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Abstract: The goal of the present research was to present a predictivity statistical approach 

applied on structure-based prediction models. The approach was applied to the domain of 

blood-brain barrier (BBB) permeation of diverse drug-like compounds. For this purpose, 

15 statistical parameters and associated 95% confidence intervals computed on a 2 × 2 

contingency table were defined as measures of predictivity for binary quantitative 

structure-property models. The predictivity approach was applied on a set of compounds 

comprised of 437 diverse molecules, 122 with measured BBB permeability and 315 

classified as active or inactive. A training set of 81 compounds (~2/3 of 122 compounds 

assigned randomly) was used to identify the model and a test set of 41 compounds was 

used as the internal validation set. The molecular descriptor family on vertices cutting was 

the computation tool used to generate and calculate structural descriptors for all compounds. 

The identified model was assessed using the predictivity approach and compared to one 

model previously reported. The best-identified classification model proved to have an 

accuracy of 69% in the training set (95%CI [58.53–78.37]) and of 73% in the test set 

(95%CI [58.32–84.77]). The predictive accuracy obtained on the external set proved to be 

of 73% (95%CI [67.58–77.39]). The classification model proved to have better abilities in 

the classification of inactive compounds (specificity of ~74% [59.20–85.15]) compared to 

abilities in the classification of active compounds (sensitivity of ~64% [48.47–77.70]) in 
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the training and external sets. The overall accuracy of the previously reported model seems 

not to be statistically significantly better compared to the identified model (~81%  

[71.45–87.80] in the training set, ~93% [78.12–98.17] in the test set and ~79%  

[70.19–86.58] in the external set). In conclusion, our predictivity approach allowed us to 

characterize the model obtained on the investigated set of compounds as well as compare it 

with a previously reported model. According to the obtained results, the reported model 

should be chosen if a correct classification of inactive compounds is desired and the 

previously reported model should be chosen if a correct classification of active compounds 

is most wanted. 

Keywords: in silico prediction; partition-coefficient; blood-brain barrier (BBB); 

permeation; structure-property relationship (SPR); molecular descriptors family on vertices 

cutting (MDFV) 

 

1. Introduction 

The blood-brain barrier (BBB), complex membranous system of brain capillary endothelial cells, 

pericytes, astrocytes, and nerve endings, plays an essential role in maintaining the homeostasis of the 

central nervous system by blocking the movement of molecules [1]. Determination of blood-brain 

barrier penetration is crucial in the assessment of compounds suitability as central nervous system  

drug [2]. As the population’s life expectancy increases and neurological pathologies become more 

frequent, there is a need to rapidly and cost and resource effectively identify potentially adverse effects 

of drugs acting as CNS (central nervous system) and non-CNS targets [3,4]. 

Quantitative structure-activity/property relationship models support the ―fail fast, fail cheap‖  

model [5] in analysis of the link between structure of the compounds and associated activity/property. 

Different techniques have been used in BBB modeling. One of the earliest predictions of BBB 

permeation was the one presented by Young et al. [6] as a linear relationship between logBB and 

ΔlogP (histamine H2 receptor agonists). 

Crivori et al. used descriptors from 3D molecular fields to estimate the BBB and identified a model able 

to correctly predict 90% of the permeation data [7]. Narayanan and Gunturi used a systematic variable 

selection and modeling method based on the prediction on a sample of 88 BBB compounds and identified 

as best performing one model with three descriptors and one model with six descriptors with higher 

performances [8]. These models proved to have a success ratio of 82% in predicting the BBB + external 

data set. Statistical characteristics of their best models are presented in Equation 1 and Equation 2. 

R = 0.8425, Rloo = 0.8239, F = 68.49, se = 0.4165, j = 3, n = 88 (1) 

R = 0.8638, Rloo = 0.8472, F = 60.982, se = 0.3919, j = 6, n = 88 (2) 

where R = correlation coefficient, Rloo = leave-one-out correlation coefficient, F = F-value,  

se = standard error of estimate, j = number of descriptors in the model, n = sample size. 

Subramanian and Kitchen [9] identified that logP, polar surface area and some electrotopological 

indices are able to provide accurate predictive model for logBB (logarithm of brain to plasma 
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concentration ratio). Linear regression and multivariate genetic partial least squares approaches were 

applied and the obtained model proved to have a success rate higher than 70% for active compounds 

and almost 60% for inactive compounds [9]. Subramanian and Kitchen concluded that the prediction 

consensus was not able to significantly improve the discrimination of active and inactive molecules on 

central nervous system. 

Goodwin and Clark analyzed and presented the main problems of in silico prediction of blood-brain 

barrier penetration: quality of measured data available and prediction uncertainty and relevance of 

predictive models [10]. They pointed out the usefulness of local and global models as well as of the 

accuracy of experimental data by highlighting some success stories [11–13]. 

Non-linear approaches have also been used to predict the distribution of compounds based on 

different states (neutral, cationic and anionic) of the compounds distributed into three different 

compositions (lipid, protein and water) [14]. The statistical characteristics of the predictive model for 

the distribution of compounds were as follows [14]: All data: R (correlation coefficient) = 0.906,  

se (standard error) = 0.326, n (sample size) = 160; Training set: R = 0.908, se = 0.320, n = 139; and  

 Test set: R = 0.903, se = 0.297, n = 21. 

Klon reviewed the computational models of central nervous system penetration according to the 

type of variable of interest (quantitative–for logBB models and qualitative–for binary models) [15]. He 

proposed the permeability surface product and the fraction unbound in the brain as appropriate metric 

endpoints [15]. Although, due to the availability of the experimental data, the blood:brain ratio is still 

used for in silico modeling [16,17]. 

Nowadays, many models for prediction of logBB are available in the literature. However, how the 

best model could be identified? How can different models be compared to one another? A new 

classification model based on multi-linear regression to the domain of blood-brain barrier modeling is 

introduced in this manuscript. A series of 15 statistical parameters were introduced to be used as 

diagnostic tool of a binary logBB model as well as for the comparison of different classification 

models. The study aimed to present a new approach in assessment of a predictivity of a structure-based 

prediction model and was effectively accomplished. 

2. Results 

The multiple linear regression (MLR) that accomplished as many criteria as possible and proved to 

perform best is presented in Equation 3 (a—MLR equation, b—statistical characteristics of MLR 

model, c—statistical characteristics model in leave-one-out analysis). 

ŶlogBB = 0.5370(±0.30) − 8.4411(±4.42) × TLgFAIDI − 497.0205(±144.97) × GAmIAaDI + 

4.1129(±1.55) × TAgFIADL − 3.1303(±1.26) × TAgPIADL 
(3a)  

R = 0.7816 (95%CIr [0.6791−0.8541]), R
2
 = 0.6109; 

seest = 0.61; ntr = 81; Fest(p) = 30 (6.41 × 10
−15

) 

tX1(p) = 3.59 (5.84 × 10
−4

); tX2(p) = −3.80 (2.87 × 10
−4

); tX2(p) = −6.83 (1.85 × 10
−9

); 

tX4(p) = 5.30 (1.11 × 10
−6

); tX5(p) = −4.96 (4.21 × 10
−6

) 

(3b) 

Rloo = 0.7334; R
2

loo = 0.5378; sloo = 0.65; Floo(p) = 22 (4.27 × 10
−12

); 

R (p) = 0.7816 (7.31 × 10
−18

); rsQ(p) = 0.7636 (9.18 × 10
−17

); 
(3c) 
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ρ(p) = 0.7460 (8.91 × 10
−16

); τa(p) = 0.5568 (1.37 × 10
−10

); τb(p) = 0.5578 (1.53 × 10
−10

); 

τc(p) = 0.5499 (2.16 × 10
−10

); Γ(p) = 0.5589 (8.86 × 10
−5

) 

where ŶlogBB = property estimated by MDFV model; TLgFAIDI (X1), GAmIAaDI (X2), TAgFIADL (X3), 

and TAgPIADL (X4) = members of MDFV; the values in round brackets allow us to obtain the lower 

(subtraction) and upper (addition) confidence boundary for the slope parameters; R = correlation 

coefficient; R
2
 = determination coefficient; sest = standard error of estimate; ntr = sample size-training 

set; Fest (p) = F-value of the model (p-value); t = t-value; R
2

loo = cross-validation leave-one-out square 

correlation coefficient; sloo = standard error of predicted; Floo = F-value on cross-validation leave-one-out 

model; values in the [] = 95% confidence interval; r = Pearson correlation coefficient between property 

observed and estimated by the model; rsQ = semi-quantitative correlation coefficient; ρ = Spearman 

rank correlation coefficient; τa, τb, τc = Kendall's correlation coefficients; Γ = Gamma correlation 

coefficient. The descriptor’s contributions to the logBB of investigated compounds are as follows: 

 Interaction Via: bonds (topology – TLgFAIDI, TAgFIADL, and TAgPIADL) & space 

(geometry − GAmIAaDI); 

 Dominant Atomic Property: electronic affinity (GAmIAaDI, TAgFIADL, and TAgPIADL) & 

melting point (TLgFAIDI); 

 Interaction Descriptor: related to inverse of property and distance (TAgFIADL, TAgPIADL 

GAmIAaDI); 

 Structure on Property Scale: logarithm (TAgFIADL and TAgPIADL) & identity (TLgFAIDI 

and GAmIAaDI). 

Two descriptors (TAgFIADL and TAgPIADL) proved to correlate significantly (a perfect 

concordance between all seven correlation methods) but neither of them significantly correlates with 

the observed property. No other statistically significant correlations could be identified between 

descriptors or between descriptors and logBB. The Durbin-Watson statistics was computed as a 

measure of autocorrelation. A value of 2.108 was obtained for the model presented in Equation 3. 

A concordance of 69% (also known as accuracy) was obtained for training set after transformation 

of observed and estimated logBB as dichotomial variables. The concordance according with 

classification of compounds as active and inactive (based on observed value) are known as sensitivity 

and specificity. 

The prediction ability of the model presented in Equation 3 was investigated on the test set. The 

obtained statistical characteristics are presented in Equation 4. 

R = 0.7060 (95%CI [0.5088−0.8327]); R
2
 = 0.4985; 

sepred = 0.76; nts = 41; Fpred(p) = 9 (2.92 × 10
−5

) 

r(p) = 0.7060 (1.55 × 10
−7

) rsQ(p) = 0.7459 (1.78 × 10
−8

); ρ(p) = 0.7787 (1.27 × 10
−9

); 

τa(p) = 0.5780 (3.94 × 10
−6

) τb(p) = 0.5816 (4.43 × 10
−6

); τc(p) = 0.5640 (6.29 × 10
−6

); 

Γ(p) = 0.5852 (3.01 × 10
−3

) 

(4) 

where sepred = standard error of predicted; nts = sample size of test set; Fpred = F-value of predicted. 

The concordance between observed and predicted property when classification was applied on the 

test set proved to be of 73% (accuracy, see Table 1). The ability of the classification model, which 
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proved not to be a very good model in terms of goodness-of-fit, was analyzed for the training, test and 

external sets with the defined diagnostic parameters. The results are presented in Table 1. 

Table 1. Diagnostic of classification model presented in Equation 3. 

Parameter (Abbreviation) Equation 
Training Set (n = 81) 

[95%CI] 

Test Set (n = 41)  

[95%CI] 

External Set (n = 315) 

[95%CI] 

χ2 statistic (p-value)  10.29 (0.0013) 7.75 (0.0054) 28.24 (p < 0.0001) 

Φ  0.3564 0.4347 0.2994 

Accuracy (AC) 5 69.14 [58.53–78.37] 73.17 [58.32–84.77] 72.70 [67.58–77.39] 

Error Rate (ER) 6 30.86 26.83 27.30 

Prior proportional probability of 7    

-an active class  0.482 [0.371–0.592] 0.463 [0.318–0.614] 0.302 [0.253–0.354] 

-an inactive class  0.519 [0.408–0.630] 0.537 [0.367–0.682] 0.698 [0.644–0.749] 

Sensitivity (Se) 8 64.10 [48.47–77.70] 84.21 [63.16–95.05] 42.11 [32.54–52.15] 

False-negative rate 

(under-classification, FNR) 

9 

35.90 [22.30–45.51] 15.79 [4.95–36.84] 57.89 [47.85–67.46] 

Specificity (Sp) 10 73.81 [59.20–85.15] 63.64 [42.87–81.04] 85.91 [80.80–89.98] 

False-positive rate 

(over-classification, FPR) 

11 

26.19 [14.86–40.80] 36.36 [0.1896–0.5712] 14.09 [10.02–19.20] 

Positive predictivity (PP) 12 69.44 [53.32–82.51] 66.67 [46.76–82.76] 56.34 [44.74–67.43] 

Negative predictivity (NP) 13 68.89 [54.49–80.89] 82.35 [59.63–97.48] 77.46 [72.59–81.80] 

Post-test probability of 

classification 
14    

-as active (PCA) 
 

0.444 [0.340–0.553] 0.585 [0.433–0.726] 0.225 [0.177–0.281] 

-as inactive (PCIC) 0.556 [0.447–0.660] 0.415 [0.274–0.567] 0.775 [0.7259–0.818] 

Probability of a wrong classification 15    

-as active compound (PWCA)  0.306 [0.175–0.467] 0.333 [0.172–0.532] 0.437 [0.326–0.553] 

-as inactive compound (PWCI) 0.311 [0.191–0.455] 0.177 [0.055–0.404] 0.225 [0.177–0.281] 

Odds Ratio (OR) 16 5.03 [1.96–13.12] 9.33 [2.18–40.07] 4.43 [2.53–7.76] 

The comparison of correlation coefficient obtained by the model from Equation 3 with the models 

from Equation 1 (Steiger’s Z test = 1.15, p = 0.13) and Equation 2 (Steiger’s Z test = 1.65, p = 0.05) 

showed that the classification model is neither better nor worse in terms of goodness-of-fit. 

The proposed statistical parameters were applied as diagnostic tools for the model presented in 

Equation 2 and the results are presented in Table 2. 

Table 2. Diagnostic of classification model presented in Equation 2. 

Parameter (Abbreviation) Equation Training (n = 88) Test (n = 28) External (n = 92) 

χ2 statistic (p-value)  30.91 (p < 0.0001) 9.82 (0.0017) 28.76 (p < 0.0001) 

Φ  0.5927 0.5922 0.5591 

Accuracy (AC) 5 80.68 [71.45–87.80] 92.86 [78.12–98.17] 79.35 [70.19–86.58] 

Error Rate (ER) 6 19.32 7.14 20.65 

Prior proportional probability of 7    

-an active class 0.511 [0.408–0.614] 0.179 [0.074–0.350] 0.435 [0.337–0.537] 

-an inactive class 0.489 [0.375–0.602] 0.821 [0.644–0.927] 0.565 [0.457–0.674] 
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Table 2. Cont. 

Parameter (Abbreviation) Equation Training (n = 88) Test (n = 28) External (n = 92) 

Sensitivity (Se) 8 77.78 [64.06–87.87] 60.00 [20.97–90.51] 77.50 [62.85–88.14] 

False-negative rate (under-

classification, FNR) 

9 

22.22 [12.13–35.94] 40.00 [9.49–79.03] 22.50 [11.86–37.15] 

Specificity (Sp) 10 83.72 [70.48–92.25] 100.00 [87.79–100.00] 80.77 [68.45–89.55] 

False-positive rate (over-

classification, FPR) 

11 

16.28 [7.78–29.52] 0.00 [0.00–12.21] 19.23 [10.45–31.55] 

Positive predictivity (PP) 12 83.33 [70.48–92.25] 100.00 [36.84–100.00] 75.61 [60.69–86.63] 

Negative predictivity (NP) 13 
78.26 [64.76–88.14] 92.00 [75.85-97.97] 82.35 [70.12–90.77] 

Post-test probability of classification 

-as active (PCA) 

-as inactive (PCIC) 

14 0.477 [0.375–0.581]   

0.523 [0.419–0.625] 0.107 [0.034–0.265] 0.446 [0.347–0.548] 

0.477 [0.375–0.581] 0.893 [0.735–0.966] 0.554 [0.452–0.653] 

Probability of a wrong classification 

-as active compound (PWCA) 

-as inactive compound (PWCI) 

15    

0.167 [0.079–0.302] 0.000 [0.000–0.122] 0.244 [0.134–0.390] 

0.217 [0.119–0.352] 0.080 [0.020–0.242] 0.177 [0.092–0.299] 

Odds Ratio (OR) 16 
18.00 [6.25–52.39] n.a. 14.47 [5.32–39.99] 

Φ = coefficient of correlation in 2 × 2 contingency table; χ2 = Chi-squared statistic. 

3. Discussion 

In silico modeling has been revolutionized along with the development and improvement of 

computers and information technologies [18,19]. Chemoinformatics, bioinformatics, combinatorial 

chemistry [20], high throughput screening [21], virtual screening, de novo design [22], structure-based 

drug design [23–25] are approaches frequently used in the processes of drug discovery. The study 

aimed to present a new approach in the assessment of the predictivity of a structure-based prediction 

model and was effectively accomplished. A predictive model has been developed based on a family of 

structural descriptors (molecular descriptors family on vertices cut) using the multiple-linear 

regression method. The best performing MLR model was identified to accomplish a series of  

criteria [26] and its performances were assessed using statistical parameters computed on the 2 × 2 

contingency table. 

The models with the highest correlation coefficient, the highest Fisher parameter, the lowest 

standard error of estimate, and the smallest possible number of significant parameters was chosen (see 

Equation 3). All four descriptors used by the model had their significant contribution to the explanation 

of the BBB permeation, as it can be observed from Equation 3. The analysis of the best performing 

model in terms of descriptor’s contribution to the property (permeation of blood-brain barrier of  

drug-like compounds) revealed the following: 

▪ almost 61% of the variation of BBB permeability could be explained by the linear-relationship 

with structural-based descriptors; the interaction between property and structure is performed through 

bonds (topology) and space (geometry–first letter in descriptor’s name);  

▪ the penetrability of drug-like compounds proved to be related to electronic affinity (A–second 

letter from descriptor’s name) and melting point under normal temperature and pressure conditions (L) 
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of BBB compounds; the structure on property scale proved to be of identity (I–last letter in 

descriptor’s name), and logarithm (L) type.  

The obtained model proved to be a reliable model with a reasonable goodness-of-fit since the 

sample size was so heterogenous. The absence of statistically significant correlation between 

descriptors and the Durbin-Watson statistics (based on its value, the presence of autocorrelation was 

withdrawn [27,28]) sustained the reliability of the MLR model. The results obtained in leave-one-out 

cross validation showed that the model could have abilities in prediction on external data since the 

difference between determinations was of 0.07 [29]. Based on results obtained in leave-one-out cross 

validation analysis, we expected the difference between the model obtained in the training set and its 

performances on the test set not to be higher/smaller than 12% in terms of the determination 

coefficient. The test set, a set that comprised a number of 41 drug-like compounds with known 

permeation on blood-brain barrier, was analyzed for its prediction and penetration abilities. As 

expected, the determination coefficient was small compared to the determination coefficient obtained 

on the training set but proved not to significantly different since the associated 95% confidence 

intervals overlap with one another. 

The goodness-of-fit of our model (Equation 3) was compared with two previously reported  

models [8] and proved neither better nor worse in terms of the correlation coefficient. Although, the 

following should be taken into account and should give weight to the model presented in Equation 3:  

 The number of descriptors used by our model is 4 (Equation 3) while the number of descriptors 

used by best performing previously model is 6 (Equation 2).  

 The number of compounds in the training set was almost the same but the compounds included 

were not identical. It is well known that if some compounds are included or excluded from 

analysis, similar MLR equations could be obtained but with some changes of parameters. The 

quality criteria used to determine if a compound would be included in the sample were as 

follows:  

▪ reliable experimental data (the compounds with different values of experimental data 

obtained by applying the same protocol were not included);  

▪ compound identity (one compound was included whenever identical compounds were identified);  

▪ normality of experimental data. 

Furthermore, the abilities of the obtained model (Equation 3) to classify correctly the permeation of 

the blood-brain barrier were tested on two samples of compounds: the test set and the external  

set (compounds used neither in the training nor in the test sets). This analysis was carried out after 

transformation of observed blood-brain barrier permeation as a dichotomous variable; the 

interpretation of the obtained statistical parameters (see Table 1) revealed the following: 

 The presence of dependence between classification and observed permeation obtained for all 

three sets of compounds showed that the model has abilities in estimation as well as in prediction.  

 The total fraction of compounds correctly classified proved to be almost identical in the training 

and test sets. Even if the accuracy of the classification model was smaller in the training set 

compared to the test and external sets, the accuracies proved not to be significantly different 

since their confidence intervals overlapped one another. 
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 The error rate (the fraction of compounds misclassified) proved to vary from 27% to 31% with a 

higher value obtained in the training set compared to the test and external sets. 

 A valid classification model is the one that is able to classify correctly as many compounds as 

possible. Thus, it is expected that the 95% confidence interval of prior proportional probability 

of an active compound to overlap on the confidence interval of post-test probability of 

classification as active for a good classification model. The prior probability of an active class 

and the post-test probability of classification (where the test is our classification model) sustain 

the ability of the model in classification. The smallest difference for the active class of 

compounds was seen in training set; the same conclusion has also been seen for the inactive 

class of compounds. 

 The classification model proved to have higher abilities in the identification of a true active 

compound out of all the active compounds in the test set. Since the associated confidence 

intervals associated to sensibility overlap one another in the training and test sets, the model has 

the same ability to identify the true active compounds in these sets. Analyzing the sensitivity of 

the classification model on external set showed that it is not appropriate to use this classification 

model to classify active BBB permeation compounds since the false negative rate is almost 60% 

(there is a 2/5 chance to correctly classify an active BBB compound). 

 The higher ability in the classification of an inactive compound was obtained in an external  

set (~86%). This ability seems not to be significantly different in the training, test and external 

sets since the associated 95% confidence intervals overlap one another. 

 The higher positive predictivity proved to be obtained in the training set and refer to the ability 

of our classification model to correctly assign a compound as active out of all active assigned 

compounds. As expected, by analyzing the sensitivity, the positive predictivity of our model 

was significantly smaller when the classification model was applied to the external set (~56%, 

but the confidence interval did overlap with the confidence interval of positive predictivity 

obtained on the training set). 

 The highest value of negative predictivity was obtained in the test set. The negative predictivity 

proved not to be significantly different between all three investigated sets. 

 The smallest value of the probability of wrong classification as an active compound was 

obtained in the training set while the highest value was obtained in the external set (these two 

probabilities proved significantly different). 

 The smallest value of the probability of wrong classification as an inactive compound was 

obtained in test set. No statistically significant difference in terms of the probability of wrong 

classification was identified when all three sets of compounds were analyzed. 

 The odds of correct classification in the group of active compounds divided by the odds of 

incorrect classification in the group of inactive compounds proved to be almost identical in the 

training and external sets. Even if the value of the odds ratio obtained in test set is higher than 

the values obtained in training or external sets, the ability of our classification model in terms of 

OR proved not to be significantly different in this set (the confidence intervals overlap one another). 

The differences in performances of our classification model on the training, test and external sets 

could be explained by the distribution of active and inactive compounds in the sets (active compounds 
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proved to ~48% in training set, ~46% in test set and ~30% in external set). If the percentage of active 

compounds in the external set is imposed to be close to the percentage of active compounds in the 

training and test sets, the parameter’s significant difference will be improved and the classification 

model could have the same ability in the external set as in the training and test sets. 

The same statistical parameters proposed to diagnose the classification model were also computed 

for the model previously obtained and presented in Equation 2 in order to be used as comparison 

parameters. These parameters could be used to compare different models obtained on the same but not 

identical classes of compounds. The comparative analysis of the obtained statistical parameters for the 

proposed classification model (see Table 1) and for the previously reported model (see Table 2) 

revealed the following: 

 The interdependence between the observed and estimated/predicted class (active/inactive) was 

proved statistically for both models (Equation 3–Table 1 and Equation 2–Table 2) but the 

correlation coefficients in the 2 × 2 contingency table proved to be higher for the model 

presented in Equation 2. 

 The higher accuracy for all three sets sustains the use of model presented in Equation 2 in the 

classification of active and inactive BBB compounds. The accuracy seems not to be statistically 

significantly different when the model from Equation 3 is compared to the model from Equation 

2 since the associated 95% confidence intervals overlap one another. 

 The under-classification as well as over-classification seems to have the smallest values for the 

model from Equation 2 compared to the model from Equation 3, but since the associated 95% 

confidence intervals overlap one another these differences do not seem to be statistically significant. 

 The percentage of compounds correctly assigned as active out of all of those assigned as active 

proved to be higher for the model presented in Equation 2 compared to the model presented in 

Equation 3. Since the 95% confidence intervals overlap one another, these percentages are not 

statistically significantly different. The same observation is also true for the percentage of 

compounds correctly assigned as inactive out of all of those assigned as inactive. 

 The previously reported model seems to have the smallest probabilities of wrong classification 

as active/inactive compounds. However, based on the overlap of associated 95% confidence 

interval it could be that these differences are not statistically significant. 

The proposed four descriptors model demonstrates its abilities in the estimation and prediction of 

BBB drug-like penetration. The ―best model‖ approach could be questionable in terms of goodness-of-

fit, but the proposed four descriptors model proved to be good in certain applicability domains as 

shown above. Moreover, a model with four descriptors may perform worse than a model with six 

descriptors, but experience may show that the model with four descriptors could be more stable when 

changing the training data. Consequently, the best idea followed in the paper was to provide a tool to 

assess the models from certain points of view, and to let the user select their best  classifier to fit their 

chosen applicability domain.  

The goodness-of-fit of our model is similar with the goodness-of-fit of other models published in 

specialty literature when similar sample sizes were used in modeling (ntraining = 329, R
2

training = 0.52,  

ntest = 141, R
2
 = 0.54, nexternal = 174, R

2
 = 0.65 [17]). The classification abilities of a qSAR/qSPR model 

could be tested using a series of parameters computed based on a 2 × 2 contingency table. The model’s 
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ability to correctly classify BBB drug-like compounds as well as the fraction of compounds 

misclassified proved not to be significantly different when all three sets were compared. The identified 

difference in under-classification for the external set, where the false negative rate proved to be 

significantly higher compared to the values obtained in training and test set could be explained by the 

different percentage of active compounds in external set compared to training and test sets. Our 

classification model performs better if the prior proportional probabilities of active and inactive class 

are closer to each other in investigated sets of compounds (see Table 1). Our model could be applied to 

classify BBB penetration of drug-like compounds and provide more accurate classification for inactive 

compounds if the prior proportional probability of an active class is close to the prior probability of an 

active class obtained in training set. Our classification model could be refined by clustering the 

observed penetration and obtaining models for each cluster since the training, test and external sets are 

comprised of drug-like compounds with heterogenous structures.  

The presented approach introduced a new concept in the assessment of structure-based drug design: 

the assessment of the link between the structure of the compound and BBB penetrability through a 

series of parameters able to show the performances of the model in terms of accuracy, sensitivity, 

specificity, positive predictivity, etc. This approach is relevant to address to the situation when 

classification as active/inactive compounds is desired. The model with the highest accuracy, sensitivity 

and specificity must be chosen when more than one qSAR/qSPR model is accessible anytime. The 

structure that must be investigated is similar to those based on each of the obtained models. 

4. Experimental Section 

4.1. Classification Model—Predictivity Approach 

The ability of the identified model in the classification of active and inactive BBB compounds (the 

observed property being greater than or equal to 0 identifies an active compound, otherwise the 

compound was considered inactive) was assessed using appropriate statistical methods. Concordance 

defined as identical classification of a compound based on observed and estimated/predicted property 

was summarized as a percentage and an associated 95% confidence interval. 

The performances of the classification model were assessed in training, test, and external sets. The 

external set is comprised of 315 different drug-like compounds classified as active (71) or inactive 

(244) BBB compounds. The compounds from the external set were taken from [30] (see 

Supplementary Material). 

The parameters presented in Table 3 were used to assess the classification model. Some parameters 

were defined by Cooper et al. [31] while others were adapted from medical diagnosis studies [32]. The 

associated confidence intervals under binomial distribution assumption [33,34] were computed for 

each parameter [35]. 

4.2. Classification Model as Comparison Tool 

The proposed statistical approach and associated significance levels were also computed for  

models presented in Equation 2 in order to be compared with a model introduced in the present 

manuscript (Equation 3). 
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Sub-sections 4.3. and 4.4. show how the model presented in Equation 3 was obtained. 

The model presented in Equation 3 was compared with previously reported models (Equation 1 and 

Equation 2) in terms of goodness-of-fit using Steiger’s Z test [36] at a significance level of 5%. 

Table 3. Parameters for the characterization of prediction. 

Parameter (Abbreviation) Formula Definition Equation 

Concordance/Accuracy/Non-error Rate (CC/AC) 100 × (TP + TN)/n Total fraction of compounds correctly 

classified 

6 

Error Rate (ER) 100 × (FP + FN)/n = 1 − CC Total fraction of compounds misclassified 7 

Prior proportional probability of a class (PPP) ni/n Fraction of compounds belonging to class i 8 

Sensitivity (Se) 100 × TP/(TP + FN) Percentage of BBB+ compounds correctly 

assigned to the active class 

9 

False-negative rate (under-classification, FNR) 100 × FN/(TP + FN) = 1 − Se percentage of BBB+ compounds falsely 

assigned to the non-active class 

10 

Specificity (Sp) 100 × TN/(TN + FP) Percentage of BBB− compounds correctly 

assigned to the negative class 

11 

False-positive rate (over-classification, FPR) 100 × FP/(FP + TN) = 1 − 

Sp 

Percentage of BBB− compounds falsely 

assigned to be active 

12 

Positive predictivity (PP) 100 × TP/(TP + FP) Percentage of compounds correctly assigned as 

active out of all active assigned compounds 

13 

Negative predictivity (NP) 100 × TN/(TN + FN) Percentage of non-active out of non-active 

assigned compounds 

14 

Probability of classification  

as active (PCA) 

 

as inactive (PCIC) 

 

(TP + FP)/n 

 

(FN + TN)/n 

 

- Probability to classify a compound as active 

(true positive & false positive) 

- Probability to classify a compound as 

inactive (true negative & false negative) 

15 

Probability of a wrong classification 

as active compound (PWCA) 

as inactive compound (PWCI) 

 

FP/(FP + TP) 

FN/(FN + TN) 

 

Probability of a false positive classification 

Probability of a false negative classification 

16 

Odds Ratio (OR) (TP × TN)/(FP × FN) The odds of correct classification in the group 

of active compounds divided to the odds of a 

incorrect classification in the group of inactive 

compounds 

17 

TP = number of true positive (BBB+ compounds classified as active); TN = number of true negative (BBB− compounds 

classified as non-active); n = sample size; FP = false positive (BBB- compounds classified as active); FN = false negative 

(BBB+ compounds classified as non-active); ni = number of compounds belonging to class i; i = 1, 2 (where 1 = active BBB 

compounds; 2 = inactive BBB compounds). 

4.3. Datasets and BBB Permeation Property 

A sample of drug-like compounds with blood-brain barrier permeation (known logBB, the  

blood-brain distribution is expressed as the ration of the steady state molar concentration of a 

compound in the brain and in the blood) was identified to be included in the analysis [8,37–39]. The 

quality criteria used to include a compound in the sample were as follows: ▪ reliable experimental data 

(the compounds with different value of experimental data obtained by applying the same protocol 
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where not included); ▪ compound identity (one compound was included whenever identical 

compounds were identified); ▪ normality of experimental data. 

Two databases were used in order to search the structures of the compounds: PubChem 

(http://pubchem.ncbi.nlm.nih.gov/, the compound ID is CID followed by a number in Table 4) and 

ChemSpider (http://www.chemspider.com/, the compound is CSID followed by a number in Table 4). 

The HyperChem 8.0 was used to draw the compounds that were not identified in the PubChem or in 

ChemSpider databases. 

The compound name, ID (CID-ID of compounds taken from PubChem database or CSID-ID of 

compounds taken from ChemSpider database) and the observed property expressed in logarithmic 

scale are presented in Table 4. 

Table 4. Compounds on training and test sets. 

No. Name ID logBB Set Ref.  No. Name ID logBB Set Ref. 

1 Cimetidine CID: 2756 −1.42 2 [37]  62 Carbamazepine CID: 2554 −0.14 2 [39] 

2 Icotidine CID: 72108 −2.00 1 [37]  63 Carbamazepine epoxide CID: 2555 −0.35 1 [39] 

3 Lupitidine CID: 51671 −1.06 2 [8]  64 Amitriptyline CID: 2160 0.88 1 [8] 

4 Clonidine CID: 2803 0.11 1 [37]  65 Desipramine CID: 2995 1.00 1 [8] 

5 Mepyramine CID: 4992 0.49 1 [37]  66 Mianserin CID: 4184 0.99 2 [8] 

6 Imipramine CID: 3696 0.83 1 [37]  67 ORG 4428 CID: 166560 0.82 2 [8] 

7 Ranitidine CID: 5039 −1.23 2 [37]  68 Mirtazapine CID: 4205 0.53 1 [8] 

8 Tiotidine CID: 50287 −0.82 1 [37]  69 Tibolone CID: 21844 0.40 1 [8] 

9 Zolantidine CID: 91769 0.14 2 [37]  70 Domperidone CID: 3151 −0.78 2 [8] 

10 Butanone CID: 6569 −0.08 2 [8]  71 Risperidone CID: 5073 −0.67 2 [8] 

11 Benzene CID: 241 0.37 1 [8]  72 9-OH-Risperidone CID: 475100 −0.02 1 [8] 

12 3-Methylpentane CID: 7282 1.01 1 [8]  73 Temelastine CID: 55482 −1.88 2 [8] 

13 3-Methylhexane CID: 11507 0.90 1 [8]  74 BBCPD13 CSID: 14922095 −0.66 1 [37] 

14 2-Propanol CID: 3776 −0.15 1 [8]  75 BBCPD15 CSID: 2992532 −0.18 1 [37] 

15 2-Methylpropanol CID: 6560 −0.17 1 [8]  76 BBCPD57 CSID: 10439135 −1.15 2 [37] 

16 2-Methylpentane CID: 7892 0.97 2 [8]  77 BBCPD58 CSID: 10442225 −1.54 1 [37] 

17 2,2-Dimethylbutane CID: 580244 1.04 2 [8]  78 BBCPD17 CSID: 10442293 −1.12 1 [37] 

18 1,1,1-Trichloroethane CID: 6278 0.40 1 [37]  79 BBCPD20 CID: 9971484 −0.46 1 [37] 

19 Diethyl ether CID: 3283 0.00 2 [8]  80 BBCPD21 CID: 10498206 −0.24 2 [37] 

20 Enflurane CID: 3226 0.24 1 [8]  81 SB222200 CSID: 3167851 0.30 1 [8] 

21 Ethanol CID: 702 −0.16 2 [8]  82 Y-G14 CSID: 2276 −0.30 1 [8] 

22 Fluroxene CID: 9844 0.13 1 [8]  83 Y-G15 CSID: 72747 −0.06 1 [37] 

23 Halothane CID: 3562 0.35 1 [8]  84 Caffeine CID: 2519 −2.00 1 [38] 

24 Heptane CID: 8900 0.81 1 [8]  85 Chlorambucil CID: 2708 −1.60 1 [38] 

25 Hexane CID: 8058 0.80 2 [8]  86 Glycine CID: 750 −3.50 2 [38] 

26 Isoflurane CID: 3763 0.42 2 [8]  87 Morphine CID: 5288826 −2.70 2 [38] 

27 Methylcyclopentane CID: 7296 0.93 2 [8]  88 Phenylalanine CID: 994 −1.30 2 [38] 

28 Nitrogen CID: 947 0.03 1 [8]  89 Phenytoin CID: 1775 −2.20 1 [38] 

29 Pentane CID: 8003 0.76 2 [8]  90 Propranolol CID: 4946 −1.20 1 [38] 

30 n-Propanol CID: 1031 −0.16 2 [8]  91 Taurocholic Acid CID: 444349 −4.10 1 [38] 

31 Propanone CID: 180 −0.15 2 [8]  92 Trichloroethylene CID: 6575 0.34 1 [37] 
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Table 4. Cont. 

No. Name ID logBB Set Ref.  No. Name ID logBB Set Ref. 

32 Teflurane CID: 31300 0.27 1 [8]  93 Carmustine CID: 450682 −0.52 1 [39] 

33 Toluene CID: 1140 0.37 1 [8]  94 ORG34167 CSID: 8036856 0.00 1 [8] 

34 Acetylsalicylic acid CID: 2244 −0.50 1 [8]  95 BBCPD22 CSDI: 8620184 −0.02 1 [37] 

35 Pentobarbital CID: 4737 0.12 1 [8]  96 BBCPD23 BBCPD23 0.69 2 [37] 

36 Physostigmine CID: 5983 0.08 2 [8]  97 BBCPD24 BBCPD24 0.44 1 [37] 

37 Salicylic acid CID: 338 −1.10 1 [8]  98 BBCPD26 BBCPD26 0.22 2 [37] 

38 Trifluoro Perazine CID: 5566 1.44 1 [8]  99 1,1,1-Trifluoro-2-chloro ethane CSID: 6168 0.08 1 [37] 

39 Valproic acid CID: 3121 −0.22 1 [8]  100 T7 T7 0.85 1 [37] 

40 Verapamil CID: 2520 −0.70 1 [8]  101 BBCPD60 CSDI: 23218171 −0.73 1 [37] 

41 Zidovudine CID: 5726 −0.72 1 [8]  102 BBCPD18 BBCPD18 −0.27 1 [37] 

42 Hydroxyzine CID: 3658 0.39 2 [8]  103 BBCPD19 BBCPD19 −0.28 2 [37] 

43 Thioridazine CID: 5452 0.24 1 [8]  104 BBCPD16 BBCPD16 −1.57 1 [37] 

44 Alprazolam CID: 2118 0.04 2 [8]  105 BBCPD14 BBCPD14 −0.12 2 [37] 

45 Phenserine CID: 192706 1.00 1 [8]  106 Y-G16 Y-G16 −0.42 1 [8] 

46 Midazolam CID: 4192 0.36 2 [8]  107 Y-G19 Y-G19 −1.30 2 [8] 

47 Codeine CID: 5284371 0.55 2 [8]  108 Y-G20 CSID: 5854406 −1.40 1 [37] 

48 Chlorpromazine CID: 2726 1.06 2 [8]  109 SKF89124 CSID: 117961. −0.43 1 [8] 

49 Promazine CID: 4926 1.23 1 [8]  110 SKF101468 CSID: 4916 0.25 1 [37] 

50 Nevirapine CID: 4463 0.00 1 [8]  111 CBZ-EPO CBZ-EPO −0.34 1 [37] 

51 Thioperamide CID: 3035905 −0.16 1 [8]  112 L-663581 CSID: 114837 −0.30 1 [8] 

52 Didanosine CID: 3043 −1.30 2 [8]  113 M1L-663,581 CSID: 8560187 −1.34 1 [37] 

53 Ibuprofen CID: 3672 −0.18 1 [8]  114 M2L-663581 CSID: 8267285 −1.82 1 [8] 

54 Antipyrine CID: 2206 −2.00 2 [38]  115 ORG5222 ORG5223 1.03 2 [8] 

55 Theophyline CID: 2153 −0.29 1 [8]  116 ORG12962 CSID: 7972174 1.64 1 [8] 

56 p-Acetamido phenol CID: 1983 −0.31 1 [8]  117 ORG13011 ORG13011 0.16 1 [8] 

57 Nitrous Oxide CID: 948 0.03 1 [8]  118 ORG32104 ORG32104 0.52 1 [8] 

58 Carbon bisulphide CID: 6348 0.60 1 [8]  119 ORG30526 ORG30526 0.39 1 [8] 

59 Indomethacin CID: 3715 −1.26 1 [8]  120 ICI17148 ICI17149 −0.04 2 [37] 

60 Indinavir CID: 5362440 −0.75 1 [8]  121 SK&F93319 SK&F93320 −1.30 1 [37] 

61 Oxazepam CID: 4616 0.61 1 [8]  122 CBZ CBZ 0.00 1 [37] 

CID = ID of compounds taken from PubChem; CSID = ID of compounds taken from ChemSpider. 

The observed property of drug-like compounds included in analysis had a mean of −0.2180 (95%CI 

[−0.3930; −0.0492]), and a standard deviation of 0.9767. The set presented in Table 4 was randomly 

split into a training and test set, with ~2/3 of compounds in the training set. The method of randomization 

was implemented in order to ensure the normal distribution of the observed property in both sets. 

Descriptive statistics and normality test results for the training and test sets are presented in Table 5. 

Table 5. Summary statistical characteristics of training and test sets. 

Parameter Training set (n = 81) Test set (n = 41) 

m [95%CI] −0.2003 [−0.4060; −0.0055] −0.2529 [−0.5916; 0.0858] 

StDev 0.9306 1.0731 

Min −4.10 −3.50 
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Table 5. Cont. 

Max 1.64 1.06 

KS statistic (p) 0.1151 (0.2163) 0.1729 (0.1531) 

AD statistic * 1.1582 * 0.9939 * 

CS statistic (p) 8.1850 (0.2249) 0.3650 (0.9852) 

m = arithmetic mean; 95%CI = 95% confidence interval; StDev = standard deviation; n = sample 

size; KS = Kolmogorov-Smirnow test of goodness-of-fit; AD = Anderson-Darling test of  

goodness-of-fit; CS = Chi-Squared test of goodness-of-fit; * critical value = 2.5018. 

4.4. Molecular Descriptors Calculation 

The HyperChem 8.0 was used to optimize the geometry of compounds by using a home- 

made program [40]. A series of home-made programs were used to perform the following tasks:  

(1) transform the *.sdf and *.mol files in *.hin files; (2) identify invalid compounds; (3) optimize the 

geometry of compounds; (4) calculate the molecular descriptors; (5) assign the compounds in training 

or test sets; (6) select valid descriptors (Jarque-Bera value higher than critical value for the observed 

activity, identity analysis and inter-correlation analysis); (7) multiple linear regression. 

The Molecular Descriptor Family on Vertices approach (MDFV, [41]) was used to calculate the 

structural descriptors. The calculation of MDFV members is based on candidate fragments obtained 

using cutting atoms (as vertices cut) on the matrix representation of the molecular graph. A series of 

home-made PHP programs were developed to compute the MDFV values. The programs are run on an 

IntraNet network on a FreeBSD server and the results for previously investigated datasets are available 

online at http://l.academicdirect.org/Chemistry/SARs/MDFV/ (password provided by request). The 

calculation of descriptors on new data sets of compounds could be made upon request. A total number 

of 831 descriptors proved to be valid and were used to identify the best performing model. 

The model that accomplishes the following criteria was considered the best classification MLR 

model [42]: highest explanation of the observed logBB (highest correlation coefficient); smallest 

number of MDFV descriptors; lowest standard error of estimate; highest F-value and smallest 

associated p-value; smallest difference between correlation coefficient and leave-one-out correlation 

coefficient, F-value and associated p-value in leave-one-out analysis. 

SPSS 16.0 was used to investigate multi-collinearity of descriptors in the MLR (multiple linear 

regressions) model, auto-correlations and homoscedacity.  

5. Conclusions 

The proposed predictivity approach could be used in the diagnosis of structure-based models 

(quantitative structure-property relationships or quantitative structure-activity relationships) but also 

could be seen as a tool for choosing the proper model for the assessment of new compounds. This 

approach is able to identify the model with the highest ability to identify active or inactive compounds. 

The best model could be considered the one with highest accuracy, specificity and sensibility as well 

as the smallest values of false-negative and false-positive rate and smallest values of probability of 

wrong classification as active or inactive compounds.  

http://l.academicdirect.org/Chemistry/SARs/MDFV/
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In regards to the blood-brain barrier permeation domain, the model presented in this manuscript 

proved to have high abilities in correct classification of inactive compounds (~86% of inactive 

compounds from external validation set—315 compounds—were correctly classified as inactive). The 

previously reported model proved to have high abilities in the correct classification of active 

compounds (~76% of active compounds from external validation set—92 compounds—were correctly 

classified as active). Therefore, the reported model should be chosen if the correct classification of 

inactive compounds is desired and the previously reported model should be chosen if the correct 

classification of active compounds is most wanted. 
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