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Plant growth-promoting rhizobacteria (PGPR) actively colonize the soil portion under the influence of
plant roots, called the rhizosphere. Many plant-beneficial Pseudomonas spp. have been characterized as
PGPR. They are ubiquitous rod-shaped motile Gram-negative bacteria displaying a high metabolic versa-
tility. Their capacity to protect plants from pathogens and improve plant growth closely depends on their
rhizosphere colonization abilities. Various molecular and cellular mechanisms are involved in this com-
plex process, such as chemotaxis, biofilm formation, secondary metabolites biosynthesis, metabolic ver-
satility, and evasion of plant immunity. The burst in Pseudomonas spp. genome sequencing in recent years
has been crucial to better understand how they colonize the rhizosphere. In this review, we discuss the
recent advances regarding these mechanisms and the underlying bacterial genetic factors required for
successful rhizosphere colonization.
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1. Introduction

The rhizosphere is defined as the soil portion under the influ-
ence of plant roots [1]. Roots release many compounds originating
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from the photosynthesis, such as exudates, but also from root deb-
ris. These carbon- and nitrogen-containing molecules provide valu-
able substrates for microbial growth [2]. This leads to the
rhizosphere effect: a dramatic increase in microbial populations
in the vicinity of roots where rhizodeposits are released, compared
to the bulk soil. This abundance of energy sources also enhances
acute microbial competition, making the rhizosphere both a chal-
lenging and heterogeneous environment for microbes [3].

The rhizosphere microbiome is highly diverse and notably con-
tains plant-beneficial microbes. Among these microbes, plant
growth-promoting rhizobacteria (PGPR) have been extensively
studied [4]. Their potential to directly improve plant growth and/
or inhibit plant pathogens is promising for the development of sus-
tainable farming practices. PGPR include many bacterial genera
such as Azospirillum, Azotobacter, Bacillus, Burkholderia, Enterobac-
ter, Rhizobium, Serratia and Pseudomonas [5]. The latter has been
broadly studied, especially the many biocontrol strains of interest
discovered since the 19800s [6].

Pseudomonas spp. are rod-shaped motile Gram-negative bacte-
ria present in a wide array of environments and displaying a great
metabolic diversity [7]. PGPR strains belonging to this genus are
mainly found within the P. fluorescens complex [8]. They are able
to inhibit the growth of several bacterial, fungal and oomycete
plant pathogens, such as Streptomyces scabies, P. syringae, Fusarium
oxysporum, Gaeumannomyces graminis, Rhizoctonia solani, Phytoph-
thora infestans, and Pythium ultimum [9–11]. Pathogen inhibition
primarily occurs through antibiosis, the stimulation of plant
defense mechanisms, and competition for niches and nutrients,
especially mediated by siderophores [12]. Direct plant growth pro-
motion caused by Pseudomonas spp. instead relies on phosphate
and iron solubilization, nitrogen fixation, phytohormone modula-
tion and increased abiotic stress tolerance [4,13,14].

The efficiency of Pseudomonas spp. to control pathogens and to
promote plant growth is closely related to their ability to compet-
itively colonize the rhizosphere and persist in this compartment,
which is defined as rhizocompetence [3,10]. Some authors even
suggest that a minimal colonization threshold of 105 bacteria per
gram of root is required for antibiosis and the induction of the
plant systemic resistance mechanisms [12,15]. Rhizosphere colo-
nization by phytobeneficial Pseudomonas spp. is therefore crucial
to ensure their efficiency in agriculture. The breakthroughs in bac-
terial bioinformatics, especially in whole-genome sequencing and
annotation, and in genome comparison tools, opened new paths
of research enabling a better understanding of this complex pro-
cess. This review aims to summarize these recent and exciting
developments.
2. Settling in the rhizosphere

Pseudomonas spp. are ubiquitous in soils and can live under a
planktonic or a sessile lifestyle [16,17]. When they are in the vicin-
ity of plant roots, they switch from the planktonic to the sessile
lifestyle to better benefit from the rhizodeposits. This change is
made possible by chemotaxis towards exudates, enabling the bac-
teria to get closer to the roots, and by biofilm formation, allowing
them to attach to the roots and to develop fixed colonies [18].
2.1. Chemotaxis towards root exudates

Chemotaxis is a motility mechanism enabling the bacteria to
move in response to a chemical gradient [19]. In the rhizosphere,
it allows the bacteria to detect the presence of rhizodeposits, espe-
cially root exudates, and to get closer to their release sites such as
root tips. The colonization sites can differ depending on the Pseu-
domonas strain. For example, two efficient avocado root tip colo-
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nizers, P. alcaligenes AVO73 and P. pseudoalcaligenes AVO110, dis-
play distinct colonization strategies: the latter colonizes root
wounds and intercellular spaces between root epidermal cells,
unlike the former [20]. There are three types of chemotaxis-
driven motility: swimming, swarming, and twitching. Swimming
and swarming depends on flagellar rotations, while twitching
relies on the extension-retraction movements of type IV pili [19].

Flagella- and pili-driven chemotaxis are controlled by distinct
but homologous signal transduction mechanisms. The detection
of distinct rhizosphere compounds is mediated by chemoreceptors
called methyl-accepting chemotaxis proteins (MCP). These are
homodimers of transmembrane proteins displaying a periplasmic
ligand-binding region, specific to a compound or a group of com-
pounds, and a cytosolic methyl-accepting domain, conserved
among MCP [21]. Most MCP described to date in rhizosphere-
inhabiting Pseudomonas spp. enable the detection of amino acids,
polyamines, or organic acids such as intermediates of the tricar-
boxylic acid cycle (TCA). In P. putida KT2440, these intermediates
are the preferred energy source during the early growth phase,
along with amino acids that can be converted into TCA intermedi-
ates [22].

The number of MCP closely depends on the strain lifestyle: bac-
teria able to colonize diverse environments, such as the rhizo-
sphere, and to establish complex interactions with plant roots
display more MCP [23]. Rhizosphere-inhabiting Pseudomonas
strains have been shown to harbor between 27 and 37 MCP genes,
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but only few strains have been analyzed so far [24,25]. The analysis
of newly sequenced genomes could greatly increase the current
MCP repertoire. Recently, López-Farfán et al. focused on MCP genes
expression in P. putida KT2440 [26]. They demonstrated that their
expression is inversely correlated with maize root exudates prox-
imity: when the bacteria get closer to the roots, chemoreceptor
genes expression decrease, probably because chemotaxis becomes
less useful in the root vicinity.

Regarding flagella-driven chemotaxis, MCP form complexes
with an adaptor protein, CheW, and a histidine kinase, CheA [27].
Chemoeffectors like amino acids directly interact with the
ligand-binding region of MCP, while others like sugars and dipep-
tides indirectly interact with MCP through periplasmic binding
proteins [28]. When the amount of chemoattractants around the
bacteria decreases, or when chemoreppellent concentrations
increase, CheA is autophosphorylated (Fig. 1). Its phosphate group
is then transferred to a response regulator protein, CheY, which
interacts with the FliM protein belonging to the flagellum switch
complex [29]. This triggers proton-driven clockwise rotation of
the flagellum, causing the cell to randomly move [30]. When a
chemoattractant such as a root exudate binds to MCP, CheA
autophosphorylation is inhibited, which reduces CheY phosphory-
lation. In turn, counter-clockwise rotation of the flagellum is trig-
gered, enabling the bacterium to advance in a given direction,
towards exudates [28]. Rapid dephosphorylation of CheY is medi-
ated by CheZ, allowing the bacterium to quickly change course
depending on the detected chemical gradients. A methyltrans-
ferase called CheR is also involved in the switching mechanism.
It constitutively transfers methyl groups to the MCP methyl-
accepting domain, increasing CheA autophosphorylation rate.
However, its activity is in competition with the methylesterase
CheB, which is activated by phosphorylation by CheA. In the
absence of chemoeffectors, the flagellum rotation switch frequency
changes stochastically [31].

Twitching, which is pili-driven, relies on a chemosensory sys-
tem similar to flagella-driven chemotaxis [32]. It has originally
been described in the opportunistic human pathogen P. aeruginosa
and is mainly enabled by the proteins encoded by the pilGHIJK and
chpABC genes [33,34]. These genes have also been identified in
plant-beneficial Pseudomonas strains such as P. fluorescens F113
[35], P. stutzeri A1501 [36], and partly in P. putida KT2440 [37].

Several studies on Pseudomonas mutant strains lacking
chemotaxis- or motility-related genes showed reduced rhizo-
sphere colonization abilities [38–41]. Oku et al. constructed several
P. fluorescens Pf0-1 mutants for multiple MCP genes to assess their
combined effect on tomato rhizosphere colonization [38,41]. They
showed that the ctaA ctaB ctaC triple mutant was less competitive
than the wild type, and that the ctaA ctaB ctaC mcpS mcpT quintuple
mutant was even less competitive. Those mutants were still better
colonizers than the cheA mutant, lacking flagella-driven chemo-
taxis. This indicates that tomato rhizosphere colonization by P. flu-
orescens Pf0-1 relies on multiple MCP, more than the five proteins
studied. In P. fluorescens F113, mutations in fliC, fliS, fleQ and fliT,
involved in the flagellum synthesis, reduced or completely blocked
motility, which resulted in a lower competitive alfalfa root colo-
nization [40].

In order to improve rhizocompetence in wheat, Gao et al.
recently tried to enhance the chemotaxis activity of Pseudomonas
sp. UW4 towards 1-aminocyclopropane-1-carboxylic acid (ACC)
[42]. This compound is a precursor of ethylene in plants and is
exuded in the rhizosphere, where PGPR can use it as a carbon
and nitrogen source using the ACC deaminase enzyme, encoded
by the acdS gene [43]. ACC is known as a strong chemoattractant
for the UW4 strain [44]. Gao et al. used an acdS-defective UW4
strain and complemented it with distinct bacterial promoters and
acdS. They identified a linear and positive correlation between acdS
3541
expression levels, AcdS activity, chemotaxis towards ACC and
wheat rhizosphere colonization. They also showed that the pro-
moters inducing high acdS expression levels and high chemotactic
responses towards ACC also strengthen chemotaxis responses to
other chemoattractants such as amino and organic acids. These
results demonstrate that increasing the bacterial metabolic rate
of a single compound can lead, through chemotaxis and other
mechanisms, to an enhanced rhizocompetence.

2.2. Biofilm lifecycle

Once plant-beneficial Pseudomonas spp. are in the vicinity of the
roots, they often form biofilms. These are bacterial aggregates
embedded in a matrix made of highly hydrated extracellular poly-
meric substances (EPS) and adhering to biotic or abiotic surfaces
[45]. Biofilms offer protection to the bacteria against various stres-
ses, such as desiccation, antibiotics or protozoan predation, and
can also improve nutrient assimilation [45]. They contribute to
increasing bacterial densities required to produce secondary
metabolites involved in plant–microbe and microbe-microbe
interactions [18]. Biofilm development follows several steps:
reversible attachment, irreversible attachment, micro-colony for-
mation, maturation, and bacterial dispersal [46] (Fig. 2A).

Attachment to plant roots or soil particles is mediated by adhe-
sins. They are adhesive structures, mostly proteins, expressed on
the bacterial surface to promote attachment to a surface, a host,
or to other bacteria [47]. Many adhesins have been identified in
rhizosphere-associated Pseudomonas spp., such as the large adhe-
sion proteins LapA and LapF [48–50], the medium adhesion protein
MapA [51], and the flagellum itself [49].

LapA and the other Lap proteins have been extensively studied
for their key role in biofilm formation in plant-beneficial Pseu-
domonas spp., recently reviewed by Collins et al. [52]. LapA belongs
to the repeats-in-toxin (RTX) adhesion protein family and has been
initially described by Hinsa et al. in P. fluorescens WCS365 [48,53].
This is the largest protein identified in P. putida KT2440, in which it
is encoded by a 26 kb gene resulting in a 8682-amino acid protein
with an estimated molecular weight of about 888 kDa [48]. LapA is
secreted by a type I secretion system (T1SS) ABC transporter
encoded by lapEBC [48,53] (Fig. 2B). LapE, an outer membrane
TolC-like pore, is similar to the agglutinin AggA, needed for the
attachment of P. putida strain Corvallis [48,54]. Smith et al. showed
that LapE plays a bigger role than just secreting LapA through the
T1SS: it anchors this adhesin to the cell surface through the LapA
N-terminal retention module [55]. Apart from this retention mod-
ule, LapA consists of three other domains. Two domains display
multiple repeats found in surface proteins in other bacterial gen-
era. The C-terminal domain features a T1SS secretion signal as well
as RTX repeats, which are Ca2+-binding motifs that can be found in
secreted proteins involved in bacterial-eukaryotic interactions
[56]. This domain could be responsible for the attachment to plant
roots. Observations performed by Gjermansen et al. suggest that
LapA is also able to bind to exopolysaccharides of the biofilm
matrix [57]. LapA could then play multiple roles within biofilms
[48]. Mutations in the lap genes show that they are required for
irreversible attachment and biofilm formation [48,49].

Once the bacterium is irreversibly attached to a biotic or an abi-
otic surface in the rhizosphere, it starts multiplying to form a
micro-colony, evolving into a mature biofilm [46]. This lifestyle
transition leads to a gene expression shift: the expression of genes
involved in motility is inhibited, while the expression of genes
related to EPS biosynthesis is promoted [58]. EPS are mainly
polysaccharides, proteins, DNA and lipids providing structural sta-
bility to the biofilm and an external digestive system to the bacte-
ria through the retention of extracellular enzymes [45]. In P. putida
KT2440, four gene clusters are responsible for the production of
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exopolysaccharides forming the biofilm matrix: pea and peb
(putida exopolysaccharide A and B), alg (alginate) and bcs (bacte-
rial cellulose synthesis) [59,60]. They are structural stabilizers of
the biofilm, but a quadruple mutant lacking these four gene clus-
ters is still able to form biofilms [60], indicating that other matrix
components are involved in the biofilm structure. Recently, Mar-
shall et al. showed that mutants of P. fluorescens Pf0-1 lacking alg
genes displayed reduced soil colonization levels compared to the
wild type, demonstrating the importance of this polysaccharide
in the colonization process [61]. Other exopolysaccharide biosyn-
thetic operons have been identified in rhizosphere-inhabiting Pseu-
domonas strains, especially in P. protegens: psl and pel [62,63]. The
associated polysaccharides, Psl and Pel, have been well character-
ized in P. aeruginosa [64]. Psl is a repeating pentamer containing
mannose, glucose and rhamnose, while the structure of Pel remain
unknown but could be a cellulose-like polymer of glucose [65].
These exopolysaccharides are redundant structural scaffolds in
mature biofilms that can help the bacteria keep its ability to pro-
duce biofilms [64]. However, the contribution of Psl and Pel to bio-
films varies between P. aeruginosa strains. Their role could then be
different in rhizosphere-colonizing Pseudomonas strains. This
3542
remains to be elucidated. Extracellular DNA (eDNA) has been
shown to play a critical role in Pseudomonas spp. biofilms [66].
eDNA is produced through cell lysis, releasing fragments ranging
from 10 bp to 30 kbp [67]. These fragments binds to other biopoly-
mers in the biofilm, such as exopolysaccharides or proteins,
increasing biofilm integrity [68]. Another matrix component
involved in the biofilm structure is LapF, a protein similar to LapA
identified by Martínez-Gil et al. [50] (Fig. 2B). LapF is the second
largest protein in P. putida KT2440 after LapA, with 6310 amino
acid, and its encoding gene is distant from the lapA gene within
KT2440 genome [69]. A lapF mutant is still able to irreversibly
attach to a surface but is unable to formmicro-colonies and mature
biofilms, and to competitively colonize plant roots. It is presum-
ably secreted to the cell surface by a putative T1SS encoded by
the lapHIJ operon and seems to be involved in cell–cell attachment,
contrary to LapA, which is involved in cell-surface attachment [50].
LapF is required for biofilm maturation and its three-dimensional
development. Another LapA-like protein, MapA, has been recently
identified for its structural role in biofilms [51]. Interestingly,mapA
is only expressed at the bottom of large and thick biofilms, where
oxygen and nutrients are less available than in the outer biofilm
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portions, suggesting a potential role in biofilm structural adapta-
tion to improve access to oxygen and nutrients [47]. Its precise
function however remains to be deciphered. The biofilm matrix
also consists of mucigel produced by plant roots, mainly containing
exopolysaccharides [70,71].

When oxygen and nutrients become less available and when
waste products and toxins accumulate in the biofilm, a dissolution
process can be initiated to enable cell survival and dispersal
[72,73]. This allows the bacteria to find better conditions for their
development and to form new biofilms. Within the rhizosphere,
bacterial dispersal could occur to follow the root exudation sites,
which are dynamically moving following the expansion of the root
system [74]. During nutrient starvation, bacteria can adjust their
physiology to rapidly stop their growth. This process is called the
stringent response and is mediated by hyperphosphorylated gua-
nine nucleotides called guanosine tetraphosphate and guanosine
pentaphosphate (together abbreviated (p)ppGpp) [75]. Reacting
to nutrient and oxygen deficiency, two proteins called RelA and
SpoT, produce (p)ppGpp from guanosine diphosphate or triphos-
phate (GDP and GTP) and adenosine triphosphate (ATP) [76]
(Fig. 2B). High (p)ppGpp concentrations lead to the repression of
lapA through the expression of bifA, a gene encoding a phosphodi-
esterase decreasing the concentration of cyclic dimeric guanosine
monophosphate (cyclic-di-GMP) [77]. Cyclic-di-GMP is a ubiqui-
tous intracellular signalling molecule, especially mediating the
bacterial lifestyle transition from motility to sessility [17]. When
it binds to LapD, an inner membrane protein, LapD inhibits the
periplasmic protease LapG [78]. This protein is responsible for
the cleavage of the retention module of LapA [78]. When BifA
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decreases cyclic-di-GMP concentration, LapG is no longer inhibited
by LapD and cleaves the periplasmic domain of LapA, which is then
released by the T1SS that was anchoring it to the cell [57,76]. MapA
seems to be targeted by LapG as well [51]. Another phosphodi-
esterase, RapA (regulator of adherence by phosphate), is also
responsible for lowering cyclic-di-GMP levels leading to the release
of LapA [79]. Interestingly, RapA biosynthesis is controlled by the
Pho regulon, a global regulatory mechanism sensing the extracellu-
lar level of inorganic phosphate [78]. Under low phosphate condi-
tions, the Pho regulon activates rapA transcription, ultimately
leading to a planktonic lifestyle and enabling the bacteria to find
new favorable colonization sites. LapF, responsible for cell–cell
attachment, does not seem to be cleavable by LapG [52]. Its fate
during biofilm dissolution remains to be elucidated.

While forming mature biofilms has multiple benefits for the
bacteria, it is not always the best strategy adopted by Pseudomonas
spp. to efficiently colonize the rhizosphere. Barahona et al. have
shown that a hypermotile variant of P. fluorescens F113 unable to
develop a fully mature biofilm on abiotic surface and to form a bio-
film matrix on the rhizoplane is not impaired in competitive alfalfa
root tip colonization [80]. In the rhizosphere, cells of this variant
were surrounded by plant mucigel, which may partly act as a bio-
film matrix to protect the bacteria from multiple stresses. These
results show that Pseudomonas spp. can deploy different biofilm
strategies to colonize the rhizosphere.

Flagellar motility and biofilm formation are together tightly
controlled by two transcription factors: the flagellar expression
protein FleQ and the alginate and motility regulator AmrZ (Fig. 3)
[81]. Both proteins display more than a hundred putative binding
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sites [82,83]. In P. fluorescens F113, 45 genes are targeted by both
transcription factors, such as lapA, algD or MCP genes, as well as
genes involved in iron homeostasis. AmrZ regulates most of the
genes encoding proteins involved in cyclic-di-GMP biosynthesis
or degradation, controlling the transition from motility to sessility
[81], while FleQ regulation activity is determined by cyclic-di-GMP
levels [84]. Interestingly, AmrZ and FleQ are also indirectly under
the control of the Gac signal transduction pathway, which regu-
lates antibiotics biosynthesis (see the dedicated section in this
review), and of the surface attachment-defective protein SadB
pathway [85]. These two pathways enable the bacteria to detect
environmental signals. FleQ and AmrZ also repress the expression
of each other, leading Blanco-Romero et al. to hypothesize that this
reciprocal repression could work as an oscillator used as a general
regulation system for environmental adaptation [82]. This complex
regulation network illustrates the necessity for rhizosphere-
colonizing Pseudomonas spp. to finely adjust their lifestyle accord-
ing to environmental conditions.
3. Coping with neighbors

Whether they are in a planktonic state or settled in biofilms,
plant-beneficial Pseudomonas spp. have to compete against other
rhizosphere-dwelling microbes to access rhizodeposits and niches,
while dealing with plant defenses [86,87]. To this effect, they dis-
play competitiveness-enhancing traits like antibiotic production
and siderophores biosynthesis and uptake, and different strategies
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to evade the plant immune response, demonstrating the impor-
tance of the diversity of compounds they can secrete.

3.1. Antibiotics: More than defense compounds

Pseudomonas spp. are able to produce a wide array of antimicro-
bial compounds to better compete in the rhizosphere [88]. These
compounds encompass phenazines, cyclic lipopeptides, polyke-
tides, bacteriocins, type VI secretion system effectors, and other
secondary metabolites such as tropolones.

Phenazines are redox-active nitrogen-containing heterocyclic
molecules able to inhibit many bacterial, fungal and oomycete
plant pathogens [9]. The main phenazines found in phytobeneficial
Pseudomonas spp. are phenazine-1-carboxylic acid (PCA), 2-
hydroxyphenazine-1-carboxylic acid (2-OH-PCA), 2-
hydroxyphenazine (2-OH-PHZ) and phenazine-1-carboxamide
(PCN) (Fig. 4). Their biosynthesis, regulation and function have
been recently reviewed by Biessy and Filion [9]. Their modes of
action remain to be fully elucidated, but phenazines likely affect
rival microbes through their redox activity, generating cytotoxic
reactive oxygen species (ROS) [89]. Phenazine production has been
shown to be directly involved in competitive rhizosphere coloniza-
tion [90]. Mazzola et al. constructed P. chlororaphis 30–84 and P.
synxantha 2–79 (formerly P. aureofaciens 30–84 and P. fluorescens
2–79) mutants defective in phenazine production and inoculated
them in non-sterile and sterile soils planted with wheat. They
showed that the mutant populations declined more rapidly than
the wild type populations in non-sterile soil, but not in sterile soil.
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This suggests that phenazines are involved in the ability of the
strains to compete with the soil microbiome. Yu et al. assessed
the impact of the phenazine compounds produced on rhizocompe-
tence in wheat over multiple growth cycles [91]. They did not iden-
tify any colonization differences between mutants producing
distinct phenazine derivatives. However, they showed that the
mutant unable to produce any phenazine colonized the rhizo-
sphere to a lesser extent than those producing at least one phena-
zine compound, confirming the result obtained by Mazzola et al.
They also investigated the role of phenazines in biofilm formation.
Indeed, studies have shown that phenazines production directly
affects biofilm formation and dispersion [92,93]. Yu et al. demon-
strated that the type of phenazine derivative impact on the amount
of biofilm matrix [91]. They hypothesized that this was caused by
differences in the amounts of eDNA released in the matrix.
Phenazines are indeed responsible for cell lysis in biofilms, leading
to the release of eDNA [94]. But in P. aeruginosa, another mecha-
nism has been proposed to explain the effect of phenazines on bio-
films: a phosphodiesterase called RmcA (redox modulator of c-di-
GMP) could directly or indirectly detect phenazines and degrade
cyclic-di-GMP, which plays an important role in the regulation of
the biofilm structure [95]. Given that phenazines display different
redox potentials, they may differentially affect eDNA release and
RmcA activity, leading to the production of distinct biofilm struc-
tures, impacting rhizosphere colonization. Another interesting
property of phenazines, especially pyocyanin, is their electron
shuttle activity. They can accept electrons from NAD(P)H and
transfer them outside the bacteria to reduce poorly crystalline iron
(hydr)oxide, especially in environments where oxygen concentra-
tion is too low to use oxygen as a final electron acceptor, such as
in biofilms [9,96]. This activity may be used by the cells as a redox
buffer and as an iron mobilization mechanism in iron-limiting con-
ditions. In summary, phenazines play a role in rhizosphere colo-
nization not only by inhibiting microbial rivals, but also by
improving biofilm structure, iron availability, and anaerobic
respiration.

Cyclic lipopeptides (CLP) are highly diverse surfactants with
antimicrobial activities. Their structures, biosynthesis and biologi-
cal activities have recently been reviewed by Geudens and Martins
[97] and by Götze and Stallforth [98]. CLP contain a cyclic oligopep-
tide (8–25 amino acids) and a linear fatty acid. They display a high
structural diversity. Between 2009 and 2020, the number of iden-
tified CLP structural groups in Pseudomonas spp. almost doubled,
increasing from 6 to 11 groups [88,98]. This has been fueled by
the identification of many new CLP, with around 100 CLP identified
to date, enabled by whole-genome sequencing of many Pseu-
domonas strains coupled to the development of powerful bioinfor-
matic analysis tools such as antiSMASH [99,100]. CLP are produced
by non-ribosomal peptide synthetases (NRPS), which are multi-
modular megaenzymes displaying, in some cases, a molecular
weight higher than 1.0 MDa [98]. CLP antimicrobial activity is
thought to rely on membrane perturbation, especially pore forma-
tion, enabled by their amphiphilic nature [101]. However, their
structural diversity suggests other potential antimicrobial modes
of action that remain to be discovered [97]. Similarly to phenazi-
nes, the role of CLP extends beyond microbial inhibition: they
can differently affect biofilm formation and dispersal depending
on the produced CLP. For example, massetolide A improves biofilm
formation in P. fluorescens SS101 [102] while viscosin (Fig. 4) facil-
itates cell dispersal in P. fluorescens SBW25 biofilms [103]. They can
also contribute to swarming motility, i.e. rapid multicellular move-
ments of bacteria across a surface, by reducing the critical surface
tension of liquids [104]. This has been demonstrated in multiple
rhizosphere-colonizing strains like in P. fluorescens SBW25 and in
P. protegens Pf-5 with viscosin and orfamide A, respectively [97].
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Therefore, CLP play several crucial roles in rhizosphere
colonization.

Polyketides are a structurally and functionally diverse class of
secondary metabolites produced by bacteria and fungi with
antimicrobial, therapeutic and phytotoxic properties [88]. Polyke-
tides biosynthesis is similar to fatty acid biosynthesis and is medi-
ated by polyketide synthases (PKS), which are able to produce
more diverse compounds than fatty acid synthases [105]. PKS have
been divided into three categories: type I PKS are large and multi-
functional proteins, type II PKS are complex-forming monofunc-
tional proteins usually dedicated to the production of aromatic
polyketides, and type III PKS are chalcone synthase-like proteins
displaying a simple architecture [106,88]. In plant-beneficial Pseu-
domonas, the main described polyketides are 2,4-
diacetylphloroglucinol (2,4-DAPG), mupirocin and pyoluteorin
[105] (Fig. 4). 2,4-DAPG plays an important role in the generation
of suppressive soils against Gaeumannomyces graminis var. tritici,
the wheat pathogen responsible for take-all [107]. It inhibits fungi
by dissipating the mitochondrial proton gradient through its pro-
ton ionophore activity [108]. Mupirocin directly inhibits the bacte-
rial isoleucyl-tRNA synthetase, leading to impaired protein
biosynthesis [88]. To our knowledge, how pyoluteorin affects
microbes, especially regarding the inhibition of the growth of the
oomycete Pythium ultimum, remains to be deciphered [109].
Biosynthesis of these three polyketides is mediated by PKS and
other proteins encoded by the phl, mmp/mup/macp and plt gene
clusters, respectively [110–112]. Although the discovery of the
mupirocin biosynthetic genes dates back to 2003, research is still
underway to understand the role of each of the numerous genes
involved, given the complexity of the biosynthetic pathway
[113]. Interestingly, a co-regulation mechanism has been recently
described in the biosynthesis of 2,4-DAPG and pyoluteorin in P.
protegens Pf-5 [114]. Yan et al. have shown that a protein encoded
by the pyoluteorin gene cluster converts an intermediate of the
2,4-DAPG biosynthetic pathway into intra- and intercellular sig-
nals able to induce the expression of pyoluteorin biosynthetic
genes. This coregulation could allow the bacteria to produce either
one or the other polyketide, depending on environmental condi-
tions and especially on the presence of microbial rivals, instead
of wasting energy by producing both [114]. Several bioinformatic
tools have been developed to identify new polyketide biosynthetic
gene clusters, such as antiSMASH or NaPDoS, which are also able to
find NRPS [99,115]. Using such tools, NRPS-PKS hybrid gene clus-
ters have been discovered in plant-beneficial Pseudomonas spp.
[9,116]. For example, rhizoxin and its analogs are synthetized by
PKS and mixed PKS-NRPS in P. protegens Pf-5 [116]. Rhizoxin ana-
logs have been shown to play a role in the biocontrol activity of
Pseudomonas sp. Os17 against the plant pathogens Fusarium oxys-
porum and Pythium ultimum [117]. Recently, Lozano et al. identified
a new family of bacterial tetrahydropyridine alkaloids in P. koreen-
sis: koreenceine A to D [118]. These are analogs of plant alkaloids
produced by a type II PKS and selectively inhibit diverse rhizo-
sphere Bacteroidetes. The associated biosynthetic gene cluster has
been identified in numerous Pseudomonas spp. genomes.

Bacteriocins are secreted peptides and proteins deleterious for
bacteria that are usually closely related to those producing them
[119]. Most other antimicrobial compounds produced by plant-
beneficial Pseudomonas spp. are effective against phylogenetically
distant microbes and seldomly affect bacteria belonging to the
same genus [120]. Hence, bacteriocins play an important role to
control closely related bacteria in the rhizosphere, especially Pseu-
domonas spp. [121]. They include a wide array of structurally and
functionally diverse compounds. Bacteriocin diversity, genomics,
structure, transport and biological properties within the Pseu-
domonas genus have been extensively reviewed by Ghequire and
De Mot [119]. The first identification of a bacteriocin in Pseu-
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domonas spp. dates to 1954, in P. pyocyanea (now known as P.
aeruginosa) by Jacob, who named the discovered substance pyocin,
by analogy to the colicins, which are bacteriocins described in
E. coli [122]. Since then, many bacteriocins have been described
in the Pseudomonas genus, especially leading to a diversification
of the pyocin family into different types: S-, R- and F-type pyocins
[123]. R- and F-type pyocins are similar to bacteriophage tails and
are called tailocins [124]. Pseudomonas spp. also harbor other bac-
teriocins, such as rearrangement hotspot proteins (Rhs), lectin-like
bacteriocins, microcins and the contact-dependent inhibition sys-
tem [119]. Bacteriocins affect cell survival through distinct modes
of action such as nuclease activity against DNA, tRNA and rRNA,
cell wall disorganization or membrane depolarization by pore for-
mation [119]. They are usually coupled to an immunity protein to
prevent self-inhibition [119]. Many bacteriocins have been identi-
fied in rhizosphere-associated Pseudomonas spp. genomes [125–
127]. Recently, Sharp et al. developed a bioinformatics pipeline
based on Hidden Markov Models to identify new nuclease bacteri-
ocins in the genomes of multiple bacterial species isolated from
diverse ecological niches [128]. They found more than 3000 bacte-
riocin genes, exclusively in c-Proteobacteria, especially in Pseu-
domonas strains originating from soil or plant environments.
These genes will require further characterization to elucidate their
precise roles, but their identification already underlines their ubiq-
uity in the genomes of underground Pseudomonas spp. Recently,
Dorosky et al. investigated the role of two R-tailocins in the phyto-
beneficial strain P. chlororaphis 30–84 in the rhizosphere [129].
They showed that their killing spectra were distinct and limited
to Pseudomonas spp. They also provided evidence that the loss of
tailocin production impeded the strain competitiveness against
other strains in biofilms and in the rhizosphere. In a subsequent
study, they highlighted the importance of these two tailocins in
competition with the native microflora in the wheat rhizosphere
[130]. Mutants unable to produce them were not able to sustain
populations as high as those of the wild type in the wheat rhizo-
sphere over multiple harvest cycles.

Type VI secretion systems (T6SS) are contractile
bacteriophage-like apparatuses able to inject toxic effectors into
neighboring cells [131]. T6SS and their effectors often target other
bacteria, from the same genus as the producer or not, but can also
affect eukaryotic cells, contrary to bacteriocins [119]. Their main
role in plant-associated bacteria seems to be in interbacterial com-
petition [132]. T6SS genes are enriched in root and rhizosphere
bacterial microbiomes in barley, indicating their importance in rhi-
zosphere colonization and survival [133]. Multiple plant-beneficial
Pseudomonas strains have been shown to carry at least one T6SS
gene cluster, and up to four distinct clusters [132]. They also dis-
play multiple effector genes [126]. Those are usually followed by
genes encoding immunity proteins, which protect the producing
strains from the toxicity of their cognate effectors [119]. For exam-
ple, in P. putida KT2440, Bernal et al. identified ten T6SS effector-
immunity pairs, including putative nucleases, pore-forming col-
icins and a NAD(P)(+) glycohydrolase [134]. They also showed that
a specific T6SS, called K1, was functional and responsible for the
suppression of multiple bacterial plant pathogens. To our knowl-
edge, the role of T6SS has not been explored in rhizosphere colo-
nization by Pseudomonas spp. yet. However, this has recently
been performed with rice endophytes belonging to the Kosakonia
genus, which are also Gram-negative bacteria [135]. Mosquito
et al. showed that a T6SS-deficient mutant displayed a reduced rice
rhizoplane non-competitive colonization compared to the wild
type, indicating a role for the T6SS in colonization and eventually,
in plant-bacteria interactions. Several studies on the air isolate P.
fluorescens strain MFE01 have highlighted the involvement of
T6SS in motility and in biofilm formation [136–138]. A mutation
in hcp1, encoding a component of the phage-like structure in
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T6SS, results in pleiotropic effects, especially in the loss of flagella,
leading to the loss of motility. This could be the result of the accu-
mulation of motility-related effectors in the cytoplasm of the pro-
ducing strain [136]. This mutation also decreases
exopolysaccharide accumulation, without impairing biofilm for-
mation. On the contrary, a mutation in tssC, encoding a conserved
T6SS cytoplasmic protein, severely affects biofilm formation [137].
Because this strain lacks the AHL quorum-sensing pathway, Galli-
que et al. hypothesized that the T6SS in this strain plays a cell–cell
signalling role required for biofilm formation. This role remains to
be confirmed, but it might occur in other Pseudomonas strains as
well and affect rhizosphere colonization. T6SS are also involved
in iron acquisition. Chen et al. have indeed shown that the T6SS
of P. taiwanensis CMST played a role in the secretion of pyoverdine,
an iron chelator [139]. The underlying mechanism is not elucidated
yet. Many other questions about T6SS in plant-beneficial Pseu-
domonas spp. remain unanswered, such as regarding the underly-
ing mechanisms of host specificity and of the recruitment of
effectors by the T6SS [140]. Further characterization of the T6SS
effectors in plant-associated Pseudomonas spp. is also required to
better understand their roles in rhizosphere colonization [132].

Tropolones are non-benzenoid seven-membered aromatic
compounds harboring a carbonyl group [141]. They have primarily
been described in fungi and plants, but also in some Pseudomonas
strains, especially for their interesting antibiotic and iron-chelating
activities. While most of these strains have been isolated from
habitats other than soils, like P. donghuensis DSM 101685 from lake
water [142], a soil-inhabiting strain has been recently discovered:
P. donghuensis SVBP6 [143]. This strain inhibits several fungal plant
pathogens by producing 7-hydroxytropolone (HT) (Fig. 4). A 16-kb
region has been shown to be involved in the biosynthesis of HT in
this strain, but also in antibacterial activity in another Pseudomonas
strain [143,144]. Interestingly, HT was initially identified for its
iron-chelating activity in P. donghuensis DSM 101685 [142]. Thus,
the antifungal mechanism described by Muzio et al. in P. donghuen-
sis SVBP6 could have been explained by this property contributing
to iron depletion to the detriment of other microbes [143]. They
however argued that another explanation was more plausible,
especially given that iron supplementation did not suppress fungal
growth inhibition and did not stop HT biosynthesis. They posited
that the mechanism underlying HT antifungal activity could also
be the direct inhibition of eukaryotic dinuclear metalloenzymes
containing divalent ions like Cu2+, Mg2+ and Zn2+, as described in
other tropolones [145]. The exact antibacterial modes of action of
HT remain to be confirmed. The discovery of a soil-inhabiting Pseu-
domonas strain producing it shows that the biosynthesis of this
compound could be an important trait for survival in soils and in
the rhizosphere.

Finely tuned antibiotic production is essential for rhizosphere
colonization, not only because of the metabolic cost of antibiotic
biosynthesis, but also because producing too much antibiotics
could lead to resistance emergence in microbial rivals, or even pro-
vide valuable substrates for antibiotic degraders [146]. Their pro-
duction is often under the control of quorum sensing, a system
regulating gene expression in response to cell density [147]. It
relies on the constitutive production and secretion of the auto-
induction signal molecules N-acyl-homoserine lactones (AHL)
[148]. In biofilms, AHL concentration increases because of high cell
densities and reaches a given threshold, triggering the transcrip-
tion of target genes, especially responsible for secondary metabo-
lites biosynthesis [149]. For example, phenazine production in
Pseudomonas spp. is partly controlled by quorum sensing through
the LuxI/LuxR homologues PhzI/PhzR [9]. PhzI is an AHL synthase
leading to AHL accumulation. When the produced AHL reach a con-
centration threshold, they bind to and activate PhzR, a transcrip-
tional regulator which in turn binds to the phenazine
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biosynthetic operon promoter to enhance the operon transcription.
Phenazine production is also regulated by the highly conserved
global activator of antibiotic and cyanide (Gac) signal transduction
system, which also controls the production of other secondary
metabolites such as 2,4-DAPG or cyclic lipopeptides [9,150,151].
The Gac system relies on two components: GacS, a transmembrane
sensor kinase, and GacA, a cytoplasmic transcription regulator
(Fig. 3) [152]. GacS reacts to an unknown environmental signal
by phosphorylating GacA, which then promotes the expression of
the small non-coding RNA (sRNA) rsmZ [153]. This sRNA likely
binds and represses the regulator of secondary metabolism RsmE,
which posttranscriptionally inhibits the expression of the phena-
zine biosynthetic operon and phzI by binding to specific mRNA
motifs and preventing ribosome binding [154]. Another two-
component signal transduction system is also involved in the reg-
ulation of phenazine production: RpeA/RpeB [155]. The transmem-
brane sensor kinase RpeA detects an environmental signal and
activates RpeB, which enhances the expression of pip, encoding
the phenazine inducing protein, a transcriptional regulator pro-
moting PhzI and PhzR expression [153,156]. The expression of
pip is also positively regulated by the RNA polymerase sigma factor
RpoS, the expression of which is promoted by GacA [153]. Interest-
ingly, the Gac system also positively regulates the expression of the
previously-mentioned biofilm-associated genes lapA and lapF,
along with genes involved in the biosynthesis of many antibiotic
compounds and extracellular enzymes [157,158]. Spontaneous
mutations in the GacS/GacA system have often been observed
and are responsible for phenotypic variation in Pseudomonas spp.
and the loss of antibiotics production [159,160]. These mutations
have been shown to be triggered by the site-specific recombinases
encoded by sss and xerD [161]. Overexpression of these genes can
lead to improved competitive rhizosphere colonization. Indeed,
they contribute to the emergence of phenotypic variants that are
able to colonize distinct root parts [161]. Interestingly, gac muta-
tions are reversible, allowing bacterial subpopulations to switch
from a phenotype to another [162]. Further research is still
required to understand the underlying molecular mechanisms of
these phenotypic variations.

3.2. Laying hands on iron

In addition to the direct inhibition of microbial rivals through
antibiotic production, plant-beneficial Pseudomonas spp. are also
able to efficiently compete for iron in the rhizosphere. Iron is a
common element in soil, but is mostly unavailable for microbes
due to the mediocre solubility of iron oxides [163]. Because it is
essential for the primary metabolism of most organisms, including
plants and microbes, competition for iron is exacerbated in the rhi-
zosphere [13]. This competition can lead to high inhibition levels
against plant pathogens like fungi, making iron starvation one of
the main biocontrol mechanisms against fungi [12]. To gain access
to iron, many microbes, including Pseudomonas spp., secrete low-
molecular iron-chelating compounds called siderophores [164].
Rhizosphere Pseudomonas spp. generally produce the siderophore
pyoverdine, which displays high affinity for Fe(III) [165]. Most
Pseudomonas spp. are able to produce additional siderophores,
such as achromobactin, enantio-pyochelin, pseudomonine, HT or
the hemophore protein [8,125,126,142]. Their biosynthesis can
be mediated by NRPS, like pyoverdine, enantio-pyochelin and
pseudomonine, or by other pathways, like achromobactin or the
hemophore through the acs and has genes, respectively
[164,166,167]. Once secreted in the rhizosphere, siderophores
sequester ferric iron and the ferrisiderophores are actively taken
back by Pseudomonas spp. through a TonB-dependent outer mem-
brane receptor [168]. Iron is separated from the siderophore in the
periplasm through reduction and transported alone into the cyto-
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plasm, while the siderophore can be secreted again [169]. Pseu-
domonas spp. are also able to take up siderophores produced by
other microbes in order to increase their iron supply and eventu-
ally control their competitors [170]. This is enabled by the pres-
ence of multiple TonB-dependent receptors genes in their
genomes [168]. In the genome of P. protegens Pf-5, Hartney et al.
identified 45 of these proteins [171]. They could be involved in
broader resources acquisition systems than iron uptake only. Inter-
estingly, some pyocins have been shown to enter bacteria through
TonB-dependent receptors dedicated to the translocation of iron-
bound siderophores inside P. aeruginosa [172]. While such mecha-
nisms have not yet been identified in rhizosphere-inhabiting Pseu-
domonas spp., it highlights the importance of iron for Pseudomonas
spp. survival. In the rhizosphere, the role of siderophore production
in colonization, especially pyoverdine, has been demonstrated
using mutants in multiple Pseudomonas species [173,174].

3.3. Evading the plant immune response

The rhizosphere is shaped by plants through rhizodeposition,
but also through their immune system: they are able to detect
and react to potentially harmful microbes, especially through the
recognition of microbe-associated molecular patterns (MAMP), in
order to prevent infection [175]. Beneficial microbes are also iden-
tified by the plant immune system as potential threats, but they
are able to repress or evade the immune response in order to effi-
ciently colonize the rhizosphere [87,147].

Evasion mostly consists in preventing pattern-triggered immu-
nity (PTI), which occurs through the detection of MAMP such as the
conserved bacterial flagellin epitope flg22 [176]. A major mecha-
nism in plant immunity evasion is to decrease flagella synthesis
[177]. In Pseudomonas spp., flagella synthesis is regulated by
cyclic-di-GMP, which mediates the transition between the plank-
tonic and sessile lifestyle [17]. High levels of cyclic-di-GMP inhibit
flagellin biosynthesis, preventing ROS production by the plant
[178]. The putative phosphodiesterase MorA could be involved in
the process, as shown by Liu et al. [179]. Indeed, a Pseudomonas
sp. WCS365 mutant defective in MorA induced PTI in Arabidopsis
thaliana, contrary to the wild type. Because phosphodiesterases
are known to be involved in cyclic-di-GMP regulation, MorA may
play an important role in plant immunity evasion. Liu et al. also
identified a potential role of putrescine in plant defense evasion
through the putrescine aminotransferase SpuC [179]. Mutants
lacking a functional SpuC triggered PTI in A. thaliana. The authors
posited that the loss of SpuC caused physiological changes in the
bacteria responsible for plant recognition, and that putrescine or
its precursor, arginine, might be signalling molecules in the rhizo-
sphere used by the bacteria to evade the plant immune response.
This is consistent with recent results obtained by Barrien-
tos Moreno et al. indicating that arginine promotes biofilm forma-
tion through an increase in cyclic-di-GMP concentration [180].
Phase variation may also be used by rhizosphere Pseudomonas
spp. to evade plant immunity by generating bacterial subpopula-
tions displaying different levels of flagellin production [87].
Another interesting flg22-recognition evasion mechanism has
recently been demonstrated by Yu et al. in P. capeferrum WCS358
[181]. Mutants impaired in the genes responsible for gluconic acid
and 2-keto gluconic acid production, pqqF and cyoB, respectively,
were unable to suppress the flg22-induced root immune response
and displayed reduced A. thaliana rhizosphere colonization levels.
The authors demonstrated that this mechanism relied on a
decrease in environmental pH through acid secretion. To prevent
PTI, Pseudomonas spp. can also produce the alkaline protease AprA,
which directly degrades monomeric flagellin required for recogni-
tion by plants [182]. While this mechanism has originally been
deciphered in pathogenic species such as P. aeruginosa and P. sy-
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ringae, homologs of AprA have also been identified in rhizosphere-
inhabiting Pseudomonas spp. such as P. fluorescens strains WCS374
and WCS417 [183,184]. It has also been found in P. brassicacearum,
where it is repressed in the flagellin over-producing phenotypic
variant, strengthening the hypothesis of a role of phase variation
in immunity evasion [87]. Cole et al. recently identified mutants
of P. simiae WCS417r lacking functional genes homologous to
arnACDEFT displaying lower in vitro root colonization abilities than
the wild type [185]. In Escherichia coli, these genes encode proteins
responsible for the modification of lipid A, the lipophilic moiety of
lipopolysaccharides anchoring them to the external layer of the
outer membrane [186]. It protects the Gram-negative bacteria
from antimicrobial compounds, but can also be recognized by
plants and induce their defenses [187]. These genes may then be
involved in plant immunity evasion.

Plant-beneficial Pseudomonas spp. could also directly repress
the plant immune response using the type III secretion systems
(T3SS). T3SS are transmembrane transport apparatuses found in
Gram-negative bacteria and mediating direct interactions with
eukaryotic cells by delivering effector proteins to affect host cellu-
lar functions [188]. The plant pathogen P. syringae has been shown
to suppress the plant immune response during infection using its
T3SS [189]. In the rhizosphere, many Pseudomonas strains display
T3SS gene clusters, with sometimes distinct T3SS harbored by a
single strain [125,126,190]. Their genomes also contain up to 15
T3SS effector genes [125,184]. Mavrodi et al. investigated the role
of T3SS effectors in P. fluorescens Q8r1-96 [190]. They showed that
three effectors were able to suppress both the PAMP- and the
effector-triggered immunity in Nicotiana benthamiana. However,
mutants defective in a T3SS displayed similar rhizosphere colo-
nization levels as the wild type. The role of T3SS in Pseudomonas
spp. inhabiting the rhizosphere remains to be elucidated [191].
While they could be involved in the suppression of the root
immune response, they could also play a role in interactions with
other eukaryotes. It has been shown that the T3SS of P. fluorescens
C7R12 was required to promote mycorrhization in Medicago trun-
catula, indicating a more complex role in the rhizosphere than
plant immune evasion only [192]. To better understand how the
plant immune system can be affected by beneficial Pseudomonas
spp., Stringlis et al. recently performed RNA sequencing of A. thali-
ana in response to the inoculation with P. simiae WCS417 [193].
They demonstrated that half of the MAMP-triggered transcrip-
tional responses was actively suppressed by the bacterium. Aside
from T3SS and their effectors, a great diversity of bacterial mole-
cules are known to impact the plant physiology and may take part
in the immune suppression, as reviewed by Stringlis et al. [194].
Further research is needed to understand the underlying mecha-
nisms allowing the bacteria to affect the plant immune responses.
4. Metabolic versatility

Members of the Pseudomonas genus are known for their great
metabolic diversity, which allows them to colonize a vast range
of environments, including the rhizosphere [7,195]. Rhizodeposits
released by plants, especially root exudates, offer to the rhizo-
sphere microbiome a diversity of substrates to thrive on, such as
organic acids, carbohydrates, fatty acids, amino acids and proteins
[196]. The importance of root exudates use in competitive rhizo-
sphere colonization has long been investigated [197,198]. Latour
et al. demonstrated that Pseudomonas spp. isolated from the rhizo-
sphere have generally broader catabolic activities than those iso-
lated from bulk soil, especially regarding specific sugars, polyols
and amino acids that can be found in root exudates [199]. We
recently performed a comparative study on 60 Pseudomonas strains
showing a positive link between the ability to use some of these
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specific organic compounds (trehalose, sucrose and citrulline)
and rhizosphere colonization in A. thaliana and in potato [200].
We also highlighted an association between the ability to use
nitrous compounds, such as amines and amino acids, and high rhi-
zosphere colonization levels. Several other studies have shown the
importance of nitrous substrates for rhizosphere Pseudomonas spp.,
especially through the role of transport and catabolism genes
[37,185]. Cole et al. ingeniously used randomly barcoded trans-
poson mutagenesis sequencing (RB-TnSeq) in P. simiae WCS417r
to identify the genes required for A. thaliana competitive root col-
onization [185]. They found 115 genes with functions involved in
high root colonization, especially in carbon and nitrogen transport
and metabolism. Twenty-four of these genes were identified for
their role in the metabolism of carbon-containing compounds:
specific sugars (galactose, galacturonate, and glucose) and nucleo-
sides (inosine and 2-deoxyribose). These compounds can be
released by plants through exudation and are certainly used by rhi-
zosphere Pseudomonas spp. to sustain their growth in the rhizo-
sphere. Further investigation is required to explore the
possibilities of substrate use preferences by Pseudomonas spp. to
eventually manipulate soil composition and improve rhizosphere
colonization by specific PGPR. Also, a better characterization of
root exudates in diverse plant species could improve the identifica-
tion of compatible bacterial strains, offering promising
applications.

Nitrogen plays a major role in the metabolism of rhizosphere-
dwelling Pseudomonas spp., especially through nitrate reduction
[201]. This process primarily occurs through three mechanisms
(and their associated nitrate reductase genes): dissimilation (nap)
respiration (nar), and assimilation (nas). Nitrate dissimilation is a
redox balancing mechanism occurring in the periplasm and
thought to maintain the bacterial redox balance during the shift
between aerobic and anaerobic conditions [202]. Nitrate respira-
tion consists in using nitrate as a final electron acceptor, an alter-
native to dioxygen in the respiratory chain. Iron oxides can also
be used as another electron acceptor in this process [199]. This is
especially useful in anaerobic conditions such as in compact or
moist soils. Nitrate assimilation enables the bacteria to use nitrate
when other nitrogen sources are lacking. In this process, nitrate is
reduced into nitrite, which is in turn reduced into ammonium to be
directly used in anabolism. The genes encoding nitrate (and nitrite)
reductases have been identified in many rhizosphere-associated
Pseudomonas spp. [8,126] and their roles in rhizocompetence have
often been confirmed [203,204]. However, the interplay between
the three nitrate reduction mechanisms in root colonization
remains unclear [201].

Sulfur is another essential element for microbes and plants, and
occurs in soils mostly in the form of sulfate esters and carbon-
bonded sulfur [205]. Sulfate esters are an important soil sulfur
source for Pseudomonas spp., especially in aerobic soils [206]. In
P. putida S-313, the use of sulfate esters is mediated by the
enzymes encoded by the ats-sft gene cluster. It notably contains
sftP, an outer membrane receptor belonging to the TonB-
dependent receptor family, the protein family involved in sidero-
phore uptake. Mutants unable to use sulfate esters show reduced
survival in soils and in the tomato rhizosphere, as well as reduced
plant-growth promotion abilities [206–208]. While sulfate use
seems to be an important rhizosphere and soil survival trait, it is
often overlooked in rhizosphere colonization studies and in gen-
ome analyses.

Metabolism regulation is crucial for Pseudomonas spp. to colo-
nize the rhizosphere, which is a nutritionally dynamic niche. Their
metabolism is under the control of a sophisticated global regula-
tion system called the carbon catabolite repression (CCR) system,
which has been recently reviewed by Bharwad et al. [209]. It is
especially mediated by the catabolite repression control protein,
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which notably regulates the transport and assimilation of amino
acids and sugars [210]. Carbon primary metabolism is partly con-
trolled by two transcriptional regulator: HexR and RccR [211].
Mutants of P. fluorescens SBW25 lacking the hexR and/or rccR genes
displayed reduced competitive rhizosphere colonization levels in
wheat. These structurally close proteins finely regulate the synthe-
sis of enzymes involved in carbon primary metabolism pathways,
leading to optimal use of available nutrients by Pseudomonas spp.
Little et al. have recently identified rccA, immediately located
upstream of rccR in P. fluorescens SBW25 and encoding a putative
phosphodiesterase [212]. They showed that RccA interacted with
RccR and they postulated that it could degrade cyclic-di-GMP.
Therefore, they hypothesized that RccA could be involved in the
coordination between the bacterial metabolic state and the bacte-
rial lifestyle transition associated with cyclic-di-GMP during rhizo-
sphere colonization. Its precise functions remain to be deciphered.
Another major metabolism regulation pathway involves the RimK
(ribosomal modification) and Hfq (host factor required for phage
Qb RNA replication) proteins at the post-transcriptional level
(Fig. 3) [213]. RimK is an ATP-dependent ligase adding glutamate
residues to RpsF, the ribosomal protein S6, which is part of the
30S ribosomal subunit. This modification affects ribosome function
and leads to an altered translational activity and proteome compo-
sition, mostly through Hfq [214]. Hfq is a hexameric RNA-binding
protein that can bind to multiple sRNA and modulate the expres-
sion of their target mRNA [213]. How Hfq is affected by RimK
and RpsF remains to be elucidated. Grenga et al. suggest that RpsF
glutamation by RimK disturbs the binding of Hfq with another
translation-required protein, S1, causing a redistribution of Hfq
in the cytoplasm [215]. Hfq controls many essential bacterial pro-
cesses involved in rhizosphere colonization, such as the catabolite
repression system, biofilm formation, quorum sensing, iron home-
ostasis and amino acid utilization and transport [213]. Mutations
in rimK or hfq affect the translation of several hundred genes and
lead to impaired rhizosphere colonization abilities, demonstrating
the importance of these proteins in this process [214]. RimK gluta-
mation activity is controlled by other Rim proteins, by cyclic-di-
GMP level and by environmental cues, which enable the bacteria
to quickly tune their translation processes according to environ-
mental changes.
5. Summary and outlook

The burst in both bacterial genome sequencing and bioinfor-
matic tools development over the last 15 years enabled researchers
to identify formerly inaccessible genes, proteins and mechanisms
involved in rhizosphere colonization by phytobeneficial Pseu-
domonas spp. This is a complex and dynamic process essential
for plant growth promotion and biocontrol of plant pathogens. It
is driven by multiple interacting bacterial factors under the control
of global regulators such as the Gac, FleQ/AmrZ, RimK/Hfq and CCR
pathways, often involving the second messenger cyclic-di-GMP.
This process requires lifestyle transitions, antibiotics biosynthesis,
iron sequestration, plant immune system evasion, and a finely
tuned versatile metabolism. These are the main bacterial determi-
nants of rhizosphere colonization by Pseudomonas spp. Successful
colonization also relies on external factors such as the soil type
and condition, the microbiome composition, and the host plant.
They should also be considered to better understand rhizosphere
ecology and to develop commercial applications of single high-
efficiency biocontrol or plant growth-promoting strains. Future
research on this topic should especially focus on the modes of
action of antibiotics such as phenazines and T6SS effectors, the bio-
film dispersal mechanisms in the rhizosphere, the effects of bene-
ficial Pseudomonas spp. on the physiology and immune system of
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plants, and the role of cyclic-di-GMP in the fine regulation of rhizo-
sphere colonization. The availability of complete genomes and
bioinformatic tools will be crucial to investigate these issues.
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