the correlation coefficient is. The line color shows the p-value, with green representing p <
0.001, orange and violet representing not applicable and no statistical significance, respectively. Line thickness represents correlation coefficient, ranging from 0.25 to
1.00, the solid line represents positive correlation, the dotted line represents negative correlation. (B) Correlation between pyroptosis-score and signature gene
pathway. (C) The box plots show the IC50 prediction of KIRC cells treated with a common tumor-targeted drug. (D) The heatmap shows the correlation between the
sensitivity to drugs results in various cancers obtained from the CTRP database and the mRNA expression levels of pyroptosis-related genes. (E) The heatmap shows
the correlation between the sensitivity of drugs results in various cancers obtained from the GDSC database and the mRNA expression levels of pyroptosis-
related genes.
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SIRT protein family genes was interesting (Figure 2E), in
addition to SIRT1 and SIRT5 showing markedly low
expression in cluster1, SIRT6 and SIRT7 were highly expressed
in cluster1. SIRT2, 3, and 4 showed considerably low expression
in cluster3 which represents the expression level of pyroptosis
genes showed little change, and at the same time in cluster1,2 was
high expression, this abnormal phenomenon is thought
provoking. When we focused on the expression of classical
carcinogenic genes, a similar abnormal situation was observed
with SIRT expression (Figure 2F). However, except for HRAS,
gene expression was generally low in cluster1,2 and high in
cluster3. In contrast, the expression of HRAS was high in
cluster1,2 and low in cluster3.

We believe that the results of HDAC and SIRT indicate that
pyroptosis mutations in cancer are closely related to histone
modification. The expression of classical oncogenes lends
credence to the belief that the pyroptosis mutant signaling
pathway is independent of other classical cancer pathways,
which has significant research value.

To further explore transcriptome differences, we obtained 15
upstream transcription factors of 27 pyroptosis-related genes
from TRRUST and calculated their transcriptional regulatory
network expression activity (Figure 2G) in KIRC samples. The
activities of SPI1, PML, RELA, GFI1, AATF, and ING4 were
considerably higher in cluster1 than in cluster2, while the
activities of ERCC2 and ABL1 were markedly lower in
cluster1 than in cluster2. These results suggest that
epigenetically driven transcriptional networks may be
important differentiators of sample clustering.

Association Analysis of Cancer Treatment
To further explore pyroptosis treatment, we analyzed the
correlation between the pyroptosis pathway and the KIRC
signature pathway in KIRC and the predictive pathway of
immunotherapy. The heatmap shows that many pyroptosis-
related genes are closely related to many signature pathways of
KIRC and immunotherapy-related pathways. In
immunotherapy-related pathways (Figure 3A), the correlation
between pyroptosis and other pathways was statistically
significant and positively correlated except for systemic lupus
erythematosus. In the KIRC signature pathway, most of the
pathways except urothelial differentiation, epithelial-
mesenchymal transition (EMT) differentiation, and smooth
muscle were statistically significant and positively correlated
with pyroptosis. Neuroendocrine differentiation was negatively
correlated with pyroptosis (Figure 3B).

The Genomics of Drug Sensitivity in Cancer (GDSC) database
is essential in predicting the outcomes of pharmacological trials in
patients with ccRCC. Based on the expression of cell line gene
profiles in the GDSC database and the support of the pRRophetic
algorithm, we predicted the pharmacological effects of ccRCC
cells against 12 common cancer chemotherapy agents and
targeted drugs: pazopanib, sorafenib, sunitinib, nilotinib,
vorinostat, axitinib, gefitinib, temsirolimus, lapatinib,
metformin, bosutinib, and tipifarnib. These include many
clinically common targeted drugs for ccRCC patients, such as
Pazopanib, Sunitinib and sorafenib (Bukowski, 2010; Motzer

et al., 2013; Qifei Wang et al., 2018), as well as metformin
(Kamarudin et al., 2019), which is considered to have
potential therapeutic value for many patients with cancer. The
results of drug IC50 prediction analysis showed that the predicted
IC50 value of most targeted drugs for cluster1 was significantly
lower than that of cluster2, indicating that patients with KIRC
and high expression of pyroptosis were more sensitive to these
conventional targeted drugs (Figure 3C). Thus, the application of
these targeted drugs to treat patients with KIRC and high
pyroptosis expression is of particular significance. From the
results, we observed that common clinically targeted drugs for
renal cancer at present: sunitinib, sorafenib, and temsirolimus
have high sensitivity to ccRCC cells with low pyroptosis
expression, which also indicates that the pyroptosis pathway
may have a guiding significance for the development of
targeted drugs for ccRCC.

Analysis of Immune Infiltration and Immune
Checkpoint Block
The application of PD-1 therapy in the treatment of these patients
has excellent prospects. The results of this section confirm that
pyroptosis has value in tumor immunotherapy, which is
consistent with the results of previous studies. The heatmap
shows a quantified correlation between immune cell
infiltration and pyroptosis (Figure 4A). The pyroptosis
pathway has a strong correlation with the immune infiltration
of patients with KIRC. The bubble plot shows the correlation
sequence between immune infiltration-related cells and
pyroptosis (Figure 4B). We selected the first four immune
cells with strong correlation to demonstrate their correlation,
and they were positively correlated with pyroptosis (Figures
4C–F). The heatmap showed that the response of the
pyroptosis-active group to immune checkpoint block therapy
after the correction was statistically significant (p = 0.007992008)
(Figure 4H). This indicates that patients with KIRC and high
expression of pyroptosis-related genes are likely to respond to
immune checkpoint blockade, and PD-1 or treatment with
CTLA-4 has application prospects for these patients. Extension
of the sample data to the three previously obtained clusters
showed a similar pattern (Figure 4G). Finally, to understand
the effects of pyroptosis on various types of immune systems, we
used heatmaps to show the correlation between different samples
in the identified different metagenes and sorted the samples
according to the pyroptosis-score size obtained by cluster
analysis (Figure 4I). The heatmap shows that as the
pyroptosis score increases, the expression level of each
metagene in the sample also gradually increases. It can be
considered that the pyroptosis pathway has a more extensive
impact on the immune system.

Prediction Model Based on Patient Clinical
Information and Gene Expression
The heatmap and forest map show the differences in the
expression of 27 genes in normal and tumor tissues and
their hazard ratios for diseases (Figures 5A,B). We
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randomly selected 10 genes with statistically significant effects
on KIRC (p < 0.05) for co-expression analysis (Figure 5C), and
the results showed that they had a strong co-expression
relationship. The number of independent variables in the
KIRC sample is large. When using 27 gene expressions to
construct the prediction model, model distortion inevitably
occurs owing to excessive variables. To reduce the interaction
between variables, LASSO regression was used using its
regularization mechanism to punish variables, eliminate
genes with strong collinearity, reduce the number of
variables, and prevent overfitting (Figures 5D,E). Based on
the selected genes, we calculated the risk scores of the samples.
Eventually, we obtained six genes for building the model:
GSDME, CASP3, CASP4, CASP5, CHMP3, and CHMP4C.
According to the risk score values obtained, the samples
were divided into two groups with high and low risk, and
their clinicopathological features (Figure 5F) and survival
landscape (Figure 5G) were compared. GSDME, CASP3,
CASP4 and CASP5 are highly expressed in the high-risk
group, while CHMP3 and CHMP4C have a lower

expression in the high-risk group. Receiver operating
characteristic (ROC) graphs were then drawn to calculate
the AUC values. The results showed that, except for 3-
(Figure 5H), 5- (Figure 5I), 7- (Figure 5J) and 10-years
(Figure Fig5K) were all authentic. Univariate COX
regression (Figure 5L) and multivariate COX regression
(Figure 5M) confirm that the risk score could be used as a
prognostic factor (p < 0.05). The Sankey plot (Figure 5N) was
used to show the final flow of the results obtained after the
analysis of the initial 27 genes, and the column diagram
(Figure 5O) was used to visualize the prediction model. In
the subsequent LASSO regression model building process, we
demonstrated the correlation between the risk score and
immune cells in various algorithms according to the order
of the risk score after obtaining the sample risk score
(Figure 5P).

Supplementary Results for GSCA
We obtained the correlation between pyroptosis-related genes
and KIRC from the GSCA website. The results obtained

FIGURE 4 | (A) The heatmap shows the correlation between all pyroptosis-related genes and various immune infiltration-related indicators. The color bar on the right
shows that the closer to brown, the greater the positive correlation, and the closer to green, the greater the negative correlation. * representative p < 0.05, ** represents p < 0.01.
(B) The bubble plot shows the degree of correlation. The bubble size represents the correlation size from 0.2 to 0.6, and the color represents the p-value from 0.1 to 0.4. (C–F)
The four scatter plots respectively show the correlation between pyroptosis- score and Tfh, Th1 cell, Th2 cell, and inflammation-promotion. (G) The ring plot shows the
predicted efficacy and benefit of three clusters of different immune checkpoint blocking therapies. (H) The heatmap shows the results of predicting the p-values obtained by
comparing pyroptosis-active and pyroptosis-inactive samples using PD-1 and CTLA4 treatment, and the comparison results of the p-values after Bonferroni correction. (I) To
identify the meta-genes of major expression vectors associated with immunotherapy, we screened the samples for 113 genes associated with 8 inflammatory factors. The
heatmap shows the expression of these 113 genes and other immunotherapy-related scores in the KIRC sample.
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from GSCA related to pyroptosis pan-cancer analysis (Figures
1G,H), drug prediction (Figures 3D,E), and immunotherapy
(Figures 5Q, R) were consistent with the results we analyzed.

DISCUSSION

With improvements in the tumor gene spectrum, cancer
therapy has evolved from early radiotherapy and
chemotherapy to targeted therapy, immunotherapy, and
other precision therapies (Blagosklonny, 2005). These
methods mainly focus on preventing cancer cell biosynthesis
and reducing their proliferation and metastasis. With the

research progress, scientists have found that the expression
of genes regulating cell death in cancer cells is mostly inhibited
(Strasser and Vaux, 2020). This leads to RCD in cancer
cells not being carried out. Therefore, the induction of
cancer cell death by regulating RCD-related genes has
become a focus of research (Garg and Agostinis, 2017).
Pyroptosis is a type of RCD usually caused by inflammatory
cells. Its main feature is cell expansion until the cell membrane
ruptures, and the content overflows, causing a strong
inflammatory response. The occurrence of pyroptosis
depends on the caspase and GSDM protein families. After
the GSDMs protein is cleaved by activated caspase, the GSDM
n-terminal (GSDM-nt) is released, bound to the cell

FIGURE5 | (A) The heatmap shows the expression of pyroptosis-related genes in the tumor group (pink) and the normal group (light blue). The color bar on the right
indicates that the closer to red, the more up-regulated the expression, the closer to blue, the more down-regulated the expression. (*: p < 0.05, **: p < 0.01, ***: p < 0.001)
(B) The forest map shows the hazard ratio of different pyroptosis-related genes in KIRC. (C) The co-expression relationship between 10 pyroptosis-related genes with
significant statistical significance, their regression relationship is displayed with scatter plots, the correlation coefficient is represented by color, a positive correlation
is red, a negative correlation is blue, the deeper the color represents the greater correlation. (D–E) Six variables (genes) were screened out by LASSO regression to
construct the prediction model. (F) The heatmap shows differences in the expression of the six selected genes and clinicopathological features between the high- and
low-risk groups with a risk-score cut-off =0.5. (*: p < 0.05, **: p < 0.01, ***: p < 0.001) (G) Survival curves of high-risk and low-risk groups. (H–K) The ROC curve of
survival prediction at 4-time points shows the authenticity of the prognostic model, from left to right: top row: 3 years, 5 years, bottom row: 7 years, 10 years. In general,
AUC> 0.7 is considered to be true. (L)Univariate Cox regression analysis. (M)Multivariate COX regression analysis. (N) The Sankey plot shows the classification of these
pyroptosis-related genes after our analysis: the level of expression in KIRC tumor tissues and the role of cancer suppressor or carcinogenic in KIRC. (O) The nomogram
of the prognostic model. (P)Heatmap for immune responses based on different algorithms among the high- and low-risk groups. Different algorithms are represented by
different colored area bars. (Q) Correlation between CNV mutations of different pyroptosis-related genes and survival coefficient in KIRC. (R) Correlation between
methylation of different pyroptosis-related genes and survival coefficient in KIRC.
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membrane, and penetrates the cell membrane, resulting in
changes in cell osmotic pressure, cell swelling, and rupture
(Tang et al., 2019).

In our study, we first evaluated the role of pyroptosis-related
genes in cancer using a pan-cancer analysis. In pan-cancer
analysis, pyroptosis has been correlated with most cancers. In
cancers such as UCEC, COAD, and SKCM, more than half of the
genes in the entire gene set have mutations. In addition to SARC,
PAAD, SKCM, THYM, and other cancers, there was no
significant change in expression, and the expression levels in
20 types of cancer samples were changed. This indicates that
pyroptosis is an important factor in the occurrence and
progression of cancer. In the survival landscape analysis of
samples, we noticed that most of the pyroptosis-related genes
in the KIRC samples had a risk-associated effect. These genes are
roughly classified and can be divided into caspase regulatory
genes (Kesavardhana et al., 2020) (CASP1, 3, 4, 5), GSDM
regulatory genes (Kovacs and Miao, 2017) (GSDMD,
GSDME), apoptosis-related protein regulatory gene (Bouillet
and Strasser, 2002) (BAX, BAK), and CHMP family genes
(Tsang et al., 2006). Subsequently, through unsupervised
cluster analysis, we divided the KIRC samples into three
clusters (cluster1, cluster2 and cluster3) and conducted a
follow-up analysis.

Our results showed that caspase and GSMD family proteins, as
well as apoptosis-related and CHMP family proteins involved in
pyroptosis, were correlated with the occurrence and progression
of KIRC. In the survival landscape analysis, we noted that most
pyroptosis-related genes in the KIRC samples play a risk-
associated role. Based on the mechanism of pyroptosis, many
researchers regard the activation of pyroptosis in cancer as a new
method to study cancer treatment. However, our study concluded
that the overall high expression of pyroptosis-related genes in
KIRC is not beneficial for the survival of patients with cancer. To
explore this abnormal phenomenon and clarify the specific
mechanism by which pyroptosis affects the survival rate of
patients with KIRC, we analyzed the expression of histone
modification and classical carcinogenic genes in the expression
matrix of the three clusters. These results showed a correlation
between pyroptosis and histone modifications. We speculated
that this might be one of the reasons why pyroptosis plays a risk-
associated role in KIRC; pyroptosis reduces gene stability by
affecting histone modification, leading to the progression of
KIRC. There have been no detailed studies on the connection
between pyroptosis and histones in recent years, and only some
studies have speculated on the relationship between the two
mechanisms based on the correlation between family proteins
(Chen et al., 2018; Magupalli et al., 2020). Therefore, we believe
that it is necessary to conduct in-depth studies on the specific
relationship between pyroptosis and histones, which is of
great help in the treatment of various cancers, including
KIRC, and other diseases related to pyroptosis. In this regard,
we believe that this indicates that pyroptosis is independent of
other carcinogenic mechanisms in KIRC and is unique, which
also highlights the importance of studying the effects of
pyroptosis on KIRC.

At present, KIRC treatment mainly involves targeted drugs
and immune checkpoint blocking therapy (Caliskan et al.,
2020). Subsequently, we conducted a variety of analyses for
the treatment of KIRC, including drug and immune predictive
analyses. As can be seen from the drug prediction results, in
most targeted drugs, different clusters have different drug
sensitivities, which indicates that the drug mechanism of
KIRC and pyroptosis mechanism currently common targeted
drugs overlap, and the pyroptosis mechanism contributes to
targeted drug therapy, so it revolves around pyroptosis
mechanisms that have certain clinical value in developing
new targeted drugs. After determining the correlation
between immune cells and pyroptosis, we found that
pyroptosis was markedly beneficial in the response of
patients to PD-1 treatment by judging the response of
different pyroptosis expressions to PD-1 and CTLA-4
immune checkpoint blockade. This means that patients with
high pyroptosis expression responded better to PD-1 treatment.
The application of PD-1 therapy in treating these patients has
excellent application prospects (Miao et al., 2018). The results
confirmed that pyroptosis has value in tumor immunotherapy,
which is consistent with the results of the previous studies
(Wang et al., 2020). Pyroptosis is also associated with other
immune system components in patients with KIRC, proving
that pyroptosis is of high value in immune infiltration
and inflammation-related immunotherapy (Aachoui et al.,
2013).

Using the clinicopathological information from TCGA, we
constructed a prediction model for pyroptosis, and classified all
27 pyroptosis-related genes, and found that, except for a small
number of genes with high expression, such as IL1A, IL-1B, and
TP63, which play a protective role on KIRC, most of the other
genes, including Casp3-45, GSDME, and CHMP3 4C screened
by LASSO regression, were classified as risk genes. ROC curves
confirmed that our predictions for 5-, 7-, and 10-years were true
and accurate, which indicates that our model has clinical
prediction ability. When exploring the molecular mechanism
of pyroptosis, we found an interesting finding. The GSDME
protein of pyroptosis can not only drill holes in the cell
membrane but also in the nuclear membrane (Majno and
Joris, 1995; D’Arcy, 2019). In an accurate sense, GSDME
protein is a biofilm drilling protein. We speculate that this
situation can explain the abnormal phenomenon in KIRC:
patients with high expression of pyroptosis can produce a
large number of GSDME proteins in cancer cells and drill
holes in many biofilms in cells. Drilling of the cell membrane
can be repaired by cancer cells themselves, but nuclear
membrane drilling disturbs internal gene stability and
increases mutation probability. This will accelerate cancer
progression and lead to a low survival rate in patients.
However, the application of some drugs increases the efficacy
of GSDME in different ways, disrupts the balance between
biofilm damage and repair, and directly destroys cancer cells,
and thus still has an excellent therapeutic effect on patients (Hu
et al., 2020; Zhang et al., 2020; De Schutter et al., 2021; Ibrahim
et al., 2021).
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MATERIAL AND METHOD

Data Acquisition and Preliminary Analysis:
The Cancer Genome Atlas Database
In the early stages, we used GSEA software to obtain 27 genes
closely related to pyroptosis from the REACTOME database
(Jassal et al., 2020) (https://reactome.org/). The set of cellular
biomolecular pathways in the REACTOME database helped to
quickly and accurately identify the pathways and genes associated
with pyroptosis. After identifying pyroptosis-related genes,
sample data of all cancers, including KIRC and control
groups, were obtained using the R/Bioconductor package
TCGAbiolinks (Colaprico et al., 2016) from the pan-cancer
project in TCGA database (Tomczak et al., 2015) (https://
portal.gdc.cancer.gov/), including basic information of samples,
gene expression, clinicopathological characteristics. The TCGA
database currently contains various clinical and gene expression
data of more than 20,000 patients with more than 30 cancer types,
which is of great help for the analysis of specific genes or pathways
in pan-cancer. RNA-seq cohort of KIRC included 72 normal and
539 cancer samples. The Perl language was used to process the
data and analyze the correlations between them. The gene
expression data of 72 para-carcinoma tissue samples and 539
cancer samples obtained from TCGA, as well as the clinical data
of the latter, were included in the study without artificial
screening or elimination. In the analysis of clinical and
pathological information, we decided to screen out samples
with missing information on tumor, node, metastasis (TNM),
stage, grade, and survival time of fewer than 30 days from the 539
ccRCC patient samples obtained from TCGA. At the same time,
we used K-nearest neighbor (KNN) to fill in the missing gene
expression values of part samples.

Grouping of Data: Cluster Analysis
We used the GSVA algorithm in R (Hänzelmann et al., 2013) to
calculate the enrichment score of pyroptosis-related genes and
then screened the genes with differences between samples and
determined whether they were highly expressed, poorly
expressed, or not differentially expressed (halfwidth = 0.025).
Based on the difference in signature gene expression, cluster1
(high expression), cluster2 (low expression) and cluster3
(medium expression) were obtained by clustering analysis of
these samples using the Ward.D algorithm. We then
constructed violin plots of signature gene enrichment scores
and survival curves in the three clusters to verify the
differences among the three clusters.

Differential analysis of the three clusters: classical oncogenes
and histone modifications

Based on the three clusters obtained, we used R to draw a
heatmap (pheatmap package) to show the differences in gene
expression of various types. Among them are the classic
oncogenes in KIRC: VHL, EGFR, TP53 and 15 other common
oncogenes (Jonasch et al., 2021). They have an impact on the
proliferation of cancer cells, metastasis, and generation of blood
vessels that supply cancer tissue. Chemical modification of
histones that make up chromosomes is considered an

important factor in the cancer development. Differences in the
expression of two genes that have important effects on histone
modification, the SIRT(Jeh et al., 2017) gene family and the
HDAC (Haberland et al., 2009) gene family, in the three
clusters are also shown in the heatmap. The upstream
transcription factor of pyroptosis was obtained from TRRUST
(https://www.grnpedia.org/trrust/)(Han et al., 2018), the
transcriptional regulatory network was constructed using the
RTN package in R (Groeneveld et al., 2019), and regulon
activity was calculated.

Cancer Treatment: Multi-Pathway
Correlation Analysis and Drug Therapy
Prediction
To explore the multiple possibilities of KIRC treatment, the GSVA
algorithm was used to calculate the enrichment degree of
pyroptosis-related genes in the KIRC signature and
immunotherapy prediction pathways, and the results were
expressed using two autocorrelation heatmaps. The GDSC
database provided a large number of drug sensitivity test results
for cancer cells for different targeted drugs. Using the GDSC
database (https://www.cancerrxgene.org/) (Yang et al., 2012), we
could quickly identify targeted drugs with apparent therapeutic
effects on KIRC. Using the pRRophetic predictable function
provided by the pRRophetic package in R (Geeleher et al.,
2014), a ridge regression model was constructed to predict the
IC50 of drugs according to the cell line and TCGA gene expression
profiles in GDSC. Several classic and novel targeted drugs have
been selected to treat KIRC tumor cells, including pazopanib,
sorafenib, sunitinib, nilotinib, vorinostat, axitinib, gefitinib,
temsirolimus, lapatinib, metformin, bosutinib, and tipifarnib.
Using the GDSC database, we compared the therapeutic ability
of several common tumor-targeting drugs against cancer cells in
three clusters, and the results are represented in IC50.

Immune Checkpoint Inhibition (Haanen and
Robert, 2015): Programmed Cell Death
Protein 1 and CTLA-4
Immune infiltration-related indicators of KIRC represent the
sensitivity of KIRC to immunotherapy (Zhang et al., 2019). We
use the ssGSEA algorithm in R (Subramanian et al., 2005; Xiao
et al., 2020) to quantify the level of immune cell infiltration,
using Spearman rank correlation to calculate the correlation
between genes and levels of immune cell infiltration. Finally,
we obtained the correlation between pyroptosis-related genes
and immune infiltration-related indicators and drew a
heatmap to display the results. At the same time, scatter
plots were used to show the regression relationship between
several important immune infiltration indicators and
pyroptosis. We drew a bubble plot to show the correlation
coefficients of the pyroptosis score and various immune
infiltration indicators. To help us better analyze, we selected
cluster1 (high expression) and cluster2 (low expression)
for comparison. Using the TIDE algorithm (http://tide.dfci.
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harvard.edu/login/), we calculated the response of pyroptosis-
active and pyroptosis-inactive KIRC patients to the two
immune checkpoint blocking therapies, PD-1 (Chamoto
et al., 2017) and CTLA-4 (Mitsuiki et al., 2019). We
performed Bonferroni correction on the p-values obtained
and showed the results with a heatmap.

Reduction Feature: Metagenes
Based on the assumption that the expression of a large number of
genes is highly interdependent, we applied unsupervised
clustering for feature reduction. Cluster analysis is based on
the association between the expression of a set of genes in
different cell types in a sample and the differentiation
programs/pathways associated with a particular expression
profile. We excluded genes that did not show correlations with
other genes above a certain threshold (0.7) and finally screened
clusters containing at least 10 elements, totaling 112 probesets, to
identify metagenes (major vectors).

Filtering of variables and building a prediction model: Univariate
and multivariate COX regression and LASSO regression

Using the glmnet and survival package in R, we used LASSO
regression to construct the model (Engebretsen, 2019). The risk
score was calculated using the best cut-off value, and the samples
were divided into high-risk and low-risk groups. After the number
of variables (genes) was reduced to six by LASSO regression, the
risk score (Risk score = ∑n i = 1 (Expi*Coei), N, Coei, and Expi
represent gene number, the regression correlation coefficient
obtained by LASSO regression analysis, and gene expression
level, respectively.) and other clinical information of the
samples were used to construct a prediction model. Test
samples were used to verify the model, and the authenticity of
the prediction model at different times (3-, 5-, 7-, and 10-years)
was determined by drawing ROC plots. Finally, the results are
displayed in the form of a nomogram. We then used a heatmap to
show the correlation between the risk-score values obtained from
LASSO regression and different immune cells in various
algorithms, including TIMER, CIBERSORT, Cibersort-ABS,
QUANTISEQ, MCPCOUNTER, XCELL, and EPIC.

Verification of Results: Gene Set Context
AnalysisLite
GSCALite (Liu et al., 2018) is a database used for the analysis of
gene set cancers related to mRNA expression, mutation, immune
infiltration, and drug resistance. GSCA integrated more than
10,000 multidimensional genome data of 33 cancers from TCGA
and more than 750 small-molecule drugs from GDSC and CTRP.

The ImmuCellAI algorithm was used to analyze the genomes of
24 immune cells. We used this website for gene set genome
(expression level, CNV, SNV, and DNA methylation) and
immune genome analysis. We obtained the results of the
correlation analysis between genomic expression and mutation
level and samples of survival and immunity of patients with KIRC
from the GSCA website.
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GLOSSARY

RCD regulatory cell death

KIRC kidney renal clear cell carcinoma

RCC renal cell carcinoma

ACC Adrenocortical carcinoma

BLCA Bladder Urothelial Carcinoma

BRCA Breast invasive carcinoma

CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma

CHOL Cholangiocarcinoma

DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma

ESCA Esophageal carcinoma

GBM Glioblastoma multiforme

HNSC Head and Neck squamous cell carcinoma

KICH Kidney Chromophobe

KIRP Kidney renal papillary cell carcinoma

LAML Acute Myeloid Leukemia

LGG Brain Lower Grade Glioma

LIHC Liver hepatocellular carcinoma

LUAD Lung adenocarcinoma;

LUSC Lung squamous cell carcinoma

MESO Mesothelioma

OV Ovarian serous cystadenocarcinoma

PAAD Pancreatic adenocarcinoma

PCPG Pheochromocytoma and Paraganglioma

PRAD Prostate adenocarcinoma

READ Rectum adenocarcinoma

STAD Stomach adenocarcinoma

STES Stomach and Esophageal carcinoma

UCS Uterine Carcinosarcoma

UVM Uveal Melanoma

THCA thyroid carcinoma

THYM thymoma

UCEC uterine ccorpus endometrial carcinoma

SKCM skin cutaneous melanoma

COAD colon adenocarcinoma

TCGA the cancer genome atlas

GSCA Gene Set Context Analysis

CNV the copy number variation

SNV the single nucleotide variation

LASSO least absolute shrinkage and selection operator

GSEA gene set enrichment analysis;

CTLA-4 cytotoxic t-lymphocyte-associated protein 4

PD-1 programmed cell death protein 1

SPI1 Hematopoietic Transcription Factor PU.1

PML Promyelocytic leukemia protein

RELA RELA Proto-Oncogene, NF-KB Subunit

GFI1 Growth Factor Independent 1 Transcriptional Repressor

AATF Apoptosis Antagonizing Transcription Factor

ING4 nhibitor Of Growth Family Member 4

HDAC istone Deacetylase

SIRT Sirtuin

SARC Sarcoma

HMGB1 High Mobility Group Box 1

BAK BCL2 Antagonist/Killer

BAX BCL2 Associated X, Apoptosis Regulator

CHMP Charged Multivesicular Body Protein

IL Interleukin

IRF1 Interferon Regulatory Factor 1

ELANE Elastase, Neutrophil ExpressedCASP: Caspase

GSDM Gasdermin GZMB: Granzyme B

TP63 Tumor Protein P63

TP53 Tumor Protein P53

CYCS Cytochrome C
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