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Abstract

Adverse effect of alcohol on neural function has been well documented. Especially, the terato-
genic effect of alcohol on neurodevelopment during embryogenesis has been demonstrated
in various models, which could be a pathologic basis for fetal alcohol spectrum disorders
(FASDs). While the developmental defects from alcohol abuse during gestation have been
described, the specific mechanisms by which alcohol mediates these injuries have yet to be
determined. Recent studies have shown that alcohol has significant effect on molecular and
cellular regulatory mechanisms in embryonic stem cell (ESC) differentiation including genes
involved in neural development. To test our hypothesis that alcohol induces molecular alter-
ations during neural differentiation we have derived neural precursor cells from pluripotent
human ESCs in the presence or absence of ethanol treatment. Genome-wide transcriptomic
profiling identified molecular alterations induced by ethanol exposure during neural differentia-
tion of hESCs into neural rosettes and neural precursor cell populations. The Database for
Annotation, Visualization and Integrated Discovery (DAVID) functional analysis on significantly
altered genes showed potential ethanol’s effect on JAK-STAT signaling pathway, neuroactive
ligand-receptor interaction, Toll-like receptor (TLR) signaling pathway, cytokine-cytokine
receptor interaction and regulation of autophagy. We have further quantitatively verified etha-
nol-induced alterations of selected candidate genes. Among verified genes we further exam-
ined the expression of P2ZRX3, which is associated with nociception, a peripheral pain
response. We found ethanal significantly reduced the level of P2RX3 in undifferentiated
hESCs, but induced the level of P2RX3 mRNA and protein in hESC-derived NPCs. Our result
suggests ethanol-induced dysregulation of P2ZRX3 along with alterations in molecules involved
in neural activity such as neuroactive ligand-receptor interaction may be a molecular event
associated with alcohol-related peripheral neuropathy of an enhanced nociceptive response.
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Introduction

Alcohol consumption is recognized as the leading preventable cause of birth defects and mental
retardation. High levels of alcohol consumption during pregnancy can result in fetal alcohol
spectrum disorders (FASDs), which is characterized by prenatal and postnatal growth restric-
tion, craniofacial dysmorphology and structural abnormalities of the central nervous system
[1]. Depending on conditions and manifestations, these damages are referred as fetal alcohol
syndrome (FAS), alcohol-related birth defects (ARBDs), and alcohol-related neurodevelop-
mental disorder (ARND). While the developmental defects from alcohol abuse during gesta-
tion have been described, it is still unanswered about what are the specific mechanisms by
which alcohol mediates these injuries [2, 3]. This is important question to address to identify
affected children at an early age and intervene to prevent or mitigate the damage.

The effect of alcohol on development has been widely studied in many different animal spe-
cies [4]. Adverse effect of alcohol on brain function has been well documented. Especially, the
teratogenic effect of alcohol on neurodevelopment during embryogenesis has been demon-
strated in animal models, which could be a pathologic basis for FASDs [1, 3]. It has been dem-
onstrated that alcohol exposure during preimplantation period has significant effect on
embryo development [5]. Reports have demonstrated genetic, cellular, and biochemical associ-
ation of alcohol with teratogenesis [6-9]. The wide range of physiological and morphological
defects associated with in utero alcohol exposure suggest that the etiology of FASDs involve a
high degree of cellular and molecular heterogeneity. Gastrulation period is considered to be the
most sensitive to teratogenic insult, suggesting that differentiating cells might be especially vul-
nerable to the teratogenic effects of alcohol [7].

Currently, it is not clearly established what causes FASDs. Recently, epigenetic regulations
have emerged as potential mechanisms associated with alcohol teratogenesis. Epigenetic
imprinting or genome-wide epigenetic reprogramming has been proposed as a mechanism
responsible for alcohol-induced teratogenesis in preimplantation embryos [2, 3]. Interestingly,
even paternal or maternal alcohol consumption prior to conception has been shown to result
in a wide range of birth defects and fetal abnormalities. It is likely that alcohol-induced epige-
netic changes in the gametes or within germ line are responsible for pre-conceptional effects of
alcohol [10]. Considering the importance of epigenetic factors in development, especially in
central nervous system development and dysfunction, it is quite reasonable to link epigenetic
mechanisms as potential regulatory events involved in alcohol teratogenesis [2, 11-13].

Embryonic stem cells (ESCs) are pluripotent cells that can be derived into all lineages of
cells in the organism [14]. Due to this biological competency of ESCs, beneficial utility of ESCs
for regenerative medicine has been suggested in many applications [15]. In addition, ESC has
been proven to be a useful tool to study mechanisms associated with the pathogenesis of
genetic disorders, especially disease-associated molecular alterations at the early stage of fetal
development [16]. ESCs provide us with an opportunity to establish an experimental model to
study the functional effects of genetic alterations on normal embryo development and further
to test tools to intervene deleterious effects of genetic alterations on the later stage of life. Stem
cell models are beneficial to developmental studies especially where in vivo molecular/cellular
study models are not available.

Stem cells are especially vulnerable to ethanol (EtOH) toxicity through decreases in pluripo-
tency, survival capacity, and/or altered differentiation [7]. Studies have shown that alcohol has
significant effect on molecular and cellular regulatory mechanisms in ESC differentiation [17].
More interestingly, it has been demonstrated that alcohol induces alteration in genes involved
in neural development in ESCs [18, 19]. It is known that gastrulation periods of ESCs including
neuronal differentiation process require epigenetic controls, especially DNA methylation [2].
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Our recent studies have described the molecular signatures of EtOH’s effects on stem cell
potency and differentiation in human embryonic stem cells (hESCs) [20]. Studies also showed
that EtOH exposure reduces neuronal stem cell numbers in developing and adult brains [21,
22].

As a surrogate model for adult neural stem cells, pluripotent hESCs can be differentiated
into neural progeny and used to elucidate mechanisms underlying early human neurogenesis.
An established in vitro neural stem cell model will be useful for the evaluation of developmental
regulatory mechanisms and also the significance of their alterations in pathological conditions
such as developmental disorders or exposure to neuroteratogens [19]. We have derived neural
stem cells from human embryonic stem cells as a model to study the effect of teratogen in neu-
ral development. We have successfully derived neural precursor cells exhibiting key molecular
features of neural stem cells, which will be useful for experimental application [23]. Our estab-
lished model has further been used to assess the molecular effect of alcohol treatment on neural
stem cell population. It was found that alcohol exposure of neural precursor cells resulted in
significant alterations of molecular signatures that may have functional role in neural stem cell
maintenance and development and may be further involved in deleterious cellular effect of
alcohol exposure.

Materials and Methods
Human embryonic stem cell culture and derivation of neural stem cells

Human embryonic stem cells (H1 and H9 lines) obtained through license agreement with
WiCell Research Institute (Madison, WI) were cultured on mouse embryonic fibroblast (MEF)
feeder layer and were transferred to mTeSR1 serum free human embryonic stem cell (hESC)
culture system (STEMCELL Technologies Inc., Vancouver, Canada). Neural differentiation of
hESCs was performed by using STEMdiff Neural System (STEMCELL Technologies Inc., Van-
couver, Canada) according to the manufacturer’s instruction as described in our previous pub-
lications [23, 24]. After 7 day differentiation, morphological assessment and scoring of neural
rosettes were done to ensure 50% or more of the area of each aggregate was filled with neural
rosettes (as shown in Fig 1). On day 7, neural rosettes were selected away from contaminating
flat cells and collected. The rosettes were resuspended in pre-warmed NIM and cultured on
6-well plates precoated with poly-L-Ornithine and laminin (PLO/L) with daily full medium
changes using pre-warmed STEMdiff NIM (without or with 20 mM ethanol) for 5 days with
alternating treatment for a day and withdrawal for a day. Cells were EtOH concentration was
chosen for its physiological relevance in that 20 mM is equivalent to DUI level and 50 mM falls
within levels measured in alcoholics [25].

Immunofluorescence analysis

To ensure proper neural differentiation of hESCs, the same experimental procedure was
applied to a set of cells plated on the coverslips. The level of neural markers (Nestin, Sox2,
Musashi and beta-3 tubulin) was assessed by immunofluorescence microscopy. For IF analysis
cells were seeded on a coverslip coated with Matrigel in a 6 well plate. The cells were fixed with
4% paraformaldehyde/PBS for 30 min at room temperature and washed with PBS. IF analysis
for neural stem cell markers was done by using Human Neural Stem Cell Characterization Kit
(EMD Millipore, Billerica, MA). Samples were incubated with blocking solution (5% normal
donkey serum, 0.3% Triton X-100 in 1X PBS) for 30 min at room temperature. After washing
three times (5 min each) with 1X PBS, samples were incubated with primary antibody [mouse
anti-Nestin (1:500), rabbit anti-Sox2 (1:1000), mouse anti-BIII tubulin (1:1000), or rabbit anti-
Musashil (1:500)] diluted in 1X PBS (or blocking solution) and incubated overnight at 4°C. As
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Fig 1. Neural differentiation of human embryonic stem cells in vitro. A. Neural differentiation of hESC in vitro. Human embryonic stem cells were
subjected to embryoid body (EB) formation using AggreWell for 5 days in neural induction medium (NIM). Neural aggregates were seeded on plates coated
with poly-L-ornithine/laminin (PLO/L) and cultured with NIM for additional 7 days to develop neural rosette structure. After 7 days, the neural rosettes were
dislodged and then replated for the expansion of neural precursor cells for 3-5 days. B. Human embryonic stem cells were subjected to embryoid body
formation using AggreWell for 5 days in neural induction medium. Neural aggregates were seeded on poly-L-ornithine/laminin coated plates and cultured
with NIM for 7 days to develop neural rosette structure. Ethanol treatment was initiated a day after plating the neural aggregates onto PLO/L plates. For
ethanol treatment cells were fed with fresh medium every day by alternating a treatment with 20 mM ethanol for 1 day and a withdrawal for 1 day. Treatment
was continued till the end of neural expansion. After 7 days, the neural rosettes were dislodged and then re-plated for the expansion of neural precursor cells

for 5 days.

doi:10.1371/journal.pone.0163812.9001

a negative control, we have included the same isotype rabbit IgG or mouse IgG at equivalent
concentrations. After washing three times for 5 min each with 1X PBS, samples were incubated
with appropriate secondary antibody [donkey anti-rabbit IgG-FITC (1:500) or donkey anti-
mouse IgG-rhodamine (1:500)] for 2 hrs at RT. After washing, the slips were mounted on the
slide with mounting medium containing DAPI (Vector Labs, Inc., Burlingame, CA) and fluo-
rescence imaging was performed with Olympus IX81 imaging microscope.

RNA isolation and microarray analysis

RNA isolation and microarray analysis was done as described [20, 24]. Briefly, the neural
aggregates at D10 for the formation of rosettes and at D15 (5 days after re-plating the rosette
clusters for the expansion of neural precursor cells) were used for total RNA isolation by using
RNeasy mini kit (Qiagen, Valencia, CA). RNA purity and concentration was determined by
NanoDrop, ND-1000 spectrophotometer (Thermo Scientific, Indianapolis, IN) and microflui-
dics-based platform 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA). Samples in bio-
logical duplicate were hybridized to Affymetrix Human Genome Plus 2.0 (Cat. No. 900469).
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Standard quality control metrics recommended by Affymetrix including image quality, signal
distribution and pair wise scatter plots were used for all arrays. Mas5.CHP files were generated
for each array by MAS 5.0 (Affymetrix, Santa Clara, CA) and combined to a final RESULTS.
MAS5.TXT file [20, 24].

Quantitative RT-PCR analysis

For validation of gene expression by quantitative RT-PCR analysis was performed as describe
previously [20]. Total RNA was first subjected to DNase digestion with Turbo DNA-free kit
(Life Technologies, Grand Island, NY). 2 ug of total RNA treated with DNase was used to syn-
thesize cDNA by using iScript cDNA synthesis kit (Bio-Rad, Hercules, CA) in 40 pl reaction
mixture. The resulting cDNA was diluted (mixed with H,O by 1:4) and 1.5 pl of diluted cDNA
was used per well (in 10 pl reaction volume) in a 384 well plate using LightCycler 480 SYBR
Green I master mix (Roche Diagnostics, Indianapolis, IN).

Results
Derivation of neural precursor cells from human embryonic stem cells

To establish a model system to examine the molecular effects of EtOH on neural differentiation
and maintenance of neural stem cells, we used a commercial culture system developed for neu-
ral differentiation of human embryonic stem cells (STEMCELL Technologies Inc., Vancouver,
Canada) as we have previously reported [23, 24]. Human embryonic stem cells (hESCs) expo-
nentially growing on mouse embryonic fibroblast (MEF) feeder were first adapted to the
feeder-free culture system using mTeSR1 medium (STEMCELL Technologies Inc., Vancouver,
Canada) and subjected to embryoid body formation in neural differentiation medium as
described in Materials and Methods. Fig 1A shows the overall scheme for the derivation of neu-
ral precursor cells from hESCs. Neural differentiation was performed in the presence or
absence of 20 mM EtOH (Fig 1B). Cells were collected for RNA purification at day 12 (rosette
structure) and day 15 (neural precursor cells). Morphological observation clearly showed the
formation or rosette structures and neural differentiation (Fig 1B). However, EtOH’s effect on
the process could not be quantitatively assessed by microscopic observation. To examine if
hESCs were properly specified into neural cells the expression of neural lineage markers was
assessed by immunofluorescence microscopy (Fig 2). Compared to undifferentiated hESCs,
rosette and NPC showed induced expression of neural maker Nestin, neuron-specific class III
beta-tubulin (TBB3 or Tujl) and Musashi (Fig 2). Expression of stemness factor Sox2 was
maintained in undifferentiated, rosette and NPC as expected (Fig 2A). Even though immuno-
fluorescence microscopy analysis was not proper to quantitatively compare the expression level
of markers, it seems that EtOH may have inhibitory effect on the expression of Nestin and
Musashi, notably in rosette structure (Fig 2A).

To further quantitatively characterize the neural specification of hESCs into rosette and
NPCs, we have performed quantitative RT-PCR analysis on neural markers (S1 Fig). We found
significant induction of Nestin, Musashi and Tujl mRNA in neural rosettes and NPCs (S1A
Fig). Our analysis showed that 20 mM EtOH treatment resulted in significant reduction of
Nestin and Musashi mRNA (S1B Fig). But this reduction seems marginal and may not cause
dramatic decrease in the steady state level of mRNA’s considering highly induced levels of
these mRNA’s after neural differentiation, which may have marginal effect on the level of cor-
responding protein as shown in Fig 2. We have previously demonstrated that EtOH treatment
resulted in significant reduction of pluripotent markers such as Oct4 and Sox2 in undifferenti-
ated hESCs [20]. It is known that Sox2 plays a role in the neural specification and proliferation
of NPCs while Oct4 and Nanog is involved in mesendoderm differentiation [26]. We found
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Fig 2. Inmunofluorescence analysis to confirm neural differentiation. Induced expression of neural markers in hRESC-derived neural stem cells. Neural
differentiation of hRESCs was confirmed by examining the expression of neural markers. A. Nestin and SOX7 and B. beta-tubulin and Musashi expressions
were noticeably increased in rosettes and NPCs. SOX2 expression remained high in pluripotent hESCs and also hESC-derived neural lineage cells. Cells
were counterstained with DAPI for nuclei (scale bar, 50 um).

doi:10.1371/journal.pone.0163812.9002

that neural differentiation resulted in dramatic downregulation of Oct4 mRNA, but the level of
Sox2 was comparably maintained and was not greatly affected by EtOH treatment in rosettes
and NPCs (S1C Fig).

Profiling of gene signatures affected by ethanol treatment during
differentiation of hESCs to neural precursors

We have used our hESC neural differentiation model to profile gene signatures significantly
altered by alcohol exposure, specifically during directed differentiation into neural precursors
in vitro. H1 and H9 hESCs were independently directed to neuronal differentiation in the pres-
ence or absence of 20 mM ethanol in biological duplicates. Mixed population of cells pooled
from each replicate was harvested at day 12 for neural rosette cells and at day 15 for neural pre-
cursor cells (NPC). Gene expression microarray analysis was done using samples from H1
hESC line. Total RNA was prepared and subjected to gene expression microarray as described
in Materials and Methods by using Affymetrix Human U133A 2.0 arrays (data accession num-
ber GSE56906). We have analyzed the processed data by Weighted Gene Correlation Network
Analysis (WGCNA) and also by simple fold change comparisons against control samples.

We have initially performed WGCNA on datasets from both rosette and NPC samples alto-
gether and found that the effects of differentiation (hESCs to neural rosette and further to
NPC) were too overwhelming to see the effect of EtOH treatment on gene signatures (data not
shown). Correlation of gene expression to EtOH treatment was not strong enough over the
effect of differentiation (data not shown). Therefore, we decided to analyze the dataset for the
effect of EtOH on rosette cells separately from on NPC. We performed WGCNA on undiffer-
entiated hESCs (undiff), differentiated without EtOH treatment (EtOH 0 mM) and differenti-
ated with EtOH treatment (EtOH 20 mM). We examined correlations to differentiation and
EtOH treatment in neural rosette (Fig 3A) or NPC (Fig 3B) from the biological duplicate sam-
ples (S1 and S2). We identified modules that are altered by differentiation or altered by EtOH
treatment during differentiation. As an example, we have shown in Fig 3 the most significantly
associated module with EtOH treatment in rosettes and NPCs. Fig 3A shows the magenta
module of genes that were upregulated in rosettes, but downregulated by EtOH treatment. Fig
3B shows the salmon module of genes that were upregulated in NPCs, but downregulated by
EtOH treatment. This analysis allowed us to identify gene signatures that were differentially
regulated during differentiation into neural rosette or NPC and affected by EtOH treatment.
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Fig 3. Gene expression analysis and WGCNA. WGCNA analysis on EtOH-induced transcriptomic alterations in neural rosettes and NPC populations

derived from hESCs compared to undifferentiated parental hESCs. A. Result from rosettes identified the magenta module of genes that were upregulated in
rosettes, but downregulated by EtOH treatment. B. Analysis for NPCs showed the salmon module of genes that were upregulated in NPCs, but
downregulated by EtOH treatment. Heatmaps are shown for modules with most significant association with EtOH treatment identified from the module trait
map of the module eigengene (ME) from two biological duplicates (S1 and S2) to each treatment. Rosettes showed less extent of association than NPCs. C.
In addition, we have performed WGCNA analysis on gene expression microarray data to directly assess EtOH'’s effect on transcriptomic alterations in neural
rosettes and NPCs with and without EtOH treatment. D. Heatmaps are shown for modules with most significant association upon EtOH treatment (biological
duplicate of Et1 and Et2) compared to without EtOH (biological duplicate of C1 and C2). The Brown module (upregulated- red) and the blue module
(downregulated- green) with EtOH treatment in neural rosettes and the purple module (upregulated- red) and the black module (downregulated- green) upon
EtOH exposure in NPCs. E. Common genes that demonstrated consistent alterations were identified. For example, genes in the blue module
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(downregulated >2 fold in EtOH-treated rosettes compared to untreated rosettes) were compared to the magenta module (>2 fold upregulated during
differentiation into rosettes and then downregulated >2 fold upon EtOH treatment). Similar analysis was done with the black and salmon modules to identify
genes truly downregulated in NPC with EtOH treatment.

doi:10.1371/journal.pone.0163812.9003

It was noted that correlation to EtOH treatment was not strong and only a very limited
number of modules showed EtOH-dependent association. We reasoned that this was due to
the strong effect of neural differentiation on the gene regulation in our model. Next we exam-
ined correlative gene expression simply associated with EtOH treatment in differentiated cells.
We used datasets from differentiated rosette cells or NPCs with or without EtOH treatment
(Fig 3C and 3D). WGCNA on rosette cells (control vs. EtOH treated) showed that the brown
module was most significantly correlated to genes upregulated and the blue module was most
significantly correlated to genes downregulated upon EtOH treatment (Fig 3C and 3D). A heat-
map for each representative module is shown. Similar analysis was done with dataset from
NPC cells. The purple module was most significantly correlated to genes upregulated upon
EtOH treatment and the black was most significantly correlated to genes downregulated upon
EtOH treatment (Fig 3C and 3D). To examine concordance between these two different analy-
sis settings (Fig 3A/3B vs. Fig 3C/3D), we examined genes that were coherently altered by
EtOH treatment (Fig 3E). The magenta module (Fig 3A) and the blue module (Fig 3D) repre-
sent genes downregulated in rosette cells upon EtOH exposure. Likewise, the salmon module
(Fig 3B) and the black module (Fig 3D) represent genes downregulated in NPCs upon treat-
ment with EtOH. The result showed list of genes that were similarly affected by EtOH treat-
ment in two analysis settings.

To examine potential effects of EtOH on biological process, we have performed DAVID
(The Database for Annotation, Visualization and Integrated Discovery) on genes from the blue
(downregulated in neural rosette), the black (downregulated in NPC), the brown (upregulated
in neural rosette) and the purple (upregulated in NPC). EtOH treatment in neural rosettes
showed alterations of genes potentially involved in neuroactive ligand-receptor interaction, cell
adhesion molecules and calcium signaling pathway (Fig 4A). The black module of downregu-
lated genes in NPC upon EtOH treatment was associated with several important signaling
pathways, such as JAK-STAT, cytokine-cytokine receptor interaction and Toll-like receptor
(TLR) signaling (Fig 4A). On the other hand, the purple module of upregulated genes showed
association with neuroactive ligand-receptor interaction (Fig 4A). To examine if there is any
concordance in molecular networks in NPCs and neural rosettes affected by EtOH treatment,
we have identified common genes in rosettes and NPCs that showed greater than 3-fold
changes upon exposure to EtOH by using Venny 2.0.2 (Computational Genomics Service) (Fig
4B). We identified core genes that are similarly regulated by EtOH treatment in rosette cells
and NPCs by combining the genes in the blue and the black module for commonly downregu-
lated genes (>3-fold) and by combining the genes in the brown and the purple module for
commonly upregulated genes (>3-fold). List of genes are shown in Table 1.

Validation of candidate genes differentially regulated by EtOH treatment
in NPCs

Candidate genes potentially regulated by EtOH treatment during neural differentiation were
validated by qRT-PCR analysis (Fig 5). Selected genes were first validated in undifferentiated
hESC, NPC with 0 mM EtOH and NPC with 20 mM EtOH. As shown in Fig 5A, we observed
significant alterations associated with neural differentiation (neural diff + 0 mM EtOH) com-
pared to undifferentiated control. To better examine the effect of EtOH on gene regulation,
NPCs were treated with 20 mM EtOH and relative expression levels of candidate genes were
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Complement and coagulation cascades 5 7.4E-2
Systemic lupus erythematosus 6 7.7E-2
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Fig 4. DAVID function analysis of identified genes. A. DAVID functional analysis was performed to examine potential functional association of identified
genes. Genes in the four major modules (black and purple modules from NPC model and blue and brown modules from neural rosette model) were
analyzed. It was found that genes dysregulated upon EtOH treatment in both NPCs and neural rosettes are significantly associated with neuroactive ligand-
receptor interaction, JAK-STAT pathway and cytokine-cytokine receptor interaction and TLR signaling pathway. B. Genes that are commonly affected by
EtOH (greater than 3-fold) in neural rosette and NPC were identified by Venny plot. List of genes are shown in Table 1.

doi:10.1371/journal.pone.0163812.9g004

compared to their respective controls (0 mM EtOH) (Fig 5B and 5C). Genes DHRS3,
HNRPD4, THAP2 and ROPN1 demonstrated alcohol induced upregulated expression (Fig 5B).
By contrast, downregulated expression was seen in the EtOH treatment of GH1, MACCI,
OFCC1, OPRM1, TLR3 and UPBI (Fig 5C).

The effect of EtOH on the expression of one of the candidate genes, P2RX3, was validated
by both qRT-PCR analysis and western analysis. The P2RX3 gene encodes a purinergic recep-
tor which functions as a ligand-gated ion channel and mediates peripheral pain responses [27].
EtOH has been shown to epigenetically alter P2RX3, which may have downstream effects on
the regulation of ion transport and may lead to reductions in hESC pluripotency [20]. We sug-
gest it may also have a functional significance in alcohol-induced neuropathy. qRT-PCR analy-
sis was performed to compare the relative fold changes of P2RX3 expression in
undifferentiated H1 hESC and hESC-derived NPC treated with EtOH. P2RX3 in undifferenti-
ated hESC was downregulated and conversely upregulated in NPC with increased EtOH con-
centration. (Fig 6A). We included 50 mM EtOH to examine if there is a dose dependency or
any potential variations in response to different doses of EtOH. CNTNAP4 and P2RX3 genes
are among upregulated genes that are upregulated by EtOH treatment. To examine if the alter-
ation is due to EtOH’s effect we have concomitantly treated NPCs with EtOH and
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Table 1. List of genes that are commonly dysregulated in NPC and neural rosette after EtOH

treatment.
Down >3 NPC and Rosette

Up >3 NPC and Rosette

C11orf21 TSHR
C19o0rf23 ALS2CR11
CD36 DDO
CD84 DOC2B
CLCN1 DOCK4
CNGB3 FKSG83
COL4A3 KCNE3
FLJ32255 KLF14
GPR84 LINO
HNRNPD MAP1LC3B2
IFNA2 OPRM!1
ITPRIPL2 RHAG
LOC100506517 SCARA5
LOC100507226 TNP2
LOC253039 UPB1
LOC283079

LOC283674

MACC1

NBLA00301

NPAS3

OFCC1

PCBD2

TLR3

TNSH

TRD@

ZAN

doi:10.1371/journal.pone.0163812.t001

dihydromyricetin (DHM), a flavonoid component of herbal medicines that counters acute
EtOH intoxication [28]. As shown in Fig 6B, NPCs treated with 20 mM EtOH showed induced
level of CNTNAP4 and P2RX3 mRNA compared to untreated NPC. The induction was reduced
by co-treatment of 1 uM DHM. Furthermore, undifferentiated H9 hESCs and H9 NPC cell
lines were treated with 0, 20, and 50 mM EtOH for 48 hrs. From Western analysis, we have
confirmed alcohol-induced downregulation of P2RX3 in undifferentiated hESCs and upregula-
tion in hESC-derived NPCs compared to beta-actin or p84 expression (Fig 6C). This result
demonstrates P2RX3 gene as one of molecular targets that are potentially deregulated by EtOH
during neural differentiation process.

Discussion

Various factors, signaling molecules, and other medias have been applied to differentiate ESCs
into various neural precursor cells (NPCs). Some of them include: stromal-derived inducing
cells, retinoic acid, bone morphogenetic protein, fibroblast growth factor receptors, and neuro-
basal medium [29]. ESCs can differentiate into the columnar neuroectodermal cells known as
neural rosettes and can mimic in vivo neuroectodermal development in terms of timing and
morphology [30]. Neural rosette cells can proliferate by self-renewal over a certain period of
time and contain neural progenitor cells, which can further differentiate into more restricted
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way ANOVA).
doi:10.1371/journal.pone.0163812.g005

progenitors leading to neuronal and glial cell lines[31, 32]. NPCs express high levels of neuroe-
pithelial markers such as nestin, Pax6, Sox1, and maintain expression of Sox2 [33]. Differentia-
tion potential of rosette cells diminishes with proliferation, occurring in vivo during neural
development. Currently, there are many studies that focus on differentiation of ESCs for spe-
cific regions of neural cells as the nervous system consists of different regions.

Neural differentiation of ESC and neurogenesis pathway integrates complex epigenetic pro-
cesses that require strict spatial and temporal cues. Major epigenetic mechanisms including
DNA methylation, covalent histone posttranscriptional modifications, chromatin organization,
and non-coding regulatory RNA play critical role in pluripotency maintenance and cell fate
determination[34]. For instance, decreased DNA methylation activates neuronal genes such as
Sox2 during ESC differentiation. More importantly, high levels of DNMT1 have been found to
be crucial in DNA methylation during neural development. Furthermore, histone acetyl trans-
ferases and histone deacetylases are also known to be key players in regulation of ESC differen-
tiation. Yet, the exact role of histone acetylation in embryonic development in terms of NSCs
and brain development has not been clearly elucidated [35].

In relation to this study, epigenetic regulation of the neural transcriptome and the alcohol
interference has recently studied and discussed widely. Resendiz et al. have elaborated on the
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doi:10.1371/journal.pone.0163812.9006

alterations in neural stem cell development and on how alcohol leads to neurodevelopment
deficits through neuroepigenetics [36]. As alcohol inhibits the differentiation of NSCs, cellular
growth, migration, and cell viability are all negatively affected [37]. In specific, NSCs treated
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with EtOH exhibit cell cycle delays, reduced NSC proliferation and increased DNA fragmenta-
tion. In addition, EtOH are found to block the intrinsic hypermethylation of the cell cycle
genes such as Adrala, Tnf, Pik3rl1, and Sh3bp2 during differentiation [38]. Moreover, the plur-
ipotency genes Oct4, Sox2, and Nanog have demonstrated an EtOH-specific delay of down-
regulation in NSC models [36].

Additionally, gene expression analysis of hESCs that differentiate into neural cells has facili-
tated in further defining the molecular mechanisms of neural development. Nestin and BIII-
tubulin (TUBB3), which are cytoskeleton proteins, are marker proteins of neural stem cells and
neurons respectively [39]. Nestin, expressed by neural progenitor cells, is specifically involved
in the cytoskeleton remodeling and central/peripheral nervous system development. It has
been found that nestin deficiency leads to embryonic lethality through the developmental
defect of neural tubes with low NSCs. On the other hand, BIII-tubulin is an identifier for neu-
rons that is also involved in neural development. In fact, mutations in the tubulin-encoding
gene TUBB3 are found to yield a set of disease symptoms via microtubule dynamics in neurons
[40]. Interestingly, it has been reported that there is a contrast in expression patterns of the two
genes in the NPCs derived from the hESC H9 cell line: Nestin showed high expression while
BIII-tubulin showed low expression, as well as random distribution[39]. It has also been noted
that nestin is highly expressed during early stages of neural development but becomes downre-
gulated in mature neurons whereas BIII-tubulin is expressed robustly in the later stages of the
neurogenesis in both the cell soma and the neurite-like structures. Besides nestin and tubulin,
there are other classic pluripotency markers such as Oct4, Sox2, ALP, and Nanog, as well as
Sox1 and Pax6, which are upregulated during neural induction.

Our study was aimed to assess molecular effect of alcohol on the process of neural differenti-
ation. Potential teratogenic effects of alcohol on fetal development have been documented.
Especially studies have demonstrated deleterious effect of ethanol exposure on neuronal devel-
opment in animal models and on the maintenance and differentiation of neuronal precursor
cells derived from stem cells. Molecular and cellular effects of alcohol on neural stem cells and
neural progenitors have been demonstrated [17, 20, 37, 38]. Several studies have shown that
alcohol has a significant molecular effect on neural physiology. However, it has not been stud-
ied if alcohol exposure in utero has any molecular effect on the onset of the lineage specification
of hESCs into neural precursors. Our recent study using hESCs demonstrated significant etha-
nol-induced molecular alterations in hESCs, especially through epigenetic mechanism [20].

In this study, we have generated neural stem cells from pluripotent hESCs and examined
global transcriptomic signature changes affected by ethanol treatment (Gene Expression
Omnibus under GSE56906), which will provide scientific insight on potential molecular effects
of fetal alcohol exposure on neural differentiation of early embryo development [24]. In partic-
ular, we have identified and verified several candidate genes that alcohol could interfere in neu-
ral stem cell regulation. Major molecular pathways in NPCs affected by EtOH have been
demonstrated as associated with alcohol exposure, such as JAK-STAT signaling pathway [41-
43], neuroactive ligand-receptor interaction [20, 44, 45]and Toll-like receptor (TLR) signaling
pathway [46, 47]. Among verified genes, we have further examined EtOH’s effect on CNTNAP4
and P2RX3. CNTNAP4 is Contactin Associated Protein-Like 4 and belongs to the neurexin
family, members of which function in the vertebrate nervous system as cell adhesion molecules
and receptors. It is a presynaptic protein involved in both dopaminergic synaptic transmission
and GABAergic system, thereby participating in the structural maturation of inhibitory inter-
neuron synapses. Involved in the dopaminergic synaptic transmission by attenuating dopa-
mine release through a presynaptic mechanism. Studies have demonstrated a potential
association of CNTNAP4 autism [48-50] or alcohol dependence. P2RX3, Purinergic Receptor
P2X, Ligand Gated Ion Channel 3, belongs to the family of purinoceptors for ATP. It functions
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as a ligand-gated ion channel and may transduce ATP-evoked nociceptor activation [51, 52]. It
needs to be demonstrated how these genes are dysregulated in NPCs upon EtOH exposure and
what are the significance of their dysregulation in mediating EtOH’s effect on NPC develop-
ment. Further functional assessment using our model will help us delineate molecular mecha-
nisms and understand cellular consequence of alcohol’s effect on neural stem cell regulation.

Supporting Information

S1 Fig. Quantitative assessment of neural differentiation. A. The level of neural makers
(Nestin, Tujl and Musashil) was assessed by QRT-PCR in rosette and NPCs and compared to
undifferentiated hESCs. B. The effect of 20 mM EtOH treatment on neural markers (Nestin,
Tujl and Musashil) in neural rosette and NPCs was determined by qRT-PCR assay. C. The
level of pluripotent markers, Oct4 and Sox2, was assessed in undifferentiated hESC (Und) and
NPCs without (0 mM) or with (20 mM) EtOH treatment. Bars are mean + SEM from tripli-
cates; the asterisk denotes significant (p<0.05) difference from control (one-way ANOVA).
(TIFF)
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