
polymers

Article

Dyeing Property and Adsorption Kinetics of Reactive
Dyes for Cotton Textiles in Salt-Free Non-Aqueous
Dyeing Systems

Jiping Wang 1,2,3, Yuanyuan Gao 1,2, Lei Zhu 1,2, Xiaomin Gu 1,2,3, Huashu Dou 4

and Liujun Pei 1,2,*
1 Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Zhejiang Sci-Tech University,

Hangzhou 310018, Zhejiang, China; jpwang@zstu.edu.cn (J.W.); aloysyy@163.com (Y.G.);
lzhuzj@163.com (L.Z.); abbiexiaowang@hotmail.com (X.G.)

2 National Base for International Science & Technology Cooperation in Textiles and Consumer-Goods
Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China

3 Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education,
Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China

4 Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University,
Hangzhou 310018, Zhejiang, China; huashudou@zstu.edu.cn

* Correspondence: liujunpei2017@zstu.edu.cn; Tel./Fax: +86-571-8684-3783

Received: 8 August 2018; Accepted: 13 September 2018; Published: 15 September 2018
����������
�������

Abstract: In recent years, new concepts in textile dyeing technology have been investigated which
aim to decrease the use of chemicals and the emission of water. In this work, dyeing of cotton textiles
with reactive dyes has been investigated in a silicone non-aqueous dyeing system. Compared with
conventional aqueous dyeing, almost 100% of reactive dyes can be adsorbed on cotton textiles without
using any salts in non-aqueous dyeing systems, and the fixation of dye is also higher (80%~90% for
non-aqueous dyeing vs. 40%~50% for traditional dyeing). The pseudo-second-order kinetic model
can best describe the adsorption and equilibrium of reactive dyes in the non-aqueous dyeing systems
as well as in the traditional water dyeing system. In the non-aqueous dyeing systems, the adsorption
equilibrium of reactive dyes can be reached quickly. Particularly in the siloxane non-aqueous dyeing
system, the adsorption equilibrium time of reactive dye is only 5–10 min at 25 ◦C, whereas more time
is needed at 60 ◦C in the water dyeing system. The surface tension of non-aqueous media influences
the adsorption rate of dye. The lower the surface tension, the faster the adsorption rate of reactive
dye, and the higher the final uptake of dye. As a result, non-aqueous dyeing technology provides an
innovative approach to increase dye uptake under a low dyeing temperature, in addition to making
large water savings.

Keywords: non-aqueous medium dyeing; salt-free reactive dyeing; cotton textile; reactive dye;
surface tension; adsorption

1. Introduction

In recent years, tremendous efforts have been focused on saving water and energy in the textile
industry due to environmental pressure [1–4]. Some new dyeing methods [5–8] have been developed
to reduce the use of salts and to save water during the dyeing process; for example, supercritical
fluid dyeing, solvent dyeing, reverse micelle dyeing, non-aqueous dyeing, ionic liquid dyeing etc.
Unfortunately, natural fibers cannot be effectively dyed with conventional water-soluble dyes in
normal supercritical fluid [4,5]. Solvent dyeing and reverse micelle dyeing are often carried out
using hydrocarbon solvents which are not environmentally friendly, such as hexane, cyclohexane and

Polymers 2018, 10, 1030; doi:10.3390/polym10091030 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
http://www.mdpi.com/2073-4360/10/9/1030?type=check_update&version=1
http://dx.doi.org/10.3390/polym10091030
http://www.mdpi.com/journal/polymers


Polymers 2018, 10, 1030 2 of 16

n-heptane, as continuous phase media [9,10]. Non-aqueous dyeing is a green and environmentally
friendly dyeing technology which uses non-polar media to substitute for water [11,12]. Moreover,
Yang [9] and Fu [13] believe that non-aqueous dyeing has been the most successful attempted substitute
for traditional water-based dyeing in the textile industry. Non-aqueous dyeing media cannot dissolve
water-soluble dye but can transport material and transfer energy. A major advantage of non-aqueous
dyeing technology is that little water is needed because dissolving the dye and other chemical agents,
and fiber swelling require only a small amount of aqueous solution [14–16]. Furthermore, all the
aqueous solution can be completely absorbed by the cotton textile without using any accelerating
salts during the dyeing process. As for the re-usability of non-aqueous media, after a short period of
static separation non-aqueous media can be directly used for the next dyeing. Non-aqueous media
which is adsorbed on the surface of cotton textile can be washed down using surfactants and reused
by flotation.

In our previous investigations [15,17–19], a non-aqueous dyeing system was favorably prepared
using siloxane non-aqueous medium as the dyeing medium. Siloxane non-aqueous medium is a
clear, odorless, colorless, and non-oily cyclic siloxane fluid, which is widely used in consumer and
industrial applications. Research has demonstrated that siloxane non-aqueous medium is safe to both
human health and the environment [20–22]. In recent years, siloxane non-aqueous medium has been
applied widely in dry cleaning as a new medium [23]. Now, we have used this non-aqueous medium
to prepare a reactive dye/siloxane emulsion dyeing system for dyeing cotton textiles. As shown in
Figure 1, with the aid of a surfactant and co-surfactant, the dye solution can be evenly emulsified
in siloxane non-aqueous medium. Since reactive dye is totally incompatible with siloxane, there is
a strong affinity between the fiber and the dye, with the result that nearly 100% of reactive dye can
diffuse to the surface of the cotton textile under mechanical force. Therefore, the final uptake of reactive
dye is higher than that of a conventional water dyeing base, without using any inorganic salts in the
non-aqueous dyeing base. Furthermore, the fixation of dye is also higher than in the water bath. As a
result, a lot of reactive dyes can bond with cotton textiles in non-aqueous dyeing systems. However,
information about the adsorption mechanism of reactive dye solution in the siloxane non-aqueous
dyeing system is limited; in particular, comprehensive information related to the effect of the medium
on the diffusion of reactive dye and adsorption models have not been systematically studied.
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Figure 1. Schematic diagram of reactive dye in siloxane non-aqueous dyeing system.

To study the influence of non-aqueous media surface tension on the adsorption of reactive
dye, vinyl sulphone reactive dye (blue 19) and a combination of cyanuric chloride and vinyl
sulphone reactive dye (red 195) were selected. The influences of dyeing media and surface tension of
non-aqueous media on the adsorption kinetics of reactive dye were investigated with a model on the
adsorption kinetics of reactive dye. In addition, the influence of surface tension on reactive dyeing
level property was systematically discussed.
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2. Materials and Methods

2.1. Materials

Cotton woven fabric (130.5 g/m2, yarn count: 42S × 42S, yarn density: 148 × 285) was dyed
with reactive dye which was obtained from Haitong Printing&Dyeing Co., Ltd, (Hangzhou, China).
Siloxane non-aqueous medium (purity>98%) was purchased from Wynca. Paraffin (Jiande, China),
C8H18 (isooctane) and M-oil (white oil) withpurity above 99.7% were purchased from Hangzhou Mick
Chemical Co., Ltd (Hangzhou, China) The parameters of different dyeing media are shown in Table 1.

Table 1. The parameters of different dyeing media.

Medium Surface Tension (dyn/cm) Boiling Point (◦C) Viscosity (mm2/s)

Siloxane 18.13 210 5.63
Paraffin 19.45 330 16.34
C8H18 23.34 126 0.77
M-Oil 31.23 200 4.20
H2O 72.04 100 1.00

Reactive dyes (red 195 and blue 19) were purchased from Aladdin Reagent (Shanghai, China).
The molecular structures of these dyes are shown in Figure 2. Non-ionic surfactant (AEO-3, fatty
alcohol polyoxyethylene ether) was obtained from Jiangsu Haian Petrochemical Plant (Haian, China).
n-octanol (A.R.) was purchased from Aladdin Reagent (Shanghai, China). Sodium carbonate (Na2CO3,
A.R.) and sodium chloride (NaCl, A.R.) were purchased from Cangzhou Haolong Chemical Products
Co., Ltd (Cangzhou, China).
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Figure 2. Molecular structure of C. I. (Color Index) Reactive Red 195 and C. I. Reactive Blue 19.

2.2. Determination of Surface Tension

A Krüss GmbH DAS20 using the captive drop method was used to measure the surface tension
of different non-aqueous media. In the testing conditions, the needle diameter was 1.820 mm and flow
rate was 60.2 mm/min.

2.3. Cotton Textile Dyeing

2.3.1. Non-Aqueous System

5.0 g cotton fabric was dyed with reactive dye (2%, o.w.f.) in 100 mL (mililitro) non-aqueous
medium (liquor ratio = 20:1) using a dyeing machine (Sanjing Technology Company, Hangzhou,
China). First, 2% (o.w.f.) of reactive dyewas added to 130% (o.w.f) of water. After stirring for 5 min,
7.5% (o.w.f) of sodium carbonate was added to reactive dye solution and stirred for another 5 min.
Finally, the dye solution obtained in the previous step was added into 100 mL of non-aqueous medium.
After adding the cotton fabric, dyeing began at a lower temperature (25 ◦C) for 15 min, and then
the temperature was increased to 70 ◦C for 30 min, with a heating rate of 2◦C/min. After dyeing,
the dyed fabric was washed in a soap solution containing 2.0 g/L sodium carbonate and 2.0 g/L
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standard detergent for 10 min, rinsed again with warm (50 ◦C) water and cold water, and finally dried
at ambient temperature.

2.3.2. Aqueous Dyeing

For comparison with the conventional water-base dyeing, the same cotton fabric (5 g) was dyed
with reactive dye (2%, o.w.f) in water base at a liquor ratio of 20:1. The amounts of NaCl and Na2CO3

were 40 and 15 g/L, respectively. First, reactive dye and the cotton fabric were added into 100 mL of
water at room temperature, and then the temperature was increased to 60 ◦C. After 10 min, half of
the NaCl was added into the dye bath, and the rest of the NaCl was added in the next 10 min.
After adsorption (30 min), the temperature was increased to 70 ◦C at 2 ◦C/min, then the Na2CO3

was added into the dye bath and left for 30 min. After fixation, the dyed fabric samples were soaped
and rinsed.

2.4. Determination of Adsorption Rate

The dyeing rate was monitored using the dye concentration. Small samples (1 mL) were taken at
different times during the dyeing process. The concentration of dye was determined with a UV-vis
spectrometer (Lambda 35, Perkin Elmer, Waltham, MA, USA).

Prior to dyeing, standard solutions of the two dyes were made and the absorbance was measured
from 380~680nm wavelengths; therefore, a plot of absorbance versus wavelength could be obtained.
Maximum adsorption wavelength of the dye was determined with a UV-vis spectrometer (C.I. Reactive
Red 195 in 550 nm; C.I. Reactive Blue 19 in 596 nm). Calibration curves of absorbance vs. dye
concentration (Beer-Lambert law) were performed separately for the two dyes. The calibration plot
revealed a linear relationship in the range of dye concentration from 0 to 0.19 g/L. Therefore, it was
necessary to dilute the sample with a higher concentration.

For the non-aqueous dyeing system, the dye solution (1 mL) was diluted with 9 mL of ethyl
alcohol. For the traditional system, distilled water was used for dilution. Samples of dye solutions
were taken at different times (0, 1, 3, 5, 10, 15, 20, 25, 30, 40, 50, 60 and 70 min) for UV measurements.

2.5. Dyeing Evaluations

2.5.1. Color Depth of Dyed Fabric

The color strength of dyed fabric samples were measured with a Datacolor SF600X
spectrophotometer (Datacolor, Lawrenceville, NJ, USA), then the K/S values were evaluated at λmax

using the Kubelka-Munk equation:
K
S

=
(1 − R)2

2R
(1)

where R is the reflectance of the dyed fabric sample at the λmax absorption and K and S are the
absorption and scattering coefficients, respectively.

2.5.2. Dye Uptake of Reactive Dye

The final uptake of reactive dye was calculated by the following equation. The amount of dye in
the dyeing residues solution was determined using a UV-vis spectrometer.

Sorption% = (1 − C1V1/C0V0) × 100% (2)

where sorption refers to the dye uptake, C0 and C1 refer to the concentration (g/L) of initial dye
solution and dyeing residues, respectively; and V0 and V1 refer to the volume (mL) of initial dye
solution and dyeing residues, respectively.
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2.5.3. Fixation Rate of Reactive Dye

Consideration of the percentage of fiber-reactive dyes is necessary to evaluate the dye fixation
during the non-aqueous dyeing systems and in the traditional water dyeing system. The fixation ratio
of reactive dye was calculated based on the following equation:

T = (1 − C1V1 + C2V2

C0V0
)× 100% (3)

where T refers to the fixation rate of reactive dye, and C0, C1, C2 refer to the concentration (g/L) of the
initial dye solution, dyeing residues and soaping solution, respectively. V0, V1, and V2 refer to the
volume (mL) of the initial dye solution, dyeing residues and soaping solution, respectively.

2.5.4. Level Dyeing Property

Twelve points on the fabric surface were randomly selected, and the K/S values of these points
were tested with a Datacolor SF600X spectrophotometer (Datacolor, Lawrenceville, NJ, USA). The level
dyeing property was calculated using the following equation, where the lower the value of Sγ(λ),
the better the level dyeing property:

Sγ(λ) =

√√√√√ n
∑

i=1

[
(K/S)iλ
(K/S)iλ

− 1
]2

n − 1
(4)

3. Results and Discussion

3.1. Comparisons between the Dyeing Property of Reactive Dye in Different Non-Aqueous Dyeing Systems and
a Traditional Water Dyeing System

Four different non-aqueous dyeing media were selected to study their influence on reactive
dyeing for cotton fabric, and the color depths of the dyed fabric are plotted in Figure 3. Dyeing in a
water base was also included for comparison. In the traditional water dyeing system, the color depth
of cotton fabrics (K/S value) dyed with reactive blue 19 and red 195 were 12 and 13, respectively;
while in non-aqueous media, the color depth of dyed cotton fabric samples dyed with reactive blue 19
and reactive red 19 were above 15 and 21, respectively.
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Figure 3. Color depth of fabric in different non-aqueous emulsion systems and traditional water base:
(a) C. I. Reactive Blue 19; (b) C. I. Reactive Red 195.

Comparing the different dyes, the color depth of the cotton fabric dyed with reactive 195 was
deeper than that of the fabric dyed with reactive blue 19. This was mainly because the reactive red 195
molecular structure contains two different active groups; namely, the homogeneous chlorotriazine and
vinyl sulfone active groups, with the result that the reaction between fiber and dye was higher than
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that of a single functional group (blue 19) [24–26]. Furthermore, the molar extinction coefficients of
dye might be a reasonable guide to the color depth of dyed fabric [27]. Reactive red 195 may absorb
more light and reflect less light. Therefore, the color depth of fabric after dyeing with reactive red 195
was significantly deeper than that of cotton fabric dyed with reactive blue 19.

As shown in Figure 4, the uptake of reactive dye in non-aqueous media was above 95%, indicating
that almost all of the dye could diffuse to the cotton fabric without adding any electrolyte at 25 ◦C
during dyeing. However, in the conventional aqueous dyeing system, the final uptake of these
two reactive dyes was only 70%~75% when using an accelerating agent (sodium chloride) at 60 ◦C.
Considering removal of these salts is a major challenge for the treatment of dyeing wastewater [25];
however, there is a little wastewater after dyeing in the non-aqueous media dyeing systems. Therefore,
non-aqueous dyeing systems are green and recyclable dyeing systems.
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Figure 4. Uptake and fixation of reactive dye in different non-aqueous emulsion systems and traditional
water base: (a) C. I. Reactive Blue 19; (b) C. I. Reactive Red 195.

The effect of the non-aqueous media on the fixation of the reactive dye was also investigated,
as shown in Figure 4. The fixation rates for the non-aqueous dyeing systems were higher than for the
traditional process (80%~90% for siloxane non-aqueous dyeing system vs. 40%~50% for traditional).
Fixation is also affected by the sorption of dye, dyeing time, etc. [10,28]. The apparent sorption of
reactive dye was over 95% in non-aqueous dyeing systems, indicating that a lot of the dyes could
react with cotton fabrics. Furthermore, the dyeing temperature is lower (25 ◦C in non-aqueous media
vs. 60 ◦C in water base), and the hydrolysis rate of reactive dye in non-aqueous dyeing systems is
slower than that in the traditional water base [15,16]. As a result, a lot of reactive dyes can bond with
cotton textiles, and a higher fixation rate can be obtained in the non-aqueous dyeing systems [29,30].
As can be seen, this dyeing technology can solve some of major problems of a traditional water bath,
such as difficult wastewater treatment due to the high residue amounts of dye and electrolytes, low dye
efficiency, etc.

3.2. Dye Adsorption in Different Non-Aqueous Dyeing Systems

The degree of dye adsorption (qt) can be calculated using the following equation:

qt =
1000 × (C0 − Ct)

W
V (5)

where qt (mg/g) refers to the mass of dye adsorbed on cotton fabric at given times during the dyeing
process, C0 refers to the initial dye concentration (g/L) in the dye bath, Ct refers to the residue dye
concentration (g/L) at given times, V is the volume of dye solution (mL), and W is the mass of cotton
fabric (g).

As shown in Figure 5, the fastest equilibrium was observed at 25 ◦C in the siloxane non-aqueous
dyeing system. In other non-aqueous dyeing systems, adsorption equilibrium was established within
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20–30 min. This is mainly because the surface tension of non-aqueous media is low (18.13 mN/m),
which makes them highly hydrophobic, and reactive dye solution is easily adsorbed on the cotton
fabric surface under mechanical force [31,32]. Therefore, salt-free adsorption could be realized by
non-aqueous media dyeing.
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Figure 5. Adsorption of reactive dye in different non-aqueous dyeing systems and traditional water
base: (a) C. I. Reactive Red 195; (b) C. I. Reactive Blue 19.

In addition to the faster equilibrium, the highest uptake of dye (20 mg/g) was achieved after
dyeing for 10 min in the siloxane non-aqueous dyeing system. For other non-aqueous dyeing media,
the uptake of dye was also above 94%, which was significantly higher than that of the traditional
water base. The distribution of reactive dye solution between the dyeing bath and the cotton fabric
depends on its relative solubility in the dyeing media and fabric. Since reactive dye solution is totally
incompatible with non-aqueous media, there is a strong affinity between fiber and dye, with the
result that nearly 100% of reactive dye can diffuse to the surface of cotton textile under mechanical
force [18,33].

3.3. Dye Adsorption Kinetics

3.3.1. Fitting of Pseudo-First-Order Kinetic Model

In order to assess the adsorption performance of reactive dye in different non-aqueous
dyeing systems, the adsorption dynamics of the reactive dye were evaluated using Lagergren
equations [34–37].

ln(qe − qt) = ln qe − k1t (6)

where qe (mg/g) and qt (mg/g) denote the masses of dye adsorbed on cotton fabric at equilibrium
sate and at given times t (min) respectively, and k1 refers to the rate constant of the pseudo-first-order
kinetic model.

According to Equation (6), R2 (correlation coefficient) was calculated using plots of ln(qe − qt)
versus adsorption time (t).

The fitted line plots of equations in non-aqueous dyeing systems and conventional water are
shown in Figure 6. Table 2 shows the values of R2 for cotton fabric dyed with red 195 and blue 19. Both
non-aqueous dyeing systems and the aqueous system showed a low correlation coefficient, indicating
that the pseudo-first-order kinetic model did not fit well for the adsorption or reactive dye in different
non-aqueous dyeing systems.
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Figure 6. Kinetics of pseudo-first-order model for adsorption of reactive dyes: (a) red 195; (b) blue 19.

Table 2. R2 of pseudo-first-order model for cotton fabric in non-aqueous dyeing media and
water system.

Dye
Media

Siloxane Paraffin C8H18 M-Oil H2O

Red-195 0.757 0.819 0.825 0.916 0.696
Blue-19 0.961 0.830 0.929 0.942 0.655

3.3.2. Fitting of Pseudo-Second-Order Kinetic Model

The pseudo-second-order kinetic model is expressed as the following equation [38–41]:

t
qt

=
1

k2qe2 +
1
qe

t (7)

where k2 (g/mg·min) denotes the adsorption rate constant of reactive dye, and qe and qt denote
the masses of dye which react with cotton fabric samples at equilibrium state and at given times
t, respectively.

As shown in Equation (7), R2 was calculated using plots of t/qt versus adsorption time (t).We can
use the slopes and intercepts of these plots to calculate the adsorption rate of reactive dye (k2) and the
adsorption equilibrium (qe), as shown in Equation (8):

qe = 1/ tan α

k2 = 1
bqe2

(8)

where tan α and b denote the slope and intercept of the linear equation, respectively.
The dyeing rate can also be expressed by the half-dyeing time (t0.5) which is the time required for

half of the dye to reach equilibrium adsorption amount. The t0.5 was calculated using Equation (9):

t0.5 =
1

k · qe
(9)

Figure 7 shows the fitting curves of the pseudo-second-order model and Table 3 lists the results of
rate constant studies for different non-aqueous dyeing systems and the conventional water dyeing
system with the pseudo-second-order model. Both non-aqueous dyeing systems and the aqueous
system showed a high correlation coefficient value (>0.991). Furthermore, the equilibrium adsorption
capacities, qe,cal, fit well with the experimental adsorption capacities, qe,exp, in the non-aqueous dyeing
systems and the traditional aqueous system. These results suggest that the adsorption kinetics of these
two reactive dyes on a cotton fabric surface can be described by the pseudo-second-order adsorption
mechanism in non-aqueous dyeing systems and a traditional aqueous system.
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Figure 7. Kinetics of pseudo-second-order model for adsorption of reactive dyes: (a) red 195; (b) blue 19.

The results in Table 3 also show k2, t0.5, as a main factor in the adsorption rate. For the adsorption
rate, the rate constant in non-aqueous dyeing systems was significantly faster than that of the traditional
water bath. Especially in the siloxane non-aqueous dyeing system, the rate constants of these two
reactive dyes were 5~6 times those of the conventional aqueous bath. In addition, the half-dyeing
time, t0.5, was significantly lower in non-aqueous dyeing systems than in the aqueous dyeing system.
These results indicated that the adsorption of reactive dye in non-aqueous dyeing systems was faster
than in the conventional water system.

Table 3. Kinetic parameters of pseudo-second-order for adsorption of reactive red 195 and blue 19 in
non-aqueous dyeing systems and traditional water bath.

Medium Dye Parameter Siloxane Paraffin C8H18 M-Oil H2O

Red-195

k2×10−2

(g/mg·min)−2(min−1)
2.88 1.08 1.16 1.52 0.46

qe,exp (mg/g) 19.97 18.81 19.08 18.97 12.86
qe,cal (mg/g) 20.59 20.47 20.37 10.11 14.61

t0.5 (min) 1.57 4.94 4.52 3.48 17.02
R2 0.999 0.998 0.998 0.999 0.997

Blue-19

k2×10−2

(g/mg·min)−2(min−1)
3.18 1.62 1.82 1.74 0.63

qe,exp (mg/g) 19.99 18.35 18.83 18.50 8.72
qe,cal (mg/g) 20.64 19.33 19.80 19.54 11.30

t0.5 (min) 1.74 3.38 2.92 3.11 18.19
R2 0.999 0.999 0.999 0.999 0.991

Based on the amount of reactive dye (2%, o.w.f) added to the dyeing system, if all of the dye
was adsorbed on the cotton fabric, the adsorption capacity was 20 mg/g. For reactive red 195,
the equilibrium adsorption, qe,exp, at 10 min reached above 18.81 mg/g in the non-aqueous dyeing
systems, indicating that at least 94.05% of dye had been adsorbed on the cotton fabric. However, only
13.75 mg/g (68.75%) of dye was adsorbed in the water bath after dyeing for 70 min. We also observed
a similar phenomenon in the adsorption of reactive blue 19. These results suggest that the equilibrium
time of reactive dye in non-aqueous dyeing systems was shorter than in the water bath, and almost all
the dye could be adsorbed on the fabric in the non-aqueous dyeing systems. For different dyes, the rate
constant value of red 195 was lower than that of blue 19 under the same dyeing conditions. The reason
may be that the molecular structure of red 195 is complex and its molecular weight is higher than that
of blue 19 [42–44], so the adsorption rate of the dye is influenced by the molecular structure.
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3.3.3. Effect of Non-Aqueous Media on the Dyeing Level Property

Compared with a conventional aqueous bath, reactive dye has a faster adsorption rate in non-aqueous
dyeing systems, which might influence their dyeing property. As shown in Figures 8 and 9, for the dyeing
property of reactive red 195 and blue 19, their values of Sγ(λ) were higher in non-aqueous media than
in the traditional water bath, but were less than 1, indicating that reactive dye can obtain a good level
dyeing property by mechanical force during the dyeing process.
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Figure 8. Level dyeing property of reactive dye in different non-aqueous dyeing systems and
water bath.
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Figure 9. Level dyeing property of reactive dye in siloxane non-aqueous dyeing system and water
bath: (a) red 195 in water base; (b) blue 19 in water base; (c) red 195 in siloxane non-aqueous dyeing
system; (d) blue 19 in siloxane non-aqueous dyeing system.

3.4. Influence of Non-Aqueous Media Surface Tension on Dye Adsorption Kinetics

3.4.1. Non-Aqueous Media with Different Surface Tension

Siloxane was formulated with M-oil or paraffin in a mass ration of 6:1, 4:1, 2:1, 1:1, 1:2, 1:4, and
1:6. Different surface tensions of the non-aqueous media are shown in Figure 10.
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Figure 10. Different surface tensions of non-aqueous media after compounding siloxane with M-oil
or paraffin.

As shown in Figure 10, the surface tension of non-aqueous media increased with the increase
of M-oil or paraffin. For example, when the mass ratio of siloxane to M-oil was 4:1, 1:1, and 1:4,
the surface tensions of the mixed media were 22.83, 25.73, and 28.16 mN/m respectively. To study the
influence of surface tension on reactive dye adsorption in non-aqueous dyeing systems, several mass
ratios of siloxane to M-oil (4:1, 1:1, 1:4) were chosen in this investigation.

3.4.2. Effect of Surface Tension on Reactive Dye Adsorption

As shown in Figure 11, in different surface tension non-aqueous dyeing systems, the uptake
of reactive dyes was almost the same and was close to 100%, indicating that the surface tension of
non-aqueous media had little influence on the final adsorption capacity of reactive dye. In the siloxane
non-aqueous dyeing system, the reactive dye completes the adsorption process in 5–10 min. If M-oil
was added to siloxane to increase the media surface tension, the adsorption rate of the reactive dye was
decreased which meant it needed 10–15 min to reach the adsorption equilibrium. Moreover, reactive
dye took more time (close to 20 min) to accomplish the adsorption process in M-oil non-aqueous
dyeing media, in which the surface tension was 31.23 mN/m.
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Figure 11. Adsorption rate of reactive dye in different surface tension non-aqueous dyeing media:
(a) red 195; (b) blue 19.

Thus, the above results reveal that, for dyeing with reactive dye in non-aqueous media, the higher
surface tension of non-aqueous media is a possible reason for the longer adsorption time. This is due
to the insolubility of reactive dye in non-aqueous media, and the strong affinity of reactive dye to
cotton fabric [45,46]. Therefore, reactive dye can quickly diffuse to the fabric surface and complete the
adsorption process [47–49]. When the surface tension of non-aqueous media is increased, the repulsive
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force between the reactive dye and non-aqueous media may decrease, which will influence the
adsorption rate of the dye.

3.4.3. Fitting of Pseudo-First-Order Kinetic Model

It can be seen from the results obtained in the above section, the salts can be eliminated and
reactive dye can quickly diffuse to the cotton fabric surface in different surface tension non-aqueous
dyeing processes. In order to thoroughly understand the effect of non-aqueous surface tension on the
adsorption kinetics, the fitted line plots of equations for different surface tension non-aqueous dyeing
media provide the values of R2. As shown in Figure 12 and Table 4, the correlation coefficients for
different surface tension non-aqueous dyeing systems were above 0.744. However, the linearity was
not good, indicating that the pseudo-first-order kinetic model did not fit well to the adsorption or
reactive dye in different non-aqueous dyeing systems.
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Figure 12. Kinetics of pseudo-first-order model for adsorption of reactive dyes in different surface
tension non-aqueous dyeing systems: (a) red 195; (b) blue 19.

Table 4. R2 of pseudo-first-order model for cotton fabric in different surface tension non-aqueous
dyeing system.

Dye Siloxane:W-Oil R2

Reactive
red 195

1:0 0.852
4:1 0.847
1:1 0.918
1:4 0.838
0:1 0.916

Reactive
blue 19

1:0 0.962
4:1 0.782
1:1 0.744
1:4 0.868
0:1 0.942

3.4.4. Fitting of Pseudo-Second-Order Kinetic Model

From the data in Table 5 and as shown in Figure 13, the plots provide higher correlation coefficients
of more than 0.998, and excellent linearity for different surface tension non-aqueous dyeing systems.
Moreover, the equilibrium adsorption capacities, qe,cal, fit well with the experimental adsorption
capacities, qe,exp, in non-aqueous dyeing systems and in the traditional aqueous system. Therefore,
the pseudo-second-order adsorption kinetic model was suitable to describe the adsorption kinetics of
reactive dyes on cotton fabrics in different surface tension non-aqueous dyeing systems [50–52].
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Table 5. R2 of pseudo-second-order model for cotton fabric in different surface tension non-aqueous
dyeing systems.

Dye Surface Tension
(mN/m)

qe,exp (g/mg)
Second-Order Kinetic Model

k2×10−2 (g/mg·min) qe,cal (mg/g) t0.5 (min) R2

Red 195

19.74 19.97 3.18 20.59 1.57 0.998
22.83 19.55 2.47 20.19 2.07 0.999
25.73 19.26 2.29 20.11 2.27 0.998
28.16 19.06 2.11 20.00 2.49 0.998
31.23 18.97 1.52 20.11 3.48 0.999

Blue19

19.74 19.98 2.88 20.64 1.74 0.999
22.83 19.28 2.62 19.82 1.98 0.999
25.73 18.83 2.24 19.25 2.37 0.999
28.16 18.61 2.14 19.19 2.51 0.999
31.23 18.50 1.74 19.54 3.11 0.999

Polymers 2017, 9, x FOR PEER REVIEW  13 of 16 

 

kinetics of reactive dyes on cotton fabrics in different surface tension non-aqueous dyeing systems 353 
[50–52]. 354 

 355 

Figure 13. Kinetics of pseudo-second-order model for adsorption of reactive dyes in different surface 356 
tension non-aqueous dyeing systems: (a) red 195; (b) blue 19. 357 

Table 5. R2 of pseudo-second-order model for cotton fabric in different surface tension non-aqueous 358 
dyeing systems. 359 

Dye Surface Tension (mN/m) 
qe,exp 

(g/mg) 

Second-Order Kinetic Model 

k2×10−2 

(g/mg·min) 

qe,cal 

(mg/g) 

t0.5 

(min) 
R2 

Red 195 

19.74 19.97 3.18 20.59 1.57 0.998 

22.83 19.55 2.47 20.19 2.07 0.999 

25.73 19.26 2.29 20.11 2.27 0.998 

28.16 19.06 2.11 20.00 2.49 0.998 

31.23 18.97 1.52 20.11 3.48 0.999 

Blue19 

19.74 19.98 2.88 20.64 1.74 0.999 

22.83 19.28 2.62 19.82 1.98 0.999 

25.73 18.83 2.24 19.25 2.37 0.999 

28.16 18.61 2.14 19.19 2.51 0.999 

31.23 18.50 1.74 19.54 3.11 0.999 

For the adsorption rate, the rate constant of reactive dye in lower surface tension non-aqueous 360 
dyeing systems was significantly faster than in higher surface tension systems. For example, the 361 
adsorption rate of reactive red 195 decreased from 3.18×10−2 to 2.11×10−2/(g/mg·min) when the non-362 
aqueous surface tension increased from 19.74 to 28.16 mN/m. In addition, the half-dyeing time, t0.5, 363 
was significantly lower in lower surface tension non-aqueous dyeing systems. These results indicated 364 
that the lower the surface tension of non-aqueous media, the faster was the adsorption rate of reactive 365 
dye, as well as the higher the final uptake of dye. 366 

4. Conclusions 367 

Reactive dyeing for cotton fabric and the adsorption kinetics of dye in non-aqueous dyeing 368 
systems, and a traditional water base, were investigated in this study. Salts were eliminated 369 
throughout the dyeing process because reactive dye was completely non-miscible with non-aqueous 370 
media, but had strong affinity to cotton fabric. Compared with reactive dyeing in a traditional water 371 

0 10 20 30 40 50 60 70 80

0

1

2

3

4

5

 19.74mN/m

 22.83mN/m

 25.73mN/m

 28.16mN/m

 31.23mN/m

(a):red 195

t/
q

t

time (min)

 
 

0 10 20 30 40 50 60 70 80

0

1

2

3

4

5

(b):blue 19

 19.74mN/m

 22.83mN/m

 25.73mN/m

 28.16mN/m

 31.23mN/m

t/
q

t

time (min)

 

 

Figure 13. Kinetics of pseudo-second-order model for adsorption of reactive dyes in different surface
tension non-aqueous dyeing systems: (a) red 195; (b) blue 19.

For the adsorption rate, the rate constant of reactive dye in lower surface tension non-aqueous
dyeing systems was significantly faster than in higher surface tension systems. For example,
the adsorption rate of reactive red 195 decreased from 3.18×10−2 to 2.11×10−2/(g/mg·min) when
the non-aqueous surface tension increased from 19.74 to 28.16 mN/m. In addition, the half-dyeing
time, t0.5, was significantly lower in lower surface tension non-aqueous dyeing systems. These results
indicated that the lower the surface tension of non-aqueous media, the faster was the adsorption rate
of reactive dye, as well as the higher the final uptake of dye.

4. Conclusions

Reactive dyeing for cotton fabric and the adsorption kinetics of dye in non-aqueous dyeing
systems, and a traditional water base, were investigated in this study. Salts were eliminated throughout
the dyeing process because reactive dye was completely non-miscible with non-aqueous media, but had
strong affinity to cotton fabric. Compared with reactive dyeing in a traditional water base, a higher
(>94%) uptake of dye rendered the entire media recyclable. Moreover, the fixation of reactive dye
was also higher (80%~90% for non-aqueous dyeing vs. 40%~50% for traditional dyeing), resulting
in cotton fabric achieving a deeper shade after dyeing. The pseudo-second-order kinetic model can
adequately describe the adsorption and equilibrium of reactive dyes in non-aqueous dyeing systems
as well as in a traditional water dyeing system. In non-aqueous dyeing systems, the adsorption rate
of reactive dye was significantly faster than in a traditional water bath. In the siloxane non-aqueous
dyeing system, the adsorption equilibrium time of reactive dye was only 5–10 min at 25 ◦C, whereas it
needed more time at 60 ◦C in the water dyeing system. The surface tension of non-aqueous media
affected the adsorption rate of the dye. The lower the surface tension of non-aqueous media, the faster
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was the adsorption rate of reactive dye, and the higher the final uptake of dye. These favorable results
have implications for reducing the environmental pressure from reactive dyeing for cotton textiles in a
source-control manner through being salts-free, with higher dye uptake, lower dyeing temperature,
and large water savings.
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