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ABSTRACT Provirus mutations of human T-lymphotropic virus 1 (HTLV-1), mostly
the lack of the 5= long terminal repeat (LTR) genomic region, have been described
and associated with severe adult T cell leukemia/lymphoma (ATLL), non-sense point
mutations with low proviral load, and Western blotting indeterminate results. Until
now, no information concerning provirus mutations of HTLV-2 and its consequences,
as well as those of HTLV-1/2 in HIV-coinfected individuals, had been described.
Therefore, we searched for these mutations in provirus samples of 44 HIV/HTLV-1-
and 25 HIV/HTLV-2-coinfected individuals. Using protocols well established for ampli-
fication and sequencing of segments of the LTR, env, and tax regions, we searched
for defective type 1 particles that retain LTRs and lack internal sequences and type 2
particles that lack the 5=LTR region. In addition, using as references the prototypes
ATK (HTLV-1) and Mo (HTLV-2), we searched for point mutations in the LTR and syn-
onyms and nonsynonymous mutations and non-sense mutations in env and tax re-
gions. Defective HTLV-1 and HTLV-2 provirus type 1 or 2 was detected in 31.8% of
HIV/HTLV-1- and 32.0% of HIV/HTLV-2-coinfected individuals. Synonymous and non-
synonymous mutations were identified mostly in HTLV-2 and associated with lower
levels of specific antibodies. No non-sense mutations that resulted in premature ter-
mination of Env and Tax proteins were detected. On the contrary, mutation in the
stop codon of Tax2a produced a long protein characteristic of the HTLV-2c subtype.
The clinical significance of these mutations in coinfected individuals remains to be
defined, but they confirmed the lower sensitivity of serological and molecular diag-
nostic tests in HIV/HTLV-1/2 coinfections.

IMPORTANCE HTLV-1 and HTLV-2 are endemic to Brazil, and they have different ef-
fects in HIV/AIDS disease progression. HIV/HTLV-1 has been described as accelerating
the progression to AIDS and death, while HIV/HTLV-2 slows the progression to AIDS.
Provirus mutations of HTLV-1 were implicated in severe leukemia development and
in problems in the diagnosis of HTLV-1; in contrast, provirus mutations of HTLV-2
had not been confirmed and associated with problems in HTLV-2 diagnosis or dis-
ease outcome. Nevertheless, data obtained here allowed us to recognize and under-
stand the false-negative results in serologic and molecular tests applied for HTLV-1
and HTLV-2 diagnosis. Defective proviruses, as well as synonymous and nonsynony-
mous mutations, were associated with the diagnosis deficiencies. Additionally, since
HIV-1 and HTLV-1 infect the same cells (CD4 positive), the production of HIV-1 pseu-
dotypes with HTLV-1 envelope glycoprotein during HIV/HTLV-1 coinfection cannot
be excluded. Defective provirus of HTLV-2 and Tax2c is speculated to influence pro-
gression to AIDS.
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Human T-lymphotropic viruses 1 and 2 (HTLV-1 and HTLV-2) were the first human
retroviruses discovered by Gallo’s team in the early 1980s (1, 2), and HTLV-1 was the

first infectious agent discovered to be carcinogenic and the etiological agent of adult T cell
leukemia/lymphoma (ATLL) (3–8). The third human retrovirus, named lymphadenopathy-
associated virus (LAV) by Montagneir’s group (9) and HTLV-III by Gallo’s group (10), was later
discovered to be the etiological agent of AIDS and then named human immunodeficiency
virus (HIV) (11). Unfortunately, because of the impact of the HIV epidemic, no attention was
paid to HTLV-1/2 infections despite HTLV-1/2 and HIV often being detected in intravenous
drug users (IDU) in the 1980s, and the coinfection had been described to accelerate
progression to AIDS in homosexual men (12–14). In addition, HTLV-1 is associated with
diseases of high morbidity and mortality, such as ATLL- and HTLV-1-associated myelopathy/
tropical spastic paraparesis (HAM/TSP) (8).

Like other retroviruses, the HTLV-1 provirus genome contains the gag, pol, and env
structural genes flanked by 5= and 3= long terminal repeat (LTR) sequences. In the 3=
portion of the genome is a pX region that encodes the Tax, Rex, p21, p12, p13, and p30
proteins as well as the antisense gene encoding the HTLV-1 basic leucine zipper factor
(HBZ). Both Tax and HBZ are implicated in the development of ATLL, with Tax initiating
cellular transformation and HBZ maintaining virus-induced cellular proliferation (15).
The Tax protein is also the primary viral antigen targeted by the host’s cytotoxic
T-lymphocyte response. Increased HTLV-1 Tax expression induces the expression of
various cellular genes, such as those encoding interleukin-2 and interleukin-15, which
directly contribute to lymphocyte activation and the immunopathogenesis of HAM/
TSP, a chronic progressive neurological disease (16–18).

Provirus sequences of HTLV-1 are relatively stable and less prone to mutations than
HIV-1 (19). Two types of defective HTLV-1 provirus were described in the 1990s: type 1,
which retains both LTRs and lacks internal sequences, and type 2, which lacks the 5=LTR
region (20, 21). Interestingly, infected cells with HTLV-1-defective proviruses proliferate
more than those with intact ones (22) and were detected at high frequencies in ATL cells
and in aggressive forms of ATL (20, 21, 23). These defective sequences were also identified
in asymptomatic carriers and HAM/TSP patients, albeit at low frequencies (22, 24).

In addition, HTLV-1 provirus mutations were associated with low proviral load,
HTLV-1/2 seronegative screening results, and HTLV-1 Western blotting (WB) indetermi-
nate results (25–27). For instance, defective HTLV-1 provirus in a group of HAM/TSP
seronegative patients was described in Chile and Argentina (25, 27). Furthermore, when
the proviral loads of HTLV-1 WB-positive blood donors and pregnant women and of
HTLV-indeterminate carriers were quantified, a lower proviral load was detected in
WB-indeterminate carriers along with an association with proviruses mutations, includ-
ing non-sense mutations in Pol and/or Tax, Env, p12, and p30 (26). The premature
termination of such proteins and the production of abortive strains were considered by
the authors to interfere with the host recognition of HTLV-1 antigens and, conse-
quently, the WB indeterminate results (26).

At present, no data concerning provirus mutation and defective particles were
described for HTLV-2 or HTLV-1/2 provirus mutations in HIV/HTLV-1 and HIV/HTLV-2
coinfection. Given that we carry out the surveillance of HTLV-1 and HTLV-2 subtypes in
HIV/HTLV-1- and HIV/HTLV-2-coinfected individuals in São Paulo, Brazil, we decided to
conduct the present study to add information concerning this subject by searching for
mutations in the LTR, env, and tax segments employed in HTLV subtyping.

RESULTS

After the first screening by NCBI genotyping and REGA genotyping, all HTLV-1
sequences were classified as belonging to the Cosmopolitan subtype a of transconti-
nental subgroup A and sequences of HTLV-2 as HTLV-2a subtype, variant -2c. These
classifications were confirmed by phylogenetic tree constructions (see Fig. S1 and S2 in
the supplemental material). The characteristics of patients, the GenBank accession
numbers of sequences, and the number of point mutations in each genomic region are
disclosed in Table 1.
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Even after several attempts, only part of the DNA samples from 44 HIV/HTLV-1-
coinfected individuals was amplified and sequenced for the three LTR, env, and tax
regions (30 [68.2%]), and defective particles of type 1 were detected in 20.4% (consid-
ering the lack of env and/or tax regions) and type 2 in 11.4% (considering the lack of
the 5=LTR region) (Table 1). The same deficiencies of sequencing were observed for
HTLV-2, in which, among 25 HIV/HTLV-2 samples, 17 (68.0%) were sequenced for the
three regions. Defective type 1 particles were detected in 16.0% of samples (consider-
ing the lack of env and/or tax region) and defective provirus type 2 in 16.0% of samples
(Table 1). It is important to note that the sequences obtained from the same patient
during 2 years of follow-up have been named in different fonts, and although they have
received different GenBank access numbers, they are identical, so they were analyzed
for mutations only once.

Figure 1 summarizes the number of sequences obtained here (SEQ�), the range of
provirus point mutations in each region, the location of the point mutation in the
promoter region of the LTR, and synonymous (S) or nonsynonymous (NS) point
mutations in the env and tax regions, as well as the number of defective proviruses
classified as type 1 (DPV1) and type 2 (DPV2).

Nucleotide substitutions, insertions, and deletions in the LTR of HTLV-1 (including
the Tax-responsive elements [TRE1 and TRE2] and U3) and the synonymous and
nonsynonymous mutations in env and tax regions are presented in Fig. 2, highlighting
the nucleotide and amino acid changes in the tax region characteristic of the TaxA
Brazilian genotype.

Figure 3 presents the nucleotide substitutions, insertions, and deletions in the LTR
of HTLV-2, including the serum response element (SRE), E-twenty-six transcription
factor family (ETS), poly(A), and the signature of -2c in the LTR region, along with
synonymous and nonsynonymous mutations in env and tax regions, emphasizing that
the signature of Tax2c (long Tax) was detected in 100.0% of sequences.

Comparative analyses of the number of mutations detected in the LTR, env, and tax
regions of HTLV-1 and HTLV-2 are presented in Fig. 4. They confirm more mutations of
HTLV-2 than HTLV-1 in HIV/HTLV-coinfected individuals (P � 0.0001 in all cases, except
synonymous mutations in the tax region) (Fig. 4C). Of note, more mutations were

FIG 1 Flowchart of results of genetic sequencing of the LTR, env, and tax regions and provirus mutations of HTLV-1 and HTLV-2 in HIV-1-coinfected individuals.
SEQ�, number of sequences obtained for each region; DPV1, defective provirus type 1; DPV2, defective provirus type 2; Total, range of overall mutations in
each region; Promoter, location of the point mutation in the promoter region of the LTR; S, synonymous mutations in the env and tax regions; NS,
nonsynonymous mutations in the env and tax regions.
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observed in the LTR region (more than 15 in HTLV-1 and more than 20 in HTLV-2)
(Fig. 4A).

The impact of such mutations and the presence of defective proviruses were
evaluated in relation to anti-HTLV-1/2 antibody production using samples previously
classified as HTLV-1 and HTLV-2 and independently confirmed by serologic (Western
blotting and/or line immunoassay) or molecular assays (qPCR [pol] and nested PCR-
restriction fragment length polymorphism [RFLP] [tax]) (28). Differences in the levels of
antibodies (optical density to cutoff [OD/CO] values), depending on the applied HTLV-
1/2 screening immunoassays, were detected.

Figure 5 presents the comparative analysis of the OD/CO values obtained from two
enzyme immunoassays (Murex EIA HTLV-I/II [Diasorin, United Kingdom] and Gold
enzyme-linked immunosorbent assay [ELISA] HTLV-I/II [REM Indústria e Comércio LTDA,
São Paulo, Brazil]) and the results of molecular confirmatory assays. Four of the 44
HTLV-1 samples and 4 of the 25 HTLV-2-negative samples in the confirmatory molecular
assays had lower average levels of antibodies than the positive ones when the Murex
EIA was used for screening, with statistical significance for HTLV-2 and HTLV-
1 plus HTLV-2 samples (Fig. 5C and E). In contrast, no difference in antibody levels and
negative and positive confirmatory molecular assays was detected when the REM Gold
ELISA was employed for screening (Fig. 5B, D, and F).

On the other hand, for analyses of average OD/CO values of both serological
screening assays and the results of the presence or absence of defective provirus in LTR,
env, and tax sequences (positive or negative), although overall comparisons disclosed
lower levels of antibodies in blood samples that had negative sequence results,
statistically significant difference was detected only for the env region and when REM
Gold ELISA was used for screening (Fig. 6A).

FIG 2 Nucleotide substitutions, insertions, and deletion in the LTR region and nucleotide and amino acid
substitutions in env and tax regions of HTLV-1 sequences. Nt, nucleotide; aa, amino acid; Seq., sequence;
Obs., observation. The nucleotide position in the LTR (n � 39), env (n � 38), and tax (n � 36) regions of
HTLV-1 sequences obtained from HIV/HTLV-1-coinfected individuals from São Paulo, Brazil, using the ATK
prototype as a reference (GenBank accession number J02029), are disclosed. The promoter regions and
regions with nonsynonymous substitutions are in red. The nucleotides and amino acid changes in the tax
region characteristic of the TaxA Brazilian genotype are highlighted.
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Finally, Fig. 7 presents the structural and functional domains of Tax-1 and Tax-2 and
the amino acid sequence alignment of the Tax-2 genotypes (Tax-2A, Tax-2B, and
Tax-2C), emphasizing the amino acid substitution mostly in Tax-2-specific domains that
may affect cellular localization or posttranslational modification and the lack of the stop
codon that characterizes the Brazilian HTLV-2c variant of HTLV-2.

DISCUSSION

The primary objective of the present study was to search for provirus mutations
and/or defective proviruses of HTLV-1 and HTLV-2 circulating in HIV/HTLV-coinfected
individuals to know if they influence HTLV-1/2 diagnosis and to speculate whether
these mutations could interfere with virological and patient outcomes. For these
attempts, we analyzed sequences employed in HTLV-1 and HTLV-2 subtype surveillance
in São Paulo, Brazil.

The results of HTLV-1 and HTLV-2 subtyping showed Cosmopolitan subtype a of the
Transcontinental subgroup A of HTLV-1 (HTLV-1aA) and the variant, c, of the HTLV-2a
subtype (HTLV-2c) circulating in São Paulo, confirming the HTLV subtypes more fre-
quently detected in Brazil in individuals of African origin, Amerindians, and IDUs
(29–33).

Concerning nucleotide substitutions in LTR regions, the results obtained showed
nucleotide substitutions in TRE1 and TRE2, as previously described (34, 35). The
implication of such substitution was not clarified, although it was tentatively implicated
in HTLV-1 proviral load regulation (34). Curiously, in HTLV-2 sequences, more mutations
in the LTR region were detected here, and the proviral load of HTLV-2 was low
compared with that of HTLV-1 described in the literature (36). In fact, in HTLV-2-infected
individuals, less positivity in serologic and molecular confirmatory assays has been
described and associated with low proviral load (28).

Other mutations were detected in the LTR genomic region, such as the C401T
mutation, which confirms the molecular signature of the HTLV-2c subtype and muta-

FIG 3 Nucleotide substitutions, insertions, and deletion in the LTR region and nucleotide and amino acid substitutions in env and tax
regions of HTLV-2 sequences. Nt, nucleotide; aa, amino acid; Seq., sequence; Obs., observation. The nucleotide position in the LTR (n � 21),
env (n � 22), and tax (n � 21) regions of HTLV-2 sequences obtained from HIV/HTLV-2-coinfected individuals from São Paulo, Brazil, using
the Mo prototype as a reference (accession number M10060), are disclosed. Regions of SER (serum response element), ETS (E-twenty-six
transcription factor family), poly(A) (domain responsible for activating mRNA polyadenylation), U3 (3= unique region in 5=LTR), R (repeat
region in 5=LTR), U5 (5= unique region in 5=LTR), and nonsynonymous substitutions, including the change in the stop codon of Tax2a,
giving the molecular signature of HTLV-2c, are highlighted in red.
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tions in the SER, ETS, poly(A), and U3RU5 regions, as reported by Barreto and coworkers
in viral isolates from Salvador, Bahia, in the northeast region of Brazil (37). Interestingly,
some of these transcription factors can activate the cell cycle, inducing apoptosis and
cell growth and participating in the malignancy of tumor cells and metastasis. Further-
more, poly(A) has an important role in mRNA regulation, stability, and translation
(38–40). Thus, mutations in these transcription factor motifs may interfere in cellular
and viral component production and could be related, in some way, to the protective
role of HTLV-2 in HIV-coinfected individuals, especially in cases infected by HTLV-2c.

Regarding synonymous and nonsynonymous mutations in the env regions of
HTLV-1 and HTLV-2, again, greater numbers of mutations were detected in HTLV-2. The
amino acid change S183P in 100.0% of the HTLV-2c env sequences was also previously
reported in Brazilian strains (29, 41, 42) and confirmed the Brazilian signature of strains.
The env mutations plus the LTR mutations detected in HTLV-2 allowed us to suppose
that mutations in LTR promoter regions plus mutations in the env region could be
associated with minor antigen production and, consequently, antibodies. In fact, in the
present study, more mutations in LTR, env, and tax regions of HTLV-2 than of HTLV-1
were detected, mostly in the LTR promoter region.

Additionally, the presence of mutations in env of HTLV-1, similar to the absence of
this segment in some strains, does not eliminate the possible presence of pseudotypes
of HIV and HTLV-1, since both retroviruses infect the same cell type (CD4� cells).
Moreover, the unique lack of the env region detected in some samples in the present
study allowed us to suppose pseudotype production. Tang and collaborators described
pseudotyping of HIV-1 with HTLV-1 envelope glycoprotein during HIV-1/HTLV-1 coin-
fection, facilitating direct HIV-1 infection of female genital epithelial cells and implicat-
ing it in the sexual transmission of HIV in nonpermissive genital cells (43). This

FIG 4 Comparative analyses of HTLV-1 and HTLV-2 considering the overall number of mutations, point mutations in the
LTR promoter region, and synonymous and nonsynonymous mutations in the env and tax regions using the Mann-Whitney
U test.
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phenomenon may represent a risk factor for enhanced sexual transmission of HIV-1 in
regions where HIV/HTLV-1 coinfection is common, as in Brazil. The presence of such
hybrid particles could not be excluded in this study and could be responsible, in part,
for the fast progression to AIDS and death of HIV/HTLV-1-coinfected individuals de-
scribed elsewhere (44–46). Of note, during the period of the present study, no patient
developed ATLL or HAM/TSP or died of AIDS.

In addition, although recombinant forms of HTLV-1 have been described only in
some African strains (47), we could not exclude recombinant forms of HTLV-1 as well
HTLV-2 in coinfected individuals, as well as pseudotyping of HIV and HTLV-1/2.

An important piece of data that emerged from the present study was the strong
association of the low titers of HTLV-1/2 antibodies when the Murex EIA was employed
for screening with the negative results, mostly for HTLV-2, using PCR of pol and tax
segments as confirmatory diagnostic assays. Defective type 1 particles, which include
the lack of pol, tax, and/or env regions, and point mutations in such regions could
account for the results obtained. The Murex EIA contained only recombinant glycopro-

FIG 5 Comparative analyses of HTLV-1/2 antibody levels (OD/CO) using two enzyme immunoassays in relation to
provirus detection by molecular assays (quantitative PCR [pol] and nested PCR-RFLP [tax]). Statistical analyses used
the Mann-Whitney U test.
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teins of the envelope (rgp 46-I and rgp 46-II) and the transmembrane glycoprotein
GD-21, common to both viruses, and just in this segment there is an amino acid change
of S183P in HTLV-2 env sequences. We hypothesized that defective provirus type 1
particles or nonsynonymous mutations in the env region are responsible for the results
obtained. On the other hand, when the same antibody levels were evaluated in relation
to the detection of LTR, env, and tax proviral segments of HTLV-1 and HTLV-2, although
minor levels of antibodies were detected in both EIAs in the overall analysis, only the
REM Gold ELISA results reached statistical significance (association between the ab-
sence of env sequences and low levels of antibodies). We do not know which are the
synthetic peptides or recombinant proteins present in this REM EIA, because this
information is absent from the manufacturer’s instructions, but we hypothesized that
when nonsynonymous point mutations and defective proviruses are circulating in such
individuals, small amounts of antibodies are produced and, consequently, detected by
this enzyme immunoassay. In fact, the lower sensitivity of this screening assay was
previously described in HIV/HTLV-coinfected individuals in São Paulo, Brazil, when the
comparative performance of Murex EIA and REM Gold ELISA was examined (28),
corroborating the present data. On the other hand, no differences in the levels of
antibodies were detected using the REM Gold ELISA samples that were positive and

FIG 6 Comparative analyses of HTLV-1/2 antibody levels (OD/CO) using two enzyme immunoassays in
relation to the positivity of LTR, env, and tax sequences, using the Mann-Whitney U test.
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negative in molecular confirmatory assays. Again, the antigen composition of both
assays could explain the discordant results obtained here.

Of note, false-negative results in molecular assays were detected in the present
study, as were false-negative results in serologic screening assays described in HTLV
truly infected individuals from South America (25, 27, 28). Thus, although in this study
no blood samples that could be amplified and sequenced had a false-negative result in
the screening, there is a need to improve the commercially available serological
screening tests for HTLV in South America, perhaps using chimeric antigens containing
env (rgp46), gag (p19), and pX (Tax) proteins (27).

Regarding Tax protein, Brazilian molecular signatures were detected in both HTLV-1
and HTLV-2. Overall, HTLV-1 isolates disclosed mutations that confirm the molecular

FIG 7 Structural and functional domains of the Tax-1 and Tax-2 proteins and amino acid sequence alignment of the Tax2 genotypes (Tax-2A, Tax-2B, and
Tax-2C). K, position of lysine; S, position of serine; CBP, Ca2� binding protein; NLS, nuclear localization signal; LZR, leucine zipper-like regions; NES, nuclear export
sequence; SD, secretion domain; NLD, nuclear localization determinant; LD, localization domain. The PDZ-binding motif, CREB-binding region, and activating
transcription factor (ATF) are shown. Amino acid changes in dark green belong to genotype Tax-2B. Amino acid changes belonging to genotype Tax-2C are
in red (present in the majority of sequences) and dark blue (present in the minority of sequences).
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signature of the TaxA genotype, characteristic of Brazilian strains described by Kashima
and coworkers (48) and corroborated by other groups in HTLV-1-infected (49) and
HIV/HTLV-1-coinfected individuals of Brazil (50). Of note, in Brazil, no association of this
genotype and HTLV-1-associated diseases was detected (49).

Concerning Tax of HTLV-2, studies conducted by Bertazzoni’s group have demon-
strated that Tax-1 and Tax-2b have differences in transformation and expression
capacities; they possess two basic structural features that differentiate Tax-1 from Tax-2,
i.e., the presence only in Tax-1 of an NF-�B2 domain and a PDZ binding motif,
responsible for the binding to p100 and several PDZ-containing proteins. Tax-1 and
Tax-2 also have several common domains but divergent cellular localization. Tax-1
predominates in the nucleus, while Tax-2b predominates in the cytoplasm of cells (51).
When we analyzed the Tax protein of the Brazilian variant (HTLV-2c) present in
individuals from urban areas, we detected Tax-2c in all sequences.

In a preliminary study conducted by Bertazzoni’s team and our group comparing 25
Tax-2c sequences obtained from patients of Brazil with Tax-2b sequences obtained
from patients in Italy, we found that they differed for amino acid substitutions in 11
different positions. These substitutions may affect cellular localization or posttransla-
tional modification and confirmed the CREB-binding site in the N-terminal region and
the ATF/CREB activating domain in the C-terminal region and an additional localization
domain responsible for cytoplasmic cellular localization, similar to that of Tax-2b (52).
In the present study, using other Brazilian HTLV-2 sequences and the alignment of
Tax-2c with the proteins Tax-2a and Tax-2b, the same amino acid mutations were
detected, requiring further phenotypic studies of the properties and cellular localization
of Tax-2c.

Another important detail that emerged from this study was the high rate of
defective provirus particles (around 30%) detected in HIV/HTLV-1- and HIV/HTLV-2-
coinfected individuals, which is similar to the overall rates described in ATL individuals
infected with HTLV-1 (20–22). However, the percentages differ depending on the type
of defective provirus (type 1 or type 2). While in HTLV-1-infected individuals the
majority of cases are defective provirus type 2 instead of type 1 (26.7% versus 2.2% in
ATL, 14.5% versus 2.9% in asymptomatic carriers, and 13.1% versus 2.0% in HAM/TSP,
respectively) (22), in the present study we detected more defective type 1 particles in
HIV/HTLV-1 coinfection (20.4% versus 11.4%) and the same rates of type 1 and type 2
in HIV/HTLV-2-coinfected individuals (16.0%).

Concerning the limitations of the present study, we take into account that we used
a conventional DNA sequencing methodology (Sanger sequencing), which generates
provirus DNA fragments (not the complete provirus) present only in the major clones.
Although we consider that the best way to search for defective proviruses is using a
high-throughput sequencing-by-synthesis instrument (Illumina massively parallel se-
quencing technology) (32) or a recent viral DNA sequencing capture approach, which
amplifies the full-length proviruses and provides information about the proviral struc-
ture and the viral integration sites (22), we tried to avert this lack of amplifying large
fragments of the 5=LTR, env, and tax regions used in HTLV subtyping. We employed
degenerate primers and protocols optimized previously for detecting all Brazilian
sequences described in the literature (29, 35, 50, 53, 54); indeed, we increased the DNA
input and repeated the reaction several times, and, to ascertain that the 5=LTR and not
the 3=LTR of HTLV-1 was amplified, we employed primers pairs that cover the entire LTR
region plus a close fragment of the gag gene of 66 bp (nucleotides 756 to 821). We
believe these strategies may reduce the limitations of the study.

The implication of the mutations and defective proviruses in HIV/HTLV-1- and
HIV/HTLV-2-coinfected individuals detected here deserves more study, but we specu-
late that difficulties in HTLV-1 and HTLV-2 diagnosis as well negative results in molec-
ular confirmatory assays in such individuals are, in part, attributable to these provirus
mutations, corroborating results described elsewhere for HTLV-1-infected individuals
(26).

In addition, we could not exclude the negative impact of defective particles in
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HIV/HTLV-1 coinfection, since low CD4� cell counts, high HIV viral load levels, and more
X4 HIV strains were detected in such patients. In contrast, in HIV/HTLV-2-coinfected
patients, we detected large numbers of CD4� cells, low HIV viral load levels, and large
numbers of R5 HIV strains (all data were from laboratory records). These data partially
corroborate the studies that pointed to rapid progression to AIDS and death in
HIV/HTLV-1-coinfected individuals and slow progression to AIDS in HIV/HTLV-2-
coinfected individuals (44–46). Of note, the DNA samples analyzed in the present study
came from patients of the same cohort, with approximately 15 to 20 years of HIV and
probably HTLV infections, the majority of whom were on antiretroviral therapy (ART).
Thus, the apparent conflicting result of CD4� cells in HIV/HTLV-1-coinfected individuals
(since HTLV-1 induces T cell proliferation) could be due to the late starting of ART in
such patients, when the recovery of CD4� cells is not promising, but these are only
speculations and merit other studies.

In conclusion, this is the first time that around 30% of provirus mutations were
described in HTLV-2-infected individuals and in HIV/HTLV-1- and HIV/HTLV-2-coinfected
individuals and is the first tentative description of HTLV-2 defective provirus classifica-
tion. Indeed, the presence of point mutations and defective provirus was correlated
with negative results in molecular assays and lower antibody production. Finally, the
results obtained here could help us in the future to understand why HIV/HTLV-1 and
HIV/HTLV-2 progress differently to AIDS and to HTLV-1/2-associated diseases.

MATERIALS AND METHODS
The samples analyzed consisted of blood samples obtained from patients with HIV/AIDS attending

AIDS Reference Centers in São Paulo, Brazil, and we conducted a comparative analysis of serologic and
molecular diagnostic assays described elsewhere (28). Of note, two enzyme immunoassays were em-
ployed for HTLV-1/2 screening (Murex EIA HTLV-I/II and Gold ELISA HTLV-I/II). Two serologic assays (WB
and HTLV BLOT 2.4; MP Biomedicals Asia Pacific Pte. Ltd., Genelabs), a line immunoassay (INNO-LIA HTLV
I/II Score; Fujirebio Europe N.V., Belgium), and two molecular in-house assays (qPCR [pol] and nested
PCR-RFLP [tax]) were used as HTLV-1 and HTLV-2 confirmatory and discriminatory assays (28). Samples
were considered truly HTLV-1 or HTLV-2 positive when positive in at least one of these serological and/or
molecular assays.

DNA samples were extracted from peripheral blood leukocytes. The protocols for amplification and
sequencing the LTR, env, and tax regions were previously described and employed degenerate primers
and protocols optimized for detecting all Brazilian sequences obtained from the literature (29, 53–55).
The reactions were conducted in triplicate. The primer pairs employed in the study are disclosed in
Table S1 in the supplemental material. The HTLV-1 provirus products amplified varied from 621 to 625 bp
(LTR/gag), 634 to 679 bp (env), and 996 to 1,074 bp (tax), and those of HTLV-2 provirus varied from 496
to 644 bp (LTR), 936 to 964 bp (env), and 1,089 to 1,134 bp (tax). Products available for sequence analysis
were obtained from 44 HIV/HTLV-1- and 25 HIV/HTLV-2-coinfected individuals. From some patients in
clinical and laboratory follow-up for 2 years, DNA samples were obtained at the beginning of study (first
collection), 6 to 12 months later (second collection), and 13 to 24 months later (third collection). The
sequences obtained from these patients are presented in Table 1.

Briefly, sequencing was performed using an ABI 3130 Genetic Analyzer (Applied Biosystems, Foster,
CA). All of the sequencing chromatograms were assembled and edited with Sequencher 4.7 software.
Multiple alignments were performed using the Clustal W multiple-sequence alignment tool from the
BioEdit Sequence Alignment Editor, version 7.0.5.3, and software with a reference set available in the
GenBank database (https://www.ncbi.nlm.nih.gov/genbank), in which the nucleotide and amino acid
substitutions were searched. HTLV-1 and HTLV-2 subtyping was primarily screened by NCBI genotyping
(https://www.ncbi.nlm.nih.gov/projects/genotyping/formpage.cgi) and REGA subtyping (http://www
.bioafrica.net/rega-genotype/html/subtypinghtlv.html) websites. Neighbor-joining (NJ) and maximum-
likelihood (ML) phylogenetic trees were constructed based on appropriate nucleotide substitution
models determined by Modeltest v3.7 (GTR�G model for LTR-1, env-2, and tax-2, GTR�I�G for env-1 and
tax-1, and TVM�I�G for LTR-2) using PAUP v4b10 software. Bootstrapping was performed using the
stepwise addition algorithm for 1,000 replicates. The Mel5 (HTLV-1c) sequence and Efe2 (HTLV-2b) were
used as outgroups. The GenBank accession numbers of the prototypes as well the sequences obtained
here and employed in the phylogenetic tree constructions are disclosed in Text S1.

After confirming the HTLV-1 and HTLV-2 subtypes of the Brazilian sequences, they were aligned and
compared with the prototypes ATK (HTLV-1a) and Mo (HTLV-2a) using BioEdit version 7.0.5.3 software
and searched for nucleotide substitutions and amino acid changes (synonymous and nonsynonymous
mutations). In the tax regions of HTLV-1, we searched for the taxA and taxB genotypes (50). In the tax
region of HTLV-2, the molecular variant of the Brazilian HTLV-2a strains, named HTLV-2c, which encodes
a long transactivating protein (Tax) because of the loss of the stop codon in the tax gene position 8203,
was used; consequently, an additional 25 amino acids at the C-terminal end of the Tax protein (29) were
used.

Of interest, these prototypes were employed for subsequent analyses because they have been used
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to compose the HTLV-1/2 serologic immunoassays employed for screening, confirmation, and discrim-
ination of HTLV-1 from HTLV-2 (as cell line viral lysates and/or as recombinant protein or synthetic
peptides).

It is worth noting that the ATK prototype is the complete nucleotide sequence of the HTLV-1 provirus
genome integrated into leukemia cell DNA, derived from a Japanese adult T cell leukemia (ATL) patient
(56). The Mo prototype is the complete nucleotide sequence of the HTLV-2 provirus genome integrated
into leukemia cell DNA derived from an American patient presenting with hairy cell leukemia (2).

The examination of defective proviruses was conducted according to the lack of LTR, env, and tax
segments after several amplifications and sequencing events, including testing different amounts of DNA
inputs and primer pairs. The criterion to be considered an HTLV-1 defective type 1 provirus was the lack
of the env and/or tax segment, and that for type 2 was the lack of a 5=LTR region (20–22). The same
criterion used for HTLV-1 was employed for HTLV-2, since there is no publication or classification of
defective proviruses of HTLV-2 in the literature.

The possible influences of provirus mutations in the local interaction of the Tax protein and other
cellular factors in LTR promoter segments, as well the Env and Tax protein products in antibody
production, intracellular Tax localization, and cellular factor interaction of HTLV-1 and HTLV-2, were
searched as previously described (37, 51, 55).

GraphPad Prism software, version 5.03 (San Diego, CA, USA), was employed for comparisons among
groups using the Mann-Whitney U test (two groups). A P value of �0.05 was considered significant.

The study was approved by the Ethics Committee for Research of IAL, CTC 62H-2015 and 21I/2016,
under Ministry of Health protocol numbers CAAE 55837316.0.0000.0059 and 52493316.1.0000.0059. All
of the procedures were performed in accordance with the principles established in the Declaration of
Helsinki of 1975, as revised in 1983. The study was conducted anonymously.

Data availability. GenBank accession numbers for the prototypes and sequences obtained in this
study can be found in supplemental Text S1.
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