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Abstract: In response to the problems of the poor degradability and mechanical properties of liquid
mulch, natural non-toxic polymer compound corn starch and sodium alginate were used to prepare
fully biodegradable liquid mulch. The preparation conditions of the mulch were optimized, and
the mechanical properties of the mulch and the changes in the microbial community in soil with
the mulch degradation were analyzed. The corn-starch–sodium-alginate-based liquid mulch film
had an optimum performance at a tensile strength of 0.145 MPa and an elongation at a break of
16.05%, which was attained by adding 33.33% sodium alginate, 50% glycerol 22 and 4% citric acid to
corn starch after moist heat modification. Fourier transform infrared spectroscopy analysis showed
that the -COOH in sodium alginate could interact with the -OH in starch and glycerol through
hydrogen bonding, thus, resulting in a denser structure and better mechanical properties of the
liquid mulch as a non-crystalline material. The soil burial degradation study of mulch revealed that
corn-starch–sodium-alginate-based liquid mulch degraded completely at 25 days macroscopically,
and mulch degradation increased soil organic matter content. Microbial kinetic analysis showed
that the abundance and diversity of the bacterial community decreased with the degradation of the
mulch, which was conducive to the optimization of the bacterial community structure and function.
Arthrobacter of the class Actinomycetes became the dominant microorganism, and its abundance
increased by 16.48-times at 14 days of mulch degradation compared with that before degradation,
and Acidophilus phylum (14 days) decreased by 99.33%. The abundance of fungal communities was
elevated in relation to the main functional microorganisms involved in liquid mulch degradation,
with Alternaria and Cladosporium of the Ascomycete phylum Zygomycetes being the most active at the
early stage of mulch degradation (7 days), and the relative abundance of Blastocystis was significantly
elevated at the late stage of mulch degradation (14 days), which increased by 13.32%. This study
provides important support for the green and sustainable development of modern agriculture.

Keywords: liquid mulch; corn starch; sodium alginate; soil microbial; biodegradation

1. Introduction

Mulch films have been used for ground covering to retain heat and water, improve
soil moisture, maintain soil structure, and prevent weeds and pests. However, the “white
pollution” caused by the widespread application of mulch films is serious. The develop-
ment of new environmentally friendly biodegradable mulching is of great significance to
mitigating the greenhouse effect and surface pollution and ensuring food safety.

Biodegradable mulch is difficult to fully degrade [1] and needs careful laying in the
field as it sometimes gets broken during soil application. As a new biodegradable soil cover
material, the liquid mulch film could be more conducive to soil than traditional plastic films.
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The liquid film can form a film on the surface layer of soil, wrap the soil pores, limit the
evaporation of soil moisture, play the role of heat preservation, and cement the dispersed
soil particles. What is more, it can be sprayed on soil, which could save abundant efforts in
agriculture practice. After the agriculture harvesting, the used mulches can be biodegraded
in soil that will not need any treatments, which has become a research hotspot [2–6].

Recent research has studied materials used for the preparation of biodegradable liquid
mulch, including chemical polymers, natural polymers, and composite materials. Natural
polymers have excellent degradability, safety, permeability [2,7,8], and economy among
these materials. However, the film-forming properties have problems, such as poor me-
chanical properties and rapid degradation rate. Majeed et al. [8]. mentioned the application
of biodegradable polymers and their blends in controlled-release fertilizers, including
some natural polymers, especially lignin, starch, chitosan, fucoidan, cellulose, or their
modified forms of various polymers, which were important means to reduce costs, improve
marketability, and protect land fertility. Starch, as a natural polymer with a wide range of
applications and sources, was easily processed and biodegradable. Sodium alginate was an
abundant hydrophilic natural polymer with good film-forming and adsorption properties.
The application properties of oxidized-corn-starch–gelatin (OCS-Gel), as a liquid mulch
for moisture absorption, permeability, and water retention, were explored. Dang et al. [9].
found that the OCS-Gel enriched the pore structure and the presence of cross-linkage in the
composite made it highly compatible, thermally stable up to 324.8 ◦C, and the germination
rate reached 80%, exhibited good water absorption, water retention properties, and low
permeability. Adhikari et al. [10]. stated that when studying the conditions under which
sprayable biodegradable polymer liquid mulch can maximize agricultural water use ef-
ficiency, it was crucial to know the fundamental relationships and interactions between
polymer chemistry, structure and properties, and soil chemistry, physics, and biology. The
microbial community structure was crucial for regulating and maintaining soil ecosystem
function and was a sensitive indicator for assessing the function of contaminated soil
ecosystems [11,12]. Sodium-alginate-based solutions were used as liquid mulch films and
the effects of the mulch on the soil properties were studied [13]. Sen et al. [14]. studied
the biodegradability of starch-based self-supporting antimicrobial membranes and their
effects on soil quality with the soil burial method and found that biodegradation reached
90% within 28 days; biodegradation kept the soil pH within the normal tolerance range for
plant growth and increased the soil organic carbon, total nitrogen, effective nitrogen, and
water-holding capacity. Hence, the biodegradation of the membranes improved soil quality
and influenced microbial communities. To explore the bacterial community succession
within the plastic layer of polyethylene mulch, Wang et al. [15]. found that the community
composition in the plastic mulch layer and the surrounding liquid differed from that of
the original soil, in which Amoeba and Bacteroides were enriched at the phylum level and
Pseudomonas and Methylotrophomonas were enriched at the genus level. It has been proved
that the use of mulch affected the structure and function of soil microbial communities.
However, little research has been conducted on the effects of liquid mulch usage and
degradation processes on soil microbial communities and their degradation mechanisms.

The aim of this study was to develop a new fully biodegradable liquid mulch and to
find the response mechanisms between liquid mulch degradation and soil microorganisms.
Natural polymers (corn starch and sodium alginate), as the main raw materials, were
used to prepare biodegradable liquid mulch. The physicochemical properties of corn-
starch–sodium-alginate-based liquid mulch were analyzed. Functional groups and crystal
structure were also analyzed by Fourier transform infrared spectroscopy (FTIR) and X-ray
diffraction (XRD). Soil burial degradation experiments were performed to examine and
investigate degradation properties and the relationship between the mulch degradation
process and the response of soil microbial succession. This study will provide a theoretical
basis and technical support for the application and promotion of degradable liquid mulch.
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2. Materials and Methods
2.1. Materials

The reagent-grade corn starch (C6H10O5)n and glycerol (C3H8O3) were purchased from
Shanghai Maclean Biochemical Technology Co., Ltd. (Shanghai, China). Chemically pure
sodium alginate (C6H7NaO6)n was purchased from Sinopharm Chemical Reagent Co., Ltd.
(Beijing, China). Analytical pure citric acid (C6H8O7) was obtained from the Tianjin Jinke
Fine Chemical Research Institute (Tianjin, China), and industrial grade Vaseline(C6H14O2)
was from Fuchen (Tianjin) Chemical Reagent Co., Ltd. (Tianjin, China).

Soil was collected from the topsoil of a greenhouse in Shouguang City, Shandong
Province, China. The soil properties in the top 20 cm were as follows: soil organic mat-
ter at 40.85 g/kg, pH at 8.1, electrical conductivity at 0.34 ds/m, and total dissolved salt at
6.68 g/kg.

2.2. Experimental Design
2.2.1. Preparation of Liquid Mulch Film

The modification of natural starch using hydrothermal treatment is an environmentally
friendly physical modification method. It can rearrange the internal molecules of the starch
granules [16] and partially pastes the starch granule. In addition, it will enhance the
intermolecular interactions between starch molecules, improving the water resistance of
starch and its resistance to enzymes.

It was concluded that a treatment humidity of 25%, a treatment temperature of 120 ◦C,
and a treatment time of 8 h were the optimal hygrothermal frontal reaction conditions. The
appropriate amount of hydrothermally modified corn starch was weighed in a beaker and
stirred until the starch was completely pasted [17], dissolved sodium alginate [18] was
added, and then citric acid and glycerol were added and stirred at 400 rpm/min for 2 h
to obtain the liquid ground film. The liquid mulch film was formed by casting and the
preparation process is shown in Figure 1.
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Figure 1. Modified corn starch and sodium alginate base film preparation process.

The optimization of conditions for liquid mulch preparation was carried out by single-
factor experiments, based on the pre-experiment setting of 3 factors, each with 5 levels, and
the reaction parameters were set as shown in Table 1.
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Table 1. Experimental design for the preparation of corn-starch–sodium-alginate-based liquid mulch.

Factors Level

Modified starch with sodium
alginate/Quality ratio 1:1 2:1 3:1 4:1 5:1

Glycerol with sodium
alginate/Quality ratio 0.1 0.3 0.5 0.7 0.9

Amount of citric acid added/% 1 2 3 4 5

2.2.2. Liquid Mulch Film Degradation and Soil Burial Experiment

A degradability test was carried out after the liquid mulch film was formed by casting
and was air-dried [19]. It was buried at a depth of 10 cm in the soil (pH 8.1, soil moisture
30%, temperature 25 ◦C). The mulch was removed and dried on days 0, 7, 14, and 21 to
determine the weight loss rate of the mulch, and soil samples were collected using the
five-point sampling method to determine the soil organic matter content and microbial
community structure. Samples for microbial community structure determination were
stored at −80 ◦C for backup and determined by high-throughput sequencing. Five-point
sampling method was adopted for soil sampling. First determine the midpoint of the
diagonal as the central sampling point and then select four points on the diagonal with the
same distance from the central sampling point as the sampling point.

2.3. Analysis Methods

The mechanical properties of the mulch were determined using a microcomputer-
controlled electronic universal testing machine (CMT4304, test speed 10 mm/min, sensor
50 N, Putian, China) [20,21].

The functional groups of the ground membrane were analyzed using a Fourier trans-
form infrared spectrometer (Tensor II, Bruker, Germany) using KBr pellets at a mass ratio
of 1:100 [22]. The geomembrane crystal structure was analyzed by an X-ray diffractometer
produced by Rigaku corporation (Ultima IV, Tokyo, Japan) with a tube pressure of 40 kV,
a tube current of 100 mA, a scan speed of 2◦/min, and a scan range of 2θ using Cu Ka
radiation at a 2θ range from 5◦ to 70◦ with a scan step size of 0.02◦. X-ray energy spectrum
(EDS) was used in conjunction with scanning electron microscope and transmission electron
microscope to analyze the types and contents of elements in the micro area of materials.

The microbial analysis of soil community composition was determined by high-
throughput sequencing. The bulk soils were collected from the place where the dry mulch
film was buried and also kept in sterile plastic bags. The soil samples were immediately
transported in an ice-packed container to the laboratory and stored in a cold room at 4 ◦C
prior to analysis. Microbial community genomic DNA was extracted from soil samples and
bacteria were amplified by forwarding primer 338F (5′-ACTCCTACGGGAGGCAGCAG-3′)
and reverse 806R (5′-GGACTACHVGGGTWTCTAAT-3′) for the V3-V4 region of the 16S
rRNA gene. The amplification of the fungus was performed in the ITS1F_ITS2R region by
PCR reactions with the forward primer ITS1F (5′-CTTGGTCATTTAGAGGAAGTAA-3′)
and the reverse primer ITS2R (5′-GCTGCGTTCTTCATCGATGC-3′). PCR reactions were
repeated three times, and PCR products were extracted from 2% agarose gels, purified with
the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Axygen, Union City, CA, USA),
and quantified using a QuantusTM fluorometer (Promega, Madison, WI, USA). Alpha diver-
sity index, colony structure, and function prediction analysis were performed on Meguiar’s
Bioinformatics Cloud platform (https://login.majorbio.com, accessed on 2 April 2021).
Simpson indices were used to calculate species richness and relative abundance (alpha
diversity), while Shannon indices were used to calculate species similarity (beta diversity)
in different sampling units. Both of them can describe species richness and diversity. Chao
indices were used to estimate the number of OTUs contained in a sample. The higher its
value, the more species in the sample. Ace indices were used to evaluate the richness and
evenness of species composition in the sample. The larger its value, the richer the species
in the environment and the more uniform the distribution of species.

https://login.majorbio.com
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2.4. Calculation Method

The weight loss rate of the mulch was calculated according to Equation (1), and
the corn-starch–sodium-alginate-based dry mulch was prepared as shown in Figure 1,
where WL is the weight loss rate of the mulch, M0 is the dry weight of the mulch before
degradation (dried to constant weight at a constant temperature of 40 ◦C), and M1 is the
dry weight of the mulch after degradation [23].

WL = (M0 −M1)/M0 × 100% (1)

3. Results and Discussion
3.1. Performance of Corn-Starch–Sodium-Alginate-Based Liquid Mulch
3.1.1. EDS Analysis of Corn-Starch–Sodium-Alginate-Based Liquid Mulch

Table 2 shows the main elements in the liquid mulch, as well as the mass ratio and
atomic ratio of each main element. It can be seen that the liquid film is mainly composed
of C and O elements, which are derived from each raw material for the synthesis of the
liquid film. Among them, the content of element C is the highest, accounting for 58.09%
of the total mass, and the number of atoms accounts for 64.94% of the whole, indicating
that the liquid mulch is a carbon skeleton organic polymer. Element O is also an element
constituting the liquid mulch film, and its mass and number of atoms account for 41.43%
and 34.78% of the total, respectively. Na comes from sodium alginate with less content.

Table 2. EDS element distribution of liquid mulch film.

Element Mass Ration (%) Atomic Ratio (%)

C 58.09 64.94
O 41.43 34.78

Na 0.48 0.28
Total 100 100

3.1.2. Tensile Strength and Elongation at Break Properties

In this study, the tensile strength and elongation at break of air-dried mulch were used
as evaluation indices to optimize the conditions for the preparation process of liquid mulch,
as the mechanical properties of liquid mulch are the critical constraints for its application.
The effects of different additions of sodium alginate, glycerol, and citric acid on the tensile
strength and elongation at the break of the mulch film are shown in Figure 2.

As shown in Figure 2a, the elongation at break and tensile strength of the mulch
film exhibited a trend of increasing and then decreasing with the addition of sodium
alginate. When the ratio of sodium alginate to starch was 1:3, the tensile strength reached a
maximum value of 0.13 MPa, the elongation at break reached a maximum value of 14.19%,
and the elongation at break and tensile strength decreased when changing the ratio of
both. The improvement in mechanical properties is due to more hydrogen bonds formed
between sodium alginate and starch as the content of sodium alginate increases, so the
network structure of the polymer is more stable. The weaker mechanical properties may
be attributed to the excess of sodium alginate and the decrease in starch content, as only a
small amount of starch can combine with sodium alginate, Hence, the hydrogen bonding
content between the two is reduced and the mechanical properties are lower.

As illustrated in Figure 2b, the elongation at break and tensile strength of the mulch
film showed a trend of increasing and then decreasing with the addition of glycerol. The
tensile strength reached a maximum value of 0.14 MPa and the elongation at break reached
a maximum value of 15.02% when the mass ratio of sodium alginate to starch was 1:3
and the mass ratio of glycerol to modified starch was 0.7, similar to the test results when
the mass ratio was 0.5. Therefore, the mass ratio of glycerol to starch was chosen to be
0.5 to maintain the optimized conditions, considering the production cost. Glycerol is
a commonly used plasticizer that can improve the flexibility of the mulch material by
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forming hydrogen bonds with starch molecules through hydroxyl groups, thus, changing
the molecular structure of the starch [24].
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As presented in Figure 2c, the tensile strength reached a maximum value of 0.16 MPa,
and the elongation at break reached a maximum value of 16.05% when the mass ratios of
sodium alginate to starch and glycerol to modified starch were 1:3 and 0.7, respectively, and
the addition of citric acid was 4%. It showed that citric acid played a certain cross-linking
role during the reaction process, which made the macromolecules combine effectively
and improved the mechanical properties of the mulch film. The elongation at break and
tensile strength of the mulch film was reduced when the amount of citric acid added
was greater or less than 4%, owing to the combination of excess citric acid and starch,
which led to increased difficulty in the intermolecular slip of starch, resulting in lower
elongation at break and tensile strength [25]. Citric acid is a tri-carboxylic acid used to
cross-link polysaccharide molecules with each other. In addition, citric acid enhances the
intermolecular interactions of liquid mulch and improves the performance of the mulch.
However, the high content in citric acid and the consequent acid hydrolysis depolymerize
the starch molecules into smaller polysaccharides and promote the destruction of the starch
granules [26].

It was observed that the best mechanical properties of the liquid ground film were
prepared by choosing 1:3 sodium alginate/modified starch (w/w), 1:2 glycerol/modified
starch (w/w), and 4% citric acid addition.

3.1.3. Functional Group Analysis by FTIR

The functional group analysis was conducted on the solid starch and alginate films.
The distribution of functional groups of liquid mulch and its components are shown in
Figure 3a, which shows that liquid mulch is significantly different from modified starch and
sodium alginate. Compared to modified starch and sodium alginate, the modified corn-
starch–sodium-alginate-based liquid mulch has a stronger peak intensity at 3600–3000 cm−1

with reduced fine structure due to -OH stretching vibrational peaks in the corn starch
and glycerol structures [27]. The presence of ester groups at 1720 cm−1 in the liquid
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mulch is created by combining citric acid with other polymers, indicating that crosslinks
are formed. The carboxyl (-COOH) stretching vibration peaks of alginate appearing at
1640–1400 cm−1 (Wilpiszewska et al., 2019) and the absorption peaks between 1200 and
1000 cm−1 caused by the C-O stretching vibration of the glycosidic bond [28] are generated
by the addition of sodium alginate. The -COOH in sodium alginate can interact with the
-OH in starch and glycerol through hydrogen bonding to make the liquid ground film
more compact and, thus, better serve to inhibit water evaporation and increase the effective
temperature accumulation.
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3.1.4. Geomembrane Crystal Structure Analysis by XRD

The XRD spectra for the two main raw materials of corn-starch–sodium-alginate-
based liquid mulch and prepared mulch were obtained for the solid starch and alginate
films and are shown in Figure 3b. The characteristic crystalline diffraction peaks of corn
starch after moist heat treatment were weakened and the crystallinity was reduced, but the
crystalline structure remained. Sodium alginate showed two weak crystalline diffraction
peaks at 32.90◦ and 34.06◦, which proved that a small amount of crystalline structure was
also present in sodium alginate. The corn-starch–sodium-alginate-based liquid mulch
only showed a broad and strong non-crystalline peak near 20.68◦, indicating that the
crystal structures of modified corn starch and sodium alginate were gradually destroyed
during the preparation of the liquid mulch and the mulch had obvious non-crystalline
structures. Research has shown that the varied microstructure of the non-crystalline
materials can be assigned to the irregular arrangement of particles. The non-crystalline
structure characteristics gradually appear when the crystal structure is reduced, thus,
enhancing the transparency, impact strength, and ductility of the mulch [29].

3.2. Degradation Performance of Corn-Starch–Sodium-Alginate-Based Liquid Mulch

The degradation rate of corn-starch–sodium-alginate-based liquid mulch film over
time is shown in Figure 4a. The results showed that the mulch was gradually degraded
with the extension of soil burial time. The mulch film weight was 20.12 g at 0 days, 12.63 g
at 7 days, 7.21 g at 14 days, and 3.43 g at 21 days, the degradation rates were 37.23%, 64.17%,
and 82.95% at 7 days, 14 days, and 21 days, respectively. Under the joint action of soil
microorganisms and moisture, the mulch morphology changed from a large volume of
dry mulch into small fragments; dry corn-starch–sodium-alginate-based mulch completely
disappeared macroscopically on day 25.
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As presented in Figure 4b, the soil organic matter of the control group without liquid
mulch application was 40.85 g/kg, and the organic matter content increased by 2.06% and
3.40% at 7 days and 14 days of mulch application, respectively, compared to the control
group. Pronk et al. [30] analyzed the relationship between the role of soil organic matter
and microorganisms and showed that microorganisms are responsive to changes in organic
matter. As an essential nutrient in the growth of microorganisms, small-molecule carbon in
organic matter can effectively promote microbial reproduction and metabolism in soil.

3.3. Response of Liquid Mulch Degradation to Soil Microbial Community Structure
3.3.1. Abundance and Diversity of Soil Microbial Communities

The Shannon and Simpson’s indices showed in Table 3. The results indicated an
overall decreasing trend with the degradation of liquid mulch, while the Ace and Chao
indices showed different trends for bacteria and fungi.

Table 3. Changes in the abundance and diversity of bacteria and fungi during the degradation of
liquid mulch.

Microbial
Species

Degradation
Time/d

Valid
Sequences Shannon Simpson Ace Chao Coverage

Bacteria
0 48,730 5.43 0.01 1050.51 1048.71 1.000
7 46,208 2.56 0.26 551.02 522.07 0.997

14 51,305 2.59 0.23 536.63 441.73 0.997

Fungi
0 39,446 2.64 0.22 130.17 130.00 1.000
7 45,023 2.57 0.15 149.41 150.63 1.000

14 71,212 2.56 0.14 172.83 168.77 1.000

The Shannon and Simpson indices indicated a gradual decrease in bacterial community
diversity, with a 52.85% decrease in bacterial community diversity. The Ace and Chao
indices demonstrated that the bacterial community richness in soil decreased with the
continuous degradation of liquid mulch and the bacterial community richness decreased
by 48.89% after 7 days of degradation.

The Shannon and Simpson’s indices in fungal community diversity had no significant
change after 7 days of liquid mulch application compared to before. The Ace and Chao
indices in fungal community richness showed an increasing trend. The fungal richness
increased by 31.33% compared with before at 14 days of degradation.
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There were 301,924 valid sequences after filtering and the coverage rate of all samples
was higher than 99% in this study, which showed that the mulch degradation was conducive
to the growth and reproduction of fungi and optimization of bacterial functions.

3.3.2. Community Succession of Soil Bacteria

The soil samples at 0, 7, and 14 days of mulch degradation were labeled as D_0,
D_7, and D_14, respectively. As shown in Figure 5a, the dominant phyla observed in
all treatment groups were Actinobacteria, Proteobacteria, and Acidobacteria. The relative
abundance of Actinobacteria and Proteobacteria increased from 42.24% in the control group to
75.18% and 67.54% at days 7 and 14 of the mulch degradation, respectively. As suggested
by a previous study [31], the heat treatment of maize starch with citric acid as a cross-
linking agent resulted in resistant dextrins that promoted the growth of Actinobacteria,
which are producers of compounds that are essential for human and animal health by
decomposing soil organic matter, contributing to the global carbon cycle and increasing
plant productivity [32]. The phylum Proteobacteria increased from 9.92% in the control to
23.05% and 30.68% at days 7 and 14, respectively. The increase in the abundance of the
phylum Metamorphomonas also indicates an improvement in soil quality (Araujo et al., 2020).
It colonizes high-nutrient environments rich in carbon and is complex trophic. The relative
abundance of Acidobacteria phylum decreased from 10.50% in the control to 0.28% and
0.07% at 7 days and 14 days of mulch degradation, respectively. Acidobacteria is suitable
for survival in acidic environments and low-nutrient soil conditions and can be used as
an indicator of soil impoverishment [33]. Furthermore, Actinobacteria and Proteobacteria
gradually replaced Acidobacteria as the dominant flora in the soil after mulching, indicating
that the soil quality improved after mulching.
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As presented in Figure 5b, the dominant soil bacterial communities were Actinobacteria,
Alphaproteobacteria, and Gammaproteobacteria of the phylum Aspergillus at the phylum level.
The most significant changes in Actinobacteria were observed at 7 days and 14 days after the
application of liquid mulch, with the relative abundance of Actinobacteria increasing from
28.22% in the control to 74.64% and 67.30%, the relative abundance of Alphaproteobacteria
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increasing from 4.29% in the control to 7.95% and 10.62%, and the relative abundance
of Gammaproteobacteria increasing from 5.63% to 15.10% and 20.07%, respectively. It was
suggested that Alphaproteobacteria can promote the tolerance of graminaceous plants to
elements, such as Co, Cr, and Ni in alkaline soils [34]. Furthermore, some bacteria in
Gammaproteobacteria can use sulfur as the electron donor to fix CO2. The significant increase
in the relative abundance of these three groups of bacteria indicated that the application of
liquid mulch can promote crop growth and can facilitate carbon cycling in the soil.

As illustrated in Figure 5c, the most significant increase in the relative abundance
is Arthrobacter of the class Actinomycetes after the application of liquid mulch, whose
relative abundance increased from 2.78% in the control to 49.89% and 45.82% at 7 days
and 14 days of mulch degradation, respectively. Studies have shown that Arthrobacter can
degrade pesticides and heavy metal cadmium in the soil and promote plant rooting. In
addition, the relative abundance of Nocardioides, Pseudarthrobacter, and Pseudoxanthomonas
increased. Among them, Pseudoxanthomonas has the function of degrading cellulose [35].
Pseudarthrobacter can hydrolyze cellulose and is resistant to cold environments and solar
radiation. The increased abundance of the above functional microorganisms promoted
crop growth through improving soil carbon sequestration and toxicity reduction.

3.3.3. Community Succession of Soil Fungi

As shown in Figure 6a, the dominant fungi in the soil at different degradation times of
liquid mulch were mainly Ascomycota, Basidiomycota, and Mortierellomycota. The relative
abundance of Ascomycota, a saprophytic phylum that degrades wood, food, cloth, and
leather in the soil and decomposes plant and animal residues [36], decreased by 3.81%
and increased by 1.15% at 7 days and 14 days of mulch degradation compared to the
control. The relative abundance of Basidiomycota first increased and then decreased with
the degradation of the mulch film; it increased by 5.15% and 1.49% at 7 days and 14 days,
respectively, compared with the control group. Basidiomycota helps plants obtain nutrients
from the soil and plants produce glucose through photosynthesis to feed Basidiomycota in
turn, which can also form symbiotic relationships with insects. The phylum Basidiomycota
was found to exhibit significant in vitro degradation of hydrocarbons, such as polycyclic
aromatic hydrocarbons, persistent organic pollutants, halogenated hydrocarbons, and
aromatic hydrocarbons, phenols, explosives, and dyes [37].

As presented in Figure 6b, the dominant soil fungal communities included Doth-
ideomycetes, Sordariomycetes, Saccharomycetes, Eurotiomucetes, Microbotryomyomycetes, and
Microbotryomyomycetes, etc., at the phylum level. At 7 days and 14 days of mulch film
degradation, the relative abundance of Dothideomycetes decreased by 10.05% and 11.66%
compared with the control group, respectively. Most Dothideomycetes were plant pathogens,
causing huge losses to cash crops [38]. The decrease in their relative abundance indicated
that liquid mulching could help to control fungal diseases. Sordariomycetes are saprophytes
that promote nutrient cycling in soil [39]. With the degradation of the mulch film, the
relative abundance of Sordariomycetes first increased and then decreased by 28.72% and
19.82%, indicating that the fungus participated in the degradation process of the mulch
film, and its abundance decreased with the degradation of the mulch film. The relative
abundance of Saccharomycetes of Ascomycota increased gradually with the degradation
of the plastic film and increased by 4.88% and 20.70% at 7 days and 14 days, respectively.
Saccharomycetes can promote plant growth and reduce the arsenic content in the soil. Thus,
it can be concluded that the degradation of the plastic film was beneficial in reducing the
content of heavy metals and other harmful substances in soil and promoted crop growth.

As illustrated in Figure 6c, the dominant soil fungal communities were Alternaria,
Cladosporium, and Gibberella at the genus level. The relative abundance of Alternaria of the
ascomycetes was reduced by 16.41% and 14.29% at 7 days and 14 days of mulch degradation,
respectively, compared to the control group. Alternaria are planted pathogenic bacteria
that cause early blight and brown spot disease, which are particularly common in crops in
arid regions [40], and the decrease in their relative abundance suggests that liquid mulch is
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effective in controlling crop diseases. The relative abundance of Cladosporium, a genus of
ascomycetes, increased by 8.12% and 5.48% at 7 days and 14 days, respectively. Cladosporium
is mainly distributed in soils with low salinity, and its relative abundance is positively
correlated with the content of total nitrogen in the soil [41]. The application of liquid mulch
may improve the saline soils, increase the content of nitrogen in the soil, and optimize
soil quality. It was apparent that soil nitrogen fixation and disease resistance increased
significantly with the degradation of the mulch. The abundance of Saccharomyces, Candida,
and Penicillium in the class Saccharomycetales increased gradually with the degradation of
the mulch film.
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3.4. Biodegradation Mechanism of Corn-Starch–Sodium-Alginate-Based Liquid Mulch

The soil microbial community succession pattern during the degradation of corn-
starch–sodium-alginate-based liquid mulch shows that fungi are the main microorganisms
involved in the biodegradation of liquid mulch, and the bacterial community structure and
function are optimized during the mulch degradation process. During mulch degradation,
the diversity and abundance of bacterial communities in the soil gradually decreased
and the abundance of dominant bacteria increased significantly. Arthrobacter of the class
Actinomycetes was the dominant microorganism with the largest percentage of abundance,
and its abundance increased by 16.48 times at 14 days of mulch degradation compared
with that before degradation. The phylum Acidobacter (14 days) decreased by 99.33%
compared with that before degradation. The abundance of fungal communities in the soil
increased significantly with the degradation of the mulch, among which the Alternaria and
Cladosporium of the Ascomycete phylum Ascomycota were the most active at the early stage
of degradation (7 days). The relative abundance of Alternaria of the Ascomycete phylum
decreased by 16.41% (7 d), and Cladosporium increased by 8.12% (7 days) compared with that
before degradation. Nakazawa et al. [42] revealed that soft-rotting fungi of the Cysticercus
phylum can secrete laccase as an oxidation key enzyme, while brown-rotting tannins are
capable of chemical reactions without enzymatic involvement. Zheng et al. [43] found
that the combined multivariate soil environment strongly influenced the composition and
diversity of microbial communities, from which it can be inferred that changes in soil
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environment may be related to mulch degradation and metabolites produced by microbial
growth and metabolic processes. Thus, the specific degradation mechanism needs to be
investigated more thoroughly for degradation intermediates.

Related studies have shown that microorganisms of the phylum Aspergillus and Acti-
nomycetes are important species involved in the degradation of some organic matter and
polymeric materials [44,45], which is largely consistent with the dominant phylum species
obtained from the above-mentioned community succession of soil bacteria. Huang et al. [46]
stated that bacteria are mainly classified as autotrophic and heterotrophic, and there is a
complex, non-specific network of interactions between bacterial functional groups.

4. Conclusions

The optimal process conditions for the preparation of corn-starch–sodium-alginate-
based liquid mulch film involved adding 33.33% sodium alginate, 50% glycerol, and 4%
citric acid to corn starch after moist heat modification. FTIR and XRD characterization
showed that -OH and -COOH interacted with each other through hydrogen bonding
to make the film structure denser, and the tensile strength of the film was 0.145 MPa,
and elongation at break was 16.05%. The film was a non-crystalline material with good
mechanical properties.

The corn-starch–sodium-alginate-based liquid mulch was completely degraded macro-
scopically at 25 days. Microbial kinetic analysis showed that the abundance and diversity
of bacterial communities decreased and the abundance of fungal communities increased,
and the application of liquid mulch favored the dominant microorganisms of Actinobacteria,
Proteobacteria, Ascomycota, and Basidiomycota. The growth of oligotrophic Acidobacteria
and some plant pathogens was inhibited. Hence, fungi were the main microorganisms
involved in the biodegradation of corn-starch–sodium-alginate-based liquid mulch, and
the application of liquid mulch was conducive to the optimization of bacterial community
structure and function. The mulch degradation increased the soil organic matter content
and the abundance of beneficial soil microorganisms and improved the soil disease and
toxicity resistance.
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