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Editorial

Humans build muscle mass over the first two decades of life; begin to lose muscle mass and 

strength between the third and fourth decades, and the decline accelerates during the sixth 

decade [1,2]. Sarcopenia and dynapenia are age-related loss of skeletal muscle mass and 

muscle strength, respectively [1–3]. Loss of muscle mass and strength are associated with a 

reduction in vitality, manifested as poor mobility and physical function [3], and are 

accentuated by many common chronic diseases including long-term diabetes. Diabetes 

mellitus (DM) is characterized by chronic hyperglycemia due to insulin deficiency, 

resistance, or both. Late complications affect patients’ quality of life and longevity, and 

changes in morbidity and mortality result in major health costs. The pathogenesis and the 

clinical history of both type-1 (T1D) and type-2 (T2D) diabetes drastically differ; however, 

the resultant syndromes and complications often overlap [4]. A common feature of both 

T1D and T2D is a failure to preserve muscle mass and function, and is termed diabetic 

myopathy [5,6]. This extremely significant, but often overlooked complication is believed to 

contribute to the progression of additional diabetic complications due to the key role of 

skeletal muscle on locomotion and glucose homeostasis [7–9]. Accelerated sarcopenia and 

dynapenia are typical findings in elderly people with long-term T2D. Large-scale studies of 

elderly people with long-term T2D have shown accelerated loss of muscle mass and strength 

when compared to healthy counterparts [10,11]. Despite the wealth of information related to 

sarcopenia and dynapenia [1–3,12–25], the specific triggering events associated with loss of 

skeletal muscle mass and strength in older adults with diabetes remain unknown [3]. 

Sarcopenia, dynapenia, and T2D increase with age, and these conditions often remain 

unrecognized, since ~27% of subjects with T2D are still undiagnosed (National Diabetes 

Fact Sheet, 2011) and sarcopenia and dynapenia currently receive little attention in the 

clinical setting [1,25,26]. Both sarcopenia and dynapenia have been linked to elevated 

healthcare costs [1,25,27]. Moreover, the absolute costs associated with diabetes, sarcopenia 

and dynapenia are likely to rise sharply in the coming decades considering that the total 

number of persons over 65 years is expected to double over the next 20 years (Federal 

Interagency Forum on Aging-Related Statistics, 2010).
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In mammalian cells, glucose is not freely permeable across the lipid bilayer, but enters by 

facilitated diffusion, a process in which specific integral membrane proteins passively 

transport glucose down a concentration gradient [28]. Blood glucose levels are closely 

regulated in healthy individuals and rarely stray outside the range of 4.2–6.4 mM. However, 

glucose values can reach as high as 7–25 mM in individuals with diabetes and in animal 

models of diabetes [29–33]. Hyperglycemia can be elevated for periods between insulin 

injections in patients with T1D, and although less severe, is often persistent in patients with 

T2D. Hyperglycemia is commonly found to be even more extreme (33–66 mM) in patients 

with uncontrolled diabetes. During such extreme events, life-threatening acute metabolic 

complications of diabetes such as hyperglycemic hyperosmolar state (HHS) can occur 

[34,35]. HHS occasionally coincides with the breakdown of muscle fibers (rhabdomyolysis) 

[34–37]. HHS is typically observed in elderly patients with T2D, but is diagnosed with 

increasing frequency in obese children [34, 35]. Although HHS is a rare condition, the 

reported mortality ranges as high as 20–30%. The exact mechanism(s) that causes 

rhabdomyolysis in a HHS remains unclear.

Mechanisms of hyperglycemic injury vary between cell types. Several of the well-known 

pathologic intracellular pathways directly associated with hyperglycemia include polyol 

pathway flux via aldose reductase activity [38], oxidative stress [39], protein glycosylation 

[40], and abnormal Ca2+ signaling [41]. Glucose levels in patients with type-2 diabetes can 

reach abnormal high levels >120–1200 mg/dL (>7–66 mM/L), changing the osmolarity 

significantly. For instance, modest but significant and sustained changes in osmolarity are 

observed in patients with long-term moderate T2D (295–315 mOsm/kg), whereas more 

significant changes in osmolarity (315–360 mOsm/kg) are seen during uncontrolled T1D 

and T2D, when compared to healthy counterparts (285–295 mOsm/kg) [33–35]. Therefore, 

it is likely that adaptive and/or deleterious effects of hyperglycemic osmotic stress play a 

role in the pathophysiology of diabetes.

While several studies have investigated the link between changes in skeletal muscle function 

and mass, skeletal muscle progenitor cells, muscle growth, development, repair, and 

metabolic activity in different models of diabetes mellitus [1–3,12–25], few have examined 

the impact of hyperglycemic osmotic stress. New insights into the consequences of 

hyperglycemic osmotic stress in diabetes have revealed the involvement of the NFAT5, a 

tonicity-responsive transcription factor [42,43], as an important signaling molecule in 

diabetes [44]. NFAT5 is a key regulator in protection from hypertonic stress in kidney 

epithelial cells from the renal medulla [43,44] and other cell types [43,45–54]. It is clear that 

many questions remain regarding the physiological or pathophysiological impact of NFAT5 

in muscle performance and function. How do skeletal muscle cells cope with the exposure to 

phasic, persistent or extreme extracellular glucose concentrations? What are the long-term 

effects of diabetes on muscle architecture and performance? Does NFAT5 enhance the 

manifestations of this disease? These are some of the questions to be seeded in this editorial. 

Further knowledge of the biochemical and molecular mechanisms involved in the onset and 

progression of sarcopenia and dynapenia is critical for the development of targeted 

pharmacological tools to ameliorate diabetic myopathy and other muscle diseases. 

Biochemistry and Pharmacology is an open access journal with a wide scope in biomedical 

sciences. New studies in the field of muscle biochemistry and signaling pathways will 
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provide novel insights to further our understanding of skeletal muscle biology and muscle 

diseases.
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