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Abstract 
Commercial clouds provide on-demand IT services for big-data analysis, which have become an attractive option 
for users who have no access to comparable infrastructure. However, utilizing these services for human genome 
analysis is highly risky, as human genomic data contains identifiable information of human individuals and their 
disease susceptibility. Therefore, currently, no computation on personal human genomic data is conducted on public 
clouds. To address this issue, here we present a site-wise encryption approach to encrypt whole human genome se-
quences, which can be subject to secure searching of genomic signatures on public clouds. We implemented this 
method within the Hadoop framework, and tested it on the case of searching disease markers retrieved from the 

. The secure search runs only one order of magnitude slower 
than the simple search without encryption, indicating our method is ready to be used for secure genomic computa-
tion on public clouds. 

Background 
With the advance of next-generation sequencing (NGS) technology, massive human genomic data (from whole-
genome sequencing or exome sequencing) has been accumulated rapidly in laboratories and clinical settings [1]. The 
availability of these data accelerates the exploitation of the field of personal medicine and genome-based healthcare. 
To efficiently explore these datasets, research institutions and healthcare practitioners need to build infrastructure 
(i.e., computer systems with large memory and disk space, powerful CPUs and fast network connections) to support 
intensive genome computation. In addition to the high maintenance cost, human genome data comes with high lia-
bility: it contains identifiable information of human individuals (e.g., disease patients), and thus has to be protected 
from un-authorized access. As a result, computer servers have to be dedicated to the genome data from each specific 
project (or group of patients), which increases the administrative cost of the data analysis. 

Commercial (also referred to as the public) clouds (such as the Amazon EC2 and the Microsoft Azure) have already 
been widely utilized in many fields to deliver the on-demand computation resources with pay-as-you-go pricing. 
Adopting an elastic computing model, commercial clouds consist of commodity machines and provide redundant 
data storage and high parallelism of computation capability. The cost-effectiveness of commercial clouds has been 
well recognized in bioinformatics for processing massive genomic data [2]. Currently, many tools are available on 
commercial clouds [3], for instances, reads mapping, fragment assembly and function analysis of the genomic data 
from microbial organisms, animals and plants. However, utilizing commercial clouds for analyzing sensitive human 
genomic data is hindered by the privacy concerns [4-7]. On the one hand, it is well known that even a small piece of 
genomic information (e.g., the genotypes over a few dozens of SNPs) can be used to infer the identity of an individ-
ual or the potential disease risk. Statistical methods [8-12] were also developed to infer the presence of a participant 
in a case group from the (e.g., allele counts on the SNP sites across the whole ge-
nome). On the other hand, commercial clouds do not offer high security assurance and tend to avoid any liability [13,
14] because in the elastic computing model, the physical servers on the cloud are shared by many users. Due to such 
conflict, the analysis of personal genome datasets is rarely outsourced to commercial clouds.  

One can address the privacy concerns by encrypting the sensitive human genomic data before handing them over to 
commercial clouds. As used for storing private databases such as bank accounts on public clouds, the encrypted data 
provides high security assurance. There are growing interests in developing efficient protocols to support computa-
tion on encrypted data stored based on different adversary models and computing assumptions, including secure 
multi-party computation (SMC), oblivious RAMs, homomorphic encryption, functional encryption, property-
preserving encryption, and searchable symmetric encryption (for a review see [7]).

In this paper, we present a simple cryptographic approach that supports the search of genomic signatures (e.g., one 
or more single nucleotide variations (SNVs) associated with a certain disease) on commercial clouds through the 
site-wise encryption (SWE) of whole human genomic sequences. In our adversary model, commercial clouds are 
reasonably assumed to be honest but curious, i.e., they are assumed to return the results for any submitted compu-
ting jobs while ensuring the correctness and integrity of results. Meanwhile, they may try to learn some statistics, 
such as access patterns, that can be used to infer private information from the submitted data. We also assume that 
the data storage can be compromised, but the computation procedure itself is protected (i.e., we do not intend to pro-
tect the computing results). Finally, we implemented our approach on the Hadoop framework; but this should not be 
a constraint for our approach since it can be easily extended into other platforms. 

227



Secure Search of Genomic Signatures 
We study the following genomic signature search problem: given the whole genome sequences of an individual, and 
a set of SNVs 
SNVs (or the disease susceptibility of the individual). Our goal is to develop a secure computing protocol to solve 
this problem on commercial clouds, while the individual s genomic sequences are protected. More specifically, what 
we want to achieve are as follows: (1) public clouds do not know the content of the data, though they see how fre-
quent each record has been queried; (2) an attacker, even when observing the queries from the user (through network 
eavesdropping) and obtaining encrypted SNVs (e.g., by temporarily compromising cloud storages), knows nothing 
about the content of the queries, SNVs and even the frequencies of the queries.  We note that such a solution could 
be applied to several practical scenarios in genome-based medicine that require large computing resources, for ex-
amples, 1) to screen the risks of genetic diseases by searching the whole genome of an individual against the data-
base of genetic diseases (e.g., ClinVar [15]); 2) to identify potential pharmacogenomic markers (e.g., in PharmGKB 
database [16]) relevant to drug dosage or selection of effective treatment; and 3) to classify patients with indistin-
guishable symptoms into disease subtypes based on genetic markers [17].  

To encrypt whole genome sequences, we first compare it against the 
reference human genome, and encode it as a set of variations between 
them, including the single nucleotide variations (substitutions or inser-
tion/delections), long insertions/deletions, micro-inversions, and trans-
locations. Notably, because the number of variation sites (typically 
several millions of them) is relatively small comparing to the whole 
genome sequences (3 billions of bases), this conversion effectively 
reduces input data size while retaining all individual genomic infor-
mation, and thus is often used to compress the whole genome sequenc-
es[18].  The collection of variation sites can be encrypted effectively in 
a site-wise fashion: each variation site can be encrypted separately us-
ing the same encryption key. Figure 1a illustrates the encryption proce-
dure. The data owner generates a random key, a random string genera-
tor and a hash function, and encrypts each record (including a variation,
its genomic location and other information) on a local machine (see 
Methods for detailed description of the encryption protocol). The re-
sulting ciphertexts are then uploaded to commercial clouds. When the 
data owner wants to search a genomic signature (e.g., one or more sin-
gle nucleotide variations at specific genomic locations), he needs to 
encrypt the signature in the same site-wise fashion (i.e., to encrypt each 
variation site separately) using the same key. As a result, the same vari-
ation in the whole genome sequences will lead to the same encrypted 
record, although the variation itself (the type or the genomic location) 
cannot be inferred from it. After the encrypted genomic signature is 
uploaded to public clouds, a simple string matching can be conducted 
to determine if each variation in the genomic signature is present or not 
in the whole genome sequences of interest (Fig 1b). This process does 
not leak any information about the original records, as only encrypted 
data is accessed. Moreover, each variation site is unique (i.e., at a dif-

ferent genomic location), and thus each encrypted record is non-redundant, which prevent the inference attacks us-
ing frequency analysis on encrypted data [19].

Methods 
We devised two secure search (referred to as the basic and the randomize-verify) schemes based on the following 
security primitives. 

A symmetric key encryption function ( ). A symmetric key encryption function is a family of encryption functions, 
which uses one same key to perform both encryption and decryption. We adopt symmetric key encryption protocol, 
as in our scheme, it is the data owner himself that will conduct the search on public clouds. Due to its well-designed 
security attributes and efficiency, AES algorithm is used in our implementation, which is a block cipher and encrypt 
a fixed block (128 bits) in each operation by permutation and substitution. 

A cryptographic pseudorandom generator ( ). We use it to generate non-deterministic seeds and strings in our 
second scheme to randomize the encrypted records (Fig 1a), which further strengthen the security assurance.

A cryptographic hash function ( ). A cryptographic hash function digests records and produces hash values in a
collision resistant way. It is practically impossible to invert hash values to original messages. We use it in the verifi-

Figure 1. The cryptographic protocol 
for genomic signature search consist-
ing two steps: (a) the site-wise encryp-
tion of the whole genome sequences;
and (b) the secure search on public 
clouds.  

a 

b 
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cation phase to determine if a pair of reference and query ciphertexts is from the same original record. SHA-256
algorithm is used in our implementation. 

There are two security parameters (  and ) used in our schemes. Either  or  should be less than the length of an 
encrypted record, while their sum should be equal to the length of an encrypted record. 

Basic scheme 

In the basic scheme, the data owner first generates a random key ( ) for all records (variations) in the input ge-
nome (referred to as the reference records), and encrypts each record using  and . The encrypted reference 
records are then uploaded to public clouds after shuffling. This step needs to be done only once for a particular ge-
nome as the encrypted records can be kept on public clouds for future searches. If the data owner wants to search a 
genomic signature (i.e., a small set of variations), he will encrypt them using the  and of the corresponding 
genome to be searched against, and upload the encrypted records (referred to as the query records) to the cloud. 
Within the Map-Reduce framework (e.g., Hadoop), we use a random sampler to split the reference records into dif-
ferent reducers to balance the workload on every reducer. The reference records in each reducer are then indexed as 
a dictionary to be searched by using a binary search algorithm. When the Map-Reduce system starts to look for the 
exact matches between reference and query records, it automatically, in the shuffling phase, sorts query records and 
deliver each of them to a specific reducer, in which a binary search is initiated to determine if an exact match can be 
found for each query record. In the end, the match (or no match) of each query record will bel reported. 

Randomize-Verify (RV) scheme 

A problem of the basic scheme is that an attacker who monitors queries observes the frequencies of different queries,
which could be an information leak of concern. Figure 2 illustrates an enhanced approach capable of withstanding 
this threat, called randomize-verify scheme. The idea is to make the ciphertexts for the different instances of the 
same query look different, thereby thwarting the attempt to accumulate the frequency of a specific query.  Specifi-
cally, to encrypt a reference record  (Fig 2a), the data owner generates a -bit random string ( ) by using , in 
addition to the key . He first applies E with the key  to , resulting in the encrypted record , and 
then computes the cyphertext  by using the XOR operation between the 
encrypted record and the -bit random string concatenated with its first m-bit hash value ( ) computed by 

the hash function , where  denote the concatenation operation 
on strings. 

After ciphertexts are shuffled and uploaded to public clouds,
they are first indexed to achieve the best performance of search-
ing. The first 2-byte of an encrypted record ( ) is 
used as a classification identifier. A random sampler is used to 
sample the ciphertexts to decide to which reducer a ciphertext is
delivered to balance the workload of each reducer. These split 
databases are serialized on the local disk of each reducer so that 
every time when a new search task initializes, they are able to be
loaded into the memory at the local machines where reducers are 
executed. 

For the search of a genomic signature, each query record is en-
crypted in a similar way (Fig 2b). First, a common seed ( ) is 
generated for this specific search and a random seed ( ) is gen-
erated for each query record ( ). The combination of both 
and is used as the random seed to generate a bit ran-

dom string ( ) for the query record . The ciphertext ( ) is then computed by the XOR opera-
tion between the encrypted record  (using  with the same and the bit random string: 

. Finally, both  and the corresponding  are uploaded to public clouds. The com-
mon seed can be transferred to the cloud through a secure channel (e.g., the SSH connection). 

Finally, the secure search of the genomic signature can be conducted on public clouds by using a verification proto-
col (Fig. 2c). Every pair of reference and query ciphertext is verified (by the reducer on which the ciphertext share 
the same classification identifier) for representing the same variation or not by checking if 
is true. The correctness this verification can be easily proved:  

1)  

2) 

Figure 2. The randomize-verification scheme 
has three steps: (a) reference records encryp-
tion; (b) query records encryption; and (c) 
search on public clouds. 
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so  if and only if .

Results 
We implemented our schemes in Java within the Hadoop framework. It supports inputs in both plain text format 
(shown in Fig 1a) and variant call format (VCF). The source code of the project can be found at 
http://swecloud.sourceforge.net. For the testing, we used the genome sequences from a participant of Personal Ge-
nome Project (PGP) [20], from which a total of 4,005,829 variation records were retrieved. We selected 45 disease 
associated SNVs (i.e., query records) in ClinVar [15] to test the secure search algorithm. A full list of these SNVs 
and their associated diseases can be found on http://omics.informatics.indiana.edu/mg/SWECloud/, e.g., T A sub-
stitution at 51,078,333 on chromosome 18 (ClinVar ID: rcv000021740).  

In order to estimate the computation overhead of the secure search schemes, we also implemented a simple binary 
search algorithm to identify query records in the genome sequences in Java, and ran it on a local single CPU ma-
chine (referred to as the plain search).

Table 1 shows the performance of two secure search (basic and RV) schemes in comparison with the plain search. In 
the encrypt phase, the RV scheme takes longer time on reference record encryption than the basic scheme (note that 
this is a one-time computation), as it needs to randomize data to achieve higher security guarantee (see Discussion).
The encryption for query records takes negligible time. In both of the indexing and searching phases, these two 
schemes show similar performances. Because the RV scheme compares each pair of query and reference ciphertexts 
with the same 2-byte classification identifier, the basic scheme may show slightly better performance when we have 
more query records. Both schemes take more time in indexing and searching comparing with the plain search. But 
the computation overhead is not high, at approximately one order of magnitude, which can be compensated easily 
with the larger computing resources available at commercial clouds.  

Table 1. The performances of implemented schemes.  

Encryption (seconds) Indexing (seconds) Searching (seconds)

Reference Query Mapper Reducer Total Mapper Reducer Total 

Basic  37.1 0.2 59.0 (2) * 109.2 (4) * 49.0 4.6 (1) 76.5 (4) * 21.3 

RV  63.7 0.2 59.4 (2)* 84.4 (4) * 46.2 4.6 (1) 75.6 (4) * 21.5 

Plain  - 7.3 6.1 

(*: The numbers in parenthesis represent the numbers of parallel mapper/reducer jobs. Total running time summed over all jobs are reported.) 

Discussion 
The privacy risks of genome computing on public clouds are two-folded: the data stored on public clouds can be 
used to infer sensitive information while at each time of computation, the query data may also be identifiable. The 
first risks can be completely mitigated in both schemes, as the security of the encrypted records is assured by the 
cryptographic primitives. An adversary cannot infer useful information without knowing the encryption key even if 
he obtains the ciphertexts. He cannot conduct frequency analysis on the encrypted reference records either because 
each variation appear at most once in the genome of any single individual while the genomes of different individuals 
will be encrypted using different key. On the other hand, an adversary may accumulate all query ciphertexts within a
period of time and then try to infer sensitive information, such as potential disease susceptibility, based on those 
query ciphertexts and other public information. The basic scheme may be subject to this attack. As a result, the data 
owners may need to change the encryption key periodically, and re-encrypt the reference records so that the adver-
sary cannot collect the sufficient query ciphertexts to analyze the pattern. Our second scheme further decreases these
risks. The reference records are double protected, by the encryption key as well as the random strings that are inde-
pendent on the original records. These random strings not only protect the encrypted records, but also make cipher-
texts indistinguishable. It also prevents the pattern analysis of the query ciphertexts: even if an adversary accumu-
lates all query ciphertexts, they cannot determine if two ciphertexts in different queries are the same.  

Our schemes provide a secure yet efficient way of analyzing sensitive genomic data on public clouds, based on 
which one can outsource not only the sensitive computation but also the sensitive genome data to clouds. The data 
owners (e.g., healthcare practitioners) can store encrypted genome data from all individuals (e.g., patients) on public 
clouds, while only keeping the encryption keys (one for each individual) locally. As such, the data owner has low 
liability on a large amount of sensitive data, whereas the genome data can be analyzed on clouds whenever needed. 

Many schemes have been proposed for secure genome computation, most of which are based on relatively expensive 
cryptographic primitives (typically with >4 orders of magnitudes of computation overhead), such as secure multi-
party computation (SMC) and homomorphic encryption (HE) [21, 22]. Despite their high security assurance, our 
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schemes based on site-wise encryption (SWE) of genomic variations are designed specifically for the secure search 
of human genomic data, and thus are simple and more efficient than generic schemes such as SMC and HE. Our 
schemes are ready to be used in real-world human genome computation, such as the genome signature search. 

By adjusting  and , we can assure the space of random strings is significantly larger than the number of encrypted 
records. In our implementation, we choose  and , as a person has about 4 millions of variation rec-
ords in practice (thus  the maximum number of variation records of a person). 
Acknowledgements. This work is supported by NHGRI/NIH (1R01HG007078-01) and NSF (CNS-1408874). 
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