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Abstract: DNA-Microarrays have become a potent technology for high-throughput analysis of 

genetic regulation. However, the wide dynamic range of signal intensities of fluorophore-based 

microarrays exceeds the dynamic range of a single array scan by far, thus limiting the key 

benefit of microarray technology: parallelization. The implementation of multi-scan techniques 

represents a promising approach to overcome these limitations. These techniques are, in turn, 

limited by the fluorophores’ susceptibility to photobleaching when exposed to the scanner’s 

laser light. In this paper the photobleaching characteristics of cyanine-3 and cyanine-5 as part of 

solid state DNA microarrays are studied. The effects of initial fluorophore intensity as well 

as laser scanner dependent variables such as the photomultiplier tube’s voltage on bleaching 

and imaging are investigated. The resulting data is used to develop a model capable of simulating 

the expected degree of signal intensity reduction caused by photobleaching for each fluorophore 

individually, allowing for the removal of photobleaching-induced, systematic bias in  

multi-scan procedures. Single-scan applications also benefit as they rely on pre-scans to 

determine the optimal scanner settings. These findings constitute a step towards standardization 

of microarray experiments and analysis and may help to increase the lab-to-lab comparability 

of microarray experiment results. 
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1. Introduction 

DNA microarrays have become a powerful tool for systematic monitoring of gene regulation. The 

technology is based on the competitive hybridization of differentially fluorophore-labeled cDNA-probes 

with spotted, immobilized DNA-targets. The cDNA’s are transcribed from mRNA acquired from different 

regulatory states of the chosen biological sample. Thus, the ratio of the immobilized fluorophores on a spot 

reflects the relative abundance of RNA of the regulatory states under study. Within the last two decades 

the aforementioned principle has gained widespread use in fields such as molecular biology, genetics, 

and medicine [1,2]. It allows for the high-throughput transcriptome analysis of transcriptome regulation 

from a few dozens of genes up to the whole genome of the organism of interest [3]. 

The vast possibilities this technology provides are evenly met by technical, biochemical, and statistical 

difficulties. Each step of a microarray experiment introduces new factors that influence and possibly bias 

the final data. Beginning with choice of sample recovery and primer design, which might cause 

sequence-dependent bias [4]. Furthermore, the used spotting technique, as well as the choice of buffer, 

spotting, incubation and washing conditions, all influence spot geometry and uniformity by affecting 

drop dying and hybridization efficiency [5–9]. Data acquisition is facilitated using laser scanners controlled 

by PC software. Here, influencing factors are the scanner and it’s lasers themselves [10–12], the choice 

of fluorescent dye [13] as well as the scan settings, especially the scan power and the photomultiplier 

tube’s (PMT) voltage [14,15], and also exposure to environmental light, ozone, and laser light prior to 

the data acquisition [11,16,17]. While this multitude of factors does not hinder the acquisition of 

significant data, it is a major barrier for lab-to-lab reproducibility, comparability, and consistency of 

microarray experiment data [18]. 

In order to overcome these limitations a vast array of tools has been developed. Some factors are addressed 

by changing the experimental design, e.g., additionally using reverse dye assignments (dye swap) to account 

for dye bias [19]. Several techniques focus on the data acquisition itself. Finding the optimal scanner 

settings has been the subject of a lively discussion [14]. Regardless of the respective settings, all single 

scan approaches suffer from a limited dynamic range of measured intensity, as the dynamic range of 

fluorescence intensity exceeds the dynamic range of a single array scan by far [14]. Two basic approaches 

have been suggested to overcome these limitations. Mathematical or statistical approaches try to correct 

for saturation or noise using information inherent in the acquired data. Gupta et al. [20] for example devised 

a Bayesian hierarchical model that corrects signal saturation based on pixel intensities. Most approaches 

however extend the scanning routine by recording multiple scans with different settings. The benefits of 

multiscan techniques for extending the linear signal range were, among others [21], shown by Khondoker 

et al. [10] who are using a maximum-likelihood-estimations model based on a Cauchy distribution to 

account for saturated signals and systematic bias. Ambroise et al. [12] characterized a PMT independent 

optical scanner bias that takes account for scanner specific bias. Based on this, a two-way ANOVA 

model was devised that accounts for scanner bias as well as saturation and noise through utilization of 
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multi-scan data. Multiscan techniques were shown to increase overall data quality as well as reproducibility 

in comparison with single scans [15,22]. They can also be used to normalize dye specific bias as an 

alternative to limited methods based on LOESS/LOWESS and others [14,21,23]. 

An ubiquitous difficulty when working with fluorophores is photobleaching, an irreversible 

photochemical reaction which destructs the fluorophores ability to emit photons [24]. Photobleaching is 

caused by photons and ozone and differs from fluorophore to fluorophore [11,16,25]. Satterfield et al. [11] 

showed that microarray scans also bleach the fluorophores when they monitored intensity-changes of 

cyanine-3 (Cy3) and cyanine-5 (Cy5) serial dilution slides under heavy use over the course of five weeks. 

These findings imply a possible effect of photobleaching on multiscan data quality. 

In this study, we evaluate the photobleaching characteristics of Cy3 and Cy5 as part of solid state 

DNA microarrays. The effects of initial foreground intensity on the degree of bleaching as well as the 

effect of laser scanner dependent variables such as the PMT voltage on the imaging are investigated. Several 

microarray slides with identical layout were manufactured with conditions optimized in a previous study 

and repeatedly scanned with individual static PMT voltages. Identical 5'-cyanine functionalized single 

strand DNA was immobilized onto the slides in order to reduce sources of bias, such as the sequence 

differences or dye-incorporation and hybridization efficiency. The resulting data is used to develop a 

mathematical model capable of predicting the expected degree of signal intensity reduction caused by 

photobleaching for each fluorophore individually, depending on the initial foreground intensity, the number 

of previous scans and the desired PMT voltage in order to allow for the removal of photobleaching-induced, 

systematic bias in multi-scan procedures. 

2. Model 

Microarray scan imaging is dominated by two processes. Firstly, the immobilized, dye functionalized 

oligos are irradiated by a laser beam, which induces the emission of lower energy photons from the dyes. 

As the applied scan power is not varied in this study no closer look is taken at the relation between 

applied power and dye-emitted photons. However, considering photobleaching, this process is of upmost 

interest, as the cyanine dye loss of photo activity is photon-induced. Although the mechanism is not 

completely understood yet, it can be assumed that bleaching affects each cyanine molecule independently. 

Also, not every excited molecule is bleached. This leads to the assumption that photobleaching can be 

described as a degradation process, analogue to radioactive decay: 

p(p0, nscan) =  p0 × e−λ × (nscan−1) (1) 

where p(p0, nscan): photons emitted after n scans; p0: initial photons emitted (nscan = 1); nscan: number 

of scans; λ: degradation constant (neglecting a change of scan power, λ is assumed to be dye 

specific). 

The photons, emitted from the cyanine dyes, are not directly measured by an optoelectronic transducer. 

They pass the PMT, which acts as a signal enhancer and transducer. In this vacuum tube, the photons 

strike a photocathode and, as a consequence of the photoelectric effect, electrons are ejected. These 

electrons again strike a dynode that acts as a multiplier, emitting more secondary electrons. Several 

dynodes work as a cascade, each holding a higher positive potential than its predecessor and each 

multiplying its predecessor’s electron signal. Finally, the secondary electrons strike the anode, where the 

signal is transduced. The extent of signal amplification depends on the voltage setting of the PMT. As 
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multiscan techniques are designed to enlarge the linear signal range of microarray experiments through 

variation of PMT voltages, it is crucial to characterize and model the PMT voltage’s influence to fully 

understand its effect on imaging of photobleaching. As a consequence of the previously described 

cascade effect, the PMT signal enhancement is modeled by an exponential function, similar to 

Khondoker et al. [10]: 

Ie(p0, nscan) =  𝑒  × p0 × e−λ × (nscan−1)
 (2) 

where Ie(p0, nscan): post PMT intensity (electron signal); p0: pre PMT intensity (photon signal, theoretical, 

not measured). 

The above model involves a significant problem: p0, the emitted photons of the first scan cannot be 

measured directly. The closest to p0 is I0, the post PMT electron signal of the first scan. As described 

above, the electron signal is an exponential transformation of the photon signal. The exponential 

relationship cannot be exactly determined. However, transforming the relationship into a linear one by 

using the natural logarithm of I0 instead constitutes a practical solution. A model calculated with ln(I0) 

is valid as long as one stays in the ln(I0)-based reference system: 

ln(I(I0, nscan)) =  ln(I0)  ×  e(−𝜆 × (nscan−1)) (3) 

where I(I0, nscan): post PMT foreground intensity after n scans, with given I0; I0: initial post PMT 

foreground intensity (nscan = 1); nscan: number of scans; λ: degradation coefficient. 

At this time, the model does not directly feature the applied PMT voltage. It might not have to directly 

incorporate the voltage at all if it’s influence is already sufficiently covered by I0, which itself is directly 

dependent on the applied PMT voltage. In case that our model does not account for all major variance 

in the data an additional parameter is introduced. This parameter must be consistent with our degradation 

or decay model, e.g., the model should return I(nscan) = I0 for nscan = 1. This condition rules out intercepts 

and coefficients on the linear level of our model. The exponential term cannot be extended by adding an 

intercept for the same reason. The addition of an exponential coefficient would be redundant as one 

already exists (λ). Adding an exponent to (nscan − 1), however, allows for the alteration of the degradation 

behavior without thwarting the conditions of a degradation model. 

The combination of models (1), (2) and (3) together with the abovementioned considerations lead to 

the following function, which is theoretically suited to model the effect of photobleaching on measured 

intensities of microarray scans, taking into account the initial measured intensity (I0), the number of 

previously executed scans (nscan): 

ln(I(I0, nscan)) =  ln(I0)  ×  e(−λ × (nscan−1)a) (4) 

where I(I0, nscan): post PMT foreground intensity after n scans, with given I0; I0: initial post PMT 

foreground intensity (nscan = 1); nscan: number of scans; λ: degradation coefficient; a: exponent. 

3. Experimental Section 

3.1. Oligo Preparation 

Single strand DNAs (ssDNA) of 40 nt length were purchased from Eurofins Genomics GmbH 

(Ebersberg, GERMANY). The internally-compiled sequence was optimized with regard to low stabilities of 

potential homodimers and hairpins. The 5'-end of the ssDNA was modified with a Cy3 or Cy5 respectively. 
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The 3'-end of the ssDNA was modified with an amino-modified C7 spacer: 5' Cy3/Cy5–C ACG ATT 

CGG CTT TAG GTC AAC TGG ATT TCG GCT TAG GAC–C7-Amino 3'. In order to minimize 

variance it was decided to use only one sequence, with one spacer-type and a set dye abundance per 

oligo. Instead of a real hybridization, both Cy5 and Cy3 dyes on nt-identical but mixed DNA pools are 

printed together as sequence-identical ss-DNA 40-nt strands. While this does not reflect the realities of 

an actual microarray DNA hybridization experiment, it is suitable to demonstrate the effect of photobleaching 

as well as it can be used as the basis for quantification. Each oligo was serially diluted with a buffer containing 

3× standard saline citrate (SSC) and 0.001% 3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate 

(CHAPS) to concentrations ranging from 5 to 0.05 µM (a detailed table can be found in the 

supplementary materials). The buffer composition was chosen as a result of preliminary tests based on 

the works of Dawson et al. [6] in order to allow for homogenous distribution of the spotted oligos and 

minimized drying effects, thus minimizing spot heterogeneity (spot homogeneity information can be 

found in the supplementary materials). Solutions were stored at 4 °C and protected from light. 

3.2. DNA Immobilization 

DNA sequences were immobilized on the aldehyde glass slides (SuperAldehyde 2; Arrayit® 

Corporation, Sunnyvale, CA, USA) using a non-contact-spotter (Nano Plotter™ NP2.1; GeSiM mbH, 

Großerkmannsdorf, GERMANY) with an applied voltage of 75 V. The selection of a contactless printer 

allowed for higher homogeneity in spot geometry by avoiding pin-derived variance. Concentrations 

between 0 and 5 µM per dye were spotted in various pre-mixed combinations (a detailed table can be 

found in the supplementary materials). The spotting layout consisted of 2 × 8 blocks, where each block 

held 1 spot per oligo mixture giving a total of 16 spatially distributed spots per oligo mixture per slide. 

After drying the slides overnight in the dark, six washing steps using 4× SSPE buffer and water were 

performed, according to Dawson et al. [6]. 

3.3. Data Acquisition 

All scans were performed using the GenePix® 4000B Microarray Scanner by Molecular Devices 

(Sunnyvale, CA, USA). All data was collected at a pixel size of 10 µm and a total resolution of 1891 × 2089 

pixels. Spot sizes were 229.48 µm ± 18.77 µm. Model data was acquired subsequently through one 

preliminary scan to determine the scan area and 20 additional scans per slide with constant PMT settings 

at 100% scan power, leaving approx. 6 min between the start of two scans. In this first modeling approach 

it was decided to only use 100% laser power in order to maximize the observable effect. Each slide was 

scanned with a different PMT setting, displayed in Table 1. Data collection was carried out by using 

GenePix®Pro 6.0 (Molecular Devices, Sunnyvale, CA, USA). 

Table 1. PMT settings of different DNA chips. 

# Chip PMT635 nm [V] PMT532 nm [V] 

1 950 700 

2 850 600 

3 750 500 

4 650 400 

5 550 300 
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Validation data was acquired subsequently through one preliminary scan to determine the scan area 

and five additional scans with varying PMT voltage settings at 100% scan power (see Table 2). This 

independent data set consisted of three chips that were, except for the scanning process, identical in 

layout and processing to the five model chips. 

Table 2. PMT settings of validation data. 

# Scan PMT635 nm [V] PMT532 nm [V] 

1 550 300 

2 650 400 

3 750 500 

4 850 600 

5 950 700 

3.4. Data Analysis 

3.4.1. Post Processing 

In addition to the criteria applied by GenePix®Pro in order to flag and exclude low quality spots, all 

spots with any saturated pixels as well as spot whose signal to noise ratio (SNR) was 3 or lower were 

excluded from further analysis. The SNR is defined as follows: 

𝑆𝑁𝑅 =  
𝑚𝐹𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 − 𝑚𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

𝑠𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
 (5) 

where m: median; s: standard deviation. 

Furthermore, following Lyng et al.’s recommendations [15], all sets of spots with median foreground 

intensities of the first scan (I0) above 50,000 and below 1000 relative intensity units were excluded from 

further analysis to prevent saturation and/or noise bias. Although a correction for background is a general 

convention, the actual application varies. Background correction is carried out locally, within a sub-grid, 

with blank spots or control spots. Most of these approaches have different underlying assumptions on 

how the background intensity reflects an intensity bias over- or better underlying the feature intensity. 

Furthermore Qin et al. [26] showed that while a background subtraction actually reduces the bias it 

increases data variability. Furthermore we have to investigate if and how the background intensity 

changes with increasing scans. If the background is indeed affected the question if the process occurs 

comparably on the surface of the actual spot still remains. These aspects were the basis of our decision 

to omit a background correction and to postpone a thorough examination of background photobleaching 

to future studies. Data conversion and filtering was carried out using the open source program R Studio 

Desktop v0.99.441 (R Studio, Boston, MA, USA). 

3.4.2. Modeling 

The processed data was modeled using internally-written scripts in MATLAB v7.12.0.635 (The 

MathWorks, Inc., Natick, MA, USA). 

This model concentrates on actual detected intensity and not on spotted concentration. This decision 

was made regarding intensity profile heterogeneity of replicate spots of the same concentration (e.g., for 
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Cy5 in this experiment, the average percent intensity deviation for replicate spots was approx.  

28.58% ± 20.17%, more information can be found in the supplemental materials). This is a valid approach 

as the photobleaching depends on the actual amount of bound fluorophore on the spot and working with 

the intensity instead of the applied concentration allows for modeling without spot intensity profile bias. 

At first, a regression was calculated for each independent spot, using the model described in Section 

2 for both the Cy5 and Cy3 channel. For these regressions MATLAB’s own non-linear least-square 

fitting algorithms based on trust regions was applied. Using Cy5 model data with R2 ≥ 0.95 the dependency 

of both calculated parameters, λ and a, on PMT voltage and/or initial intensity was examined. Each 

variable, voltage and intensity, was examined independently for each parameter (λ and a) by carrying 

out an analysis of variance (ANOVA). This approach was chosen to determine if a dependency can be 

observed that introduces a variance into the data, significantly higher (α ≤ 0.01) than the experimental 

variance for the parameters (“Lack of Fit Test”). To allow for ANOVA analysis of I0 dependency, I0 

data was organized in groups spanning 100 relative intensity units. Each significant dependency was 

then modeled using second order polynomials. 

The acquired Cy5 model parameters were used to calculate a surface fit with the processed Cy3 model 

data. Cy3 parameters were modeled analogous to their Cy5 counterparts. 

3.4.3. Validation 

The generated models for both Cy5 and Cy3 photobleaching were applied onto the validation data, 

which was also processed as described in Chapter 3.3.1. The model term was converted to allow for the 

calculation of the initial intensity, given the current intensity (I(nscan)), the used PMT voltage, and the 

amount of scans carried out before. The mean R2 of the linear fits of intensity vs. PMT voltage, as well 

as the standard deviations of the two linear parameters for all uncorrected data series were compared to 

the same criteria of all corrected data series for each cyanine dye independently. 

4. Results and Discussion 

4.1. Regression Analysis 

Using model (4) with the preprocessed model data (exemplary shown in Figure 1) resulted in different 

outcomes for the two color channels. While for Cy3 59.9% of 1331 regressions had an R2 of 0.9 and 

above, 96.5% of all 1772 calculated regressions for Cy5 showed R2 of 0.9 and higher. This discrepancy 

could be a consequence of the well-known higher background of the Cy3 channel. The model data, 

however, contradicts this assumption as standard deviations for both channels are of comparable order 

and the SNR of the Cy3 channel is even higher (132.49) compared to the Cy5 SNR (51.11). Although 

Staal et al. [25] quantified the crosstalk of Cy5 to Cy3 as little as 0.2%, it is still possible, especially at 

higher PMT settings, that Cy5 crosstalk biases the Cy3 data. As the recorded spots were made of 

mixtures with varying concentrations of each dye, a spot with a high Cy5 concentration and a low 

concentration of Cy3 is likely to be biased in a more severely manner. An effect biasing the data could 

be Förster Resonance Energy Transfer (FRET) between Cy3 and Cy5 and intra spot heterogeneity. The 

transfer of energy between a donor and an acceptor in close proximity has been well described for 

nucleotide-bound fluorophores in general, and Cy3 and Cy5 specifically, [27,28]. Through FRET some 
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of the excited cyanines could have transferred the energy to their cyanine counterpart instead of emitting 

photons, thereby reducing the detected intensity of the respective channel. As FRET is highly dependent 

on a close proximity of donor and acceptor, this effect will be much more prevalent in high concentration 

spots or areas of higher nucleotide density in heterogeneous spots. The interdependency of FRET, 

intra-spot heterogeneity and photobleaching has been investigated by Rao et al. [29,30]. Radial and 

vertical intra-spot heterogeneity of printed targets profoundly influence local hybridization efficiency 

and finally the fluorescence signal as well as the occurrence of FRET. The described conjunction could 

also affect photobleaching rates as the excitation of one cyanine also partially excites the other one, thereby 

intertwining the exposition to potential photodestruction. Again the possible effect grows depending on 

the donor and acceptor concentrations. Furthermore Rao et al. [29] showed that the destruction of the 

FRET acceptor (here Cy5) leads to increased emission from the former donor (here Cy3), another source 

of signal crossover. The process of target-probe hybridization is the major influence modulating the scale 

of the phenomenon described before. This study’s experimental setup relies on ssDNA printing of 

directly labeled nucleotides and no hybridization. While FRET and intra-spot heterogeneity can be 

expected to affect this data as well, the effect of hybridization cannot be accounted for and was subsequently 

not modeled. Although choice of experimental design regarding FRET complicates the generation of the 

Cy3 model, it shows that the usage of Cy3 and Cy5, although omnipresent in fluorophore-based bioanalytics, 

entails limitations that have not yet been properly addressed. 

 

Figure 1. Cont. 
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Figure 1. (A) Change in measured intensity of Cy5-labeled cDNA spots with increasing 

number of scans, depending on their initial intensity; and (B) change in measured intensity 

of Cy3-labeled cDNA spots with increasing number of scans, depending on their initial intensity. 

4.2. Generation of the Cy5 and Cy3 Model 

With respect to these results, it was decided to focus on the Cy5 data for closer examination and to 

base a more refined model on this data. 96.5% of all 1772 calculated regressions for Cy5 showed R2 of 

0.9 and higher and were used to generate the model. A model adjusted for Cy3 is calculated based on 

the Cy5 model. In order to investigate possible influences of the initial foreground intensity (I0) and/or 

the PMT voltage (VPMT) on both the degradation coefficient λ and the exponent a, multiple analyses of 

variance (ANOVA) were carried out. The underlying idea is to determine if the variance introduced to 

the parameters by the variables is significantly distinguishable from the experimental variance. This is a 

practical approach that does not ask if the variables actually influence our parameters, but if the modeling 

of any hypothetical influence can significantly improve the accuracy of the model, given the inherent 

experimental variance of the parameters. Firstly, the influence of I0 was investigated: Regarding λ, the 

null hypothesis (h0: σ2
model = σ2

experiment) cannot be rejected for any reasonable significance level α (αh0 

rejected, min = 0.9477). For a, the lowest significance level that allows for rejection of h0 is even higher (αh0 

= rejected, min = 0.9999). As a result, both parameters are not modeled with regard of I0. For VPMT, however, 

results were different: h0 for λ as well as for a are rejected at an α well below all levels established in 

applied statistics (λ: αh0 = not rejected, max = 9.09 × 10−123, a: αh0 = not rejected, max = 4.08 × 10−112). It is 

contradictory that VPMT, a variable of a process succeeding the actual bleaching, is supposed to influence 

the parameter characterizing it. We assume that the PMT voltage’s influence on λ does obviously not 
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display its influence on bleaching itself. A VPMT-dependent λ is an expression of the transformation of 

the “observed” bleaching through the imaging process, which itself is VPMT-dependent. These findings 

indicate that the variance introduced to the model data through VPMT cannot be completely modeled 

indirectly using I0 alone, which is directly VPMT-dependent. The effect of VPMT is clearly visible in the 

model data (see Figure 2). 

 

Figure 2. Change in measured intensity of Cy5-labeled cDNA spots of equal initial intensity 

with increasing number of scans, depending on the PMT voltage. 

All in all, modelling of both parameters including VPMT might yield a significant benefit in accuracy 

and it is therefore carried out and applied to our Cy5 model: 

𝑙𝑛(𝐼(𝐼0, 𝑛𝑠𝑐𝑎𝑛, 𝑉𝑃𝑀𝑇)) =  𝑙𝑛(𝐼0)  × 𝑒(−𝜆(𝑉𝑃𝑀𝑇) × (𝑛𝑠𝑐𝑎𝑛−1)𝑎(𝑉𝑃𝑀𝑇))
 (6) 

where I(I0, nscan, VPMT): post PMT foreground intensity after n scans, with given I0 and VPMT;  

I0: initial post PMT foreground intensity (nscan = 1); nscan: number of scans; VPMT: PMT voltage; 

λ(VPMT): degradation coefficient; a(VPMT): exponent. 

Both λ(VPMT) and a(VPMT) were modeled using second order polynomials. Based on the Cy5 model, 

a fit for Cy3 model data was calculated by varying λ and a for each VPMT setting. The resulting parameters 

were examined using ANOVAs analogous to the Cy5 procedures, yielding comparable results. The VPMT 

influence was then modeled using second order polynomials. The results are given in term (7) and (8) 

as well as table 3: 

𝜆(𝑉𝑃𝑀𝑇) =  𝑝1 × 𝑉𝑃𝑀𝑇
2 + 𝑝2 ×  𝑉𝑃𝑀𝑇 + 𝑝3 (7) 

where λ(VPMT): degradation coefficient; VPMT: PMT voltage; p1, p2, p3: paramters. 
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𝑎(𝑉𝑃𝑀𝑇) =  𝑝1 × 𝑉𝑃𝑀𝑇
2 + 𝑝2 ×  𝑉𝑃𝑀𝑇 + 𝑝3 (8) 

where a(VPMT): degradation exponent; VPMT: PMT voltage; p1, p2, p3: paramters. 

Table 3. Parameters of the final fits. 

Fluorophore 
λ(VPMT) a(VPMT) 

p1 p2 p3 p1 p2 p3 

Cy3 −2.153E−07 3.232E−04 −9.200E−02 1,106E−06 −1.885E−03 1.461 

Cy5 −1.122E−08 1.640E−5 −1.948E−03 −4.533E−07 9.433E−05 0.901 

4.3. Model Analysis 

Both resulting models (shown in Figure 3) describe the observed bleaching effects to a high degree 

(R2 from 0.976 to 0.998 for different VPMT settings, examples shown in Figure 4). The unequal susceptibilities 

of Cy3 and Cy5 to photobleaching clearly stand out: While Cy3-tagged spots lose between 23.19% and 

32.01% of their observed intensity after 20 scans, the intensity of Cy5-tagged spots decrease between 

76.92% and 87.07%. As can be seen in the model, the variance in signal decrease is introduced by the 

VPMT settings, which shows that its incorporation into the model is crucial to remedy bias caused by 

bleaching. Looking at a scan number more likely to be utilized in daily microarray analysis, even after 

5 scans the effect profoundly influences the observed intensities: Decreases of 8.73%–10.43% for Cy3 

and 41.77%–52.97% for Cy5 emphasize the need for photobleaching correction and scanning protocol 

standardization not only for multiscan techniques, but for every application relying on microarray scan 

imaging. Furthermore, the dye-dependent bleaching-variation calls for a re-evaluation of dye swap and 

dye switch applications as well as mathematical tools designed to compensate for dye introduced bias 

(LOESS/LOWESS). 

4.4. First Model Validation 

Following the model generation and characterization a model-based correction for photobleaching 

was carried out. The source data for this procedure (validation data) was recorded in a manner designed 

to emulate a random multiscan procedure. The slides used were manufactured analogous to their model 

data counterparts. 

A basic principle of multiscan procedures lies in the correction of saturated or noisy spots through 

extrapolation of intensity data of different VPMT settings. The reliability of the related extrapolation 

model is based on how well-defined its parameters are. In order to get a first assessment of the effect of 

photobleaching correction onto parameter quality, linear fits were calculated for data series of the same 

spots with differing VPMT. Fits were calculated for each cyanine dye separately, with raw validation data 

and model corrected validation data. As seen in Table 4, the application of our model reduces the overall 

variability (σcoefficient, σintercept), thereby improving the data’s suitability for generating an extrapolation 

model (R2). The overall low coefficients of determination imply that a reasonable amount of variation 

remains. While the data was filtered in terms of noise and saturation, other source for variation were not 

addressed e.g., background intensity. No background correction was applied to the utilized data, as the 

background itself might be subject to photobleaching. This, and the ongoing discussion if the subtraction 
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of background intensity, is actually beneficial in terms of variability reduction [26] were the reasons for 

refraining from any background normalization. The characterization of the effect of photobleaching to 

the background will be the subject of future investigations. 

 

 

Figure 3. (A) Three-dimensional illustration of the final model of Cy5-photobleaching for 

VPMT = 950 (B) Three-dimensional illustration of the final model of Cy3-photobleaching for 

VPMT = 700. 
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Figure 4. (A) Cy5-data sets (y(I0)) with model-data (y_hat(I0)) at VPMT = 750. R2: 0.994, 

0.995, 0.998, 0.998, 0.999 (from lowest I0 to highest); and (B) Cy5-data sets (y(I0)) with fits 

(y_hat(I0)) at VPMT = 500. R2: 0.994, 0.997, 0.991, 0.995, 0.984 (from lowest I0 to highest). 
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Table 4. Comparison of regression features of linear fit of ln(I) vs. VPMT for raw validation 

data and model corrected validation data for Cy5 and Cy3. Displayed are the mean R2 as 

well as the mean σ for both parameters of the linear fit for both cyanine dyes for uncorrected 

and corrected validation data. 

Fluorophore Regression Feature 
Data Source 

Raw Validation Data Model Corrected Validation Data 

Cy5 

𝐑𝟐̅̅̅̅  𝟎. 𝟖𝟐𝟓 𝟎. 𝟖𝟑𝟖𝟒 

𝛔̅𝐜𝐨𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐭 𝟒𝟒. 𝟐𝟐𝟐 𝟐𝟔. 𝟒𝟐𝟗 

𝛔̅𝐢𝐧𝐭𝐞𝐫𝐜𝐞𝐩𝐭 𝟐. 𝟔𝟗𝟓 × 𝟏𝟎𝟒 𝟏. 𝟏𝟐𝟎 × 𝟏𝟎𝟒 

Cy3 

𝐑𝟐̅̅̅̅  𝟎. 𝟖𝟏𝟖 𝟎. 𝟖𝟑𝟑 

𝛔̅𝐜𝐨𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐭 𝟖𝟏. 𝟗𝟎𝟖 𝟐𝟗. 𝟔𝟏𝟑 

𝛔̅𝐢𝐧𝐭𝐞𝐫𝐜𝐞𝐩𝐭 𝟓. 𝟎𝟑𝟖 × 𝟏𝟎𝟒 𝟏. 𝟐𝟓𝟖 × 𝟏𝟎𝟒 

5. Conclusions 

Our aim was to characterize and quantify the impact of photobleaching for DNA microarrays. Several 

groups have previously published approaches to improve the quality and capability of DNA microarray 

experiments, especially the extension of the linear range through multi-scan protocols constitutes a 

promising tool. We identified and characterized a major bias for multi-scan procedures and present a 

way to correct for this bias. In summary, we were able to generate models that explain photobleaching 

induced variability in multiscan microarray experiments for the two most commonly used fluorophore 

dyes, Cy3 and Cy5. Our models take into account the initial foreground intensity (I0), the number of carried 

out scans (nscan) as well as the current intensity (I) recorded with a defined PMT voltage (VPMT). Parallel 

to the generation of these models we characterized the photobleaching effect of both abovementioned dyes, 

demonstrating the need for correction of this phenomenon not only for multiscan applications, but for 

all microarray scan based methods, e.g., our model, which explains the variability to a highly significant 

level and shows that the bleaching, itself, is not a simply linear subtractive effect. We therefore assume 

that a mere correction of the dye effect does not correct for the photobleaching by which the spots have 

been affected. A dye swap will in fact correct for intensity differences introduced by the choice of dye, 

but if the spots also differ in intensity, which they almost always will to a certain degree, photobleaching will 

not be automatically be co-corrected as it is not a linear additive effect. The degree of influence this 

effect has on microarray scans, and its disparity depending on the involved dye and the intensity level 

therefore calls for re-evaluation of dye swap/switch applications and dye effect normalization methods. 

As photobleaching is, to a lesser degree, induced by environmental light and other environmental factors, 

such as ozone concentration, our results suggest a standardization of microarray-slide handling to achieve 

comparable, if possible, minimal exposition to light prior to the scanning process. We are aware that a 

total lab-to-lab comparability in terms of microarray processing is not realistic, but still want to address 

the influence of environmental factors on bleaching and the overall quality of microarray results. A real 

standardization will not be accomplished by one single step, but through raising awareness of the subject 

we hope to help improve the reproducibility within a lab/workgroup. The benefit of correcting 

photobleaching-induced variability in multiscan applications was demonstrated. Corrected data was 

more suitable to generate linear ln(I) vs. VPMT fits, leading to more narrowly defined parameters. Future 
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studies need to validate these findings for actual hybridization experiments with dye-functionalized 

cDNA, accounting for the hybridization-derived effects on photobleaching involving the inclusion of 

the interdependent factors of intra-spot heterogeneity and FRET and non-FRET crosstalk. Several other 

factors need to be evaluated to apply our findings to DNA hybridization experiments in general. Among 

these the influence of temperature, DNA chain sequence and rigidity, dye concentration, and dye 

stacking. The overall physico-chemical characteristics of surface bound oligonucleotides are still to be 

sufficiently characterized [8,31]. Also the effect of photobleaching on background intensity needs to be 

examined to allow for integration of background correction. Likewise, interactions with other normalization 

methods have to be evaluated. 

We encourage users of the technology to apply this information and develop multiscan solutions that 

correct for photobleaching. 

Author Contributions 

Marcel von der Haar, Patrick Lindner and Frank Stahl conceived and designed the experiments. 

Marcel von der Haar and John-Alexander Preuß performed the experiments. Marcel von der Haar,  

John-Alexander Preuß, Kathrin von der Haar, Patrick Lindner, Thomas Scheper and Frank Stahl 

analyzed the data. Marcel von der Haar wrote the manuscript. All authors participated in the design of 

the study and approved the final manuscript. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Spielbauer, B.; Stahl, F. Impact of microarray technology in nutrition and food research. Mol. Nutr. 

Food Res. 2005, 49, 908–917. 

2. Allison, D.B.; Cui, X.; Page, G.P.; Sabripour, M. Microarray data analysis: From disarray to 

consolidation and consensus. Nat. Rev. Genet. 2006, 7, 55–65. 

3. Ehrenreich, A. DNA microarray technology for the microbiologist: An overview. Appl. Microbiol. 

Biotechnol. 2006, 73, 255–273. 

4. Kretschy, N.; Somoza, M.M. Comparison of the sequence-dependent fluorescence of the cyanine 

dyes cy3, cy5, dylight dy547 and dylight dy647 on single-stranded DNA. PLoS ONE 2014, 9, e85605. 

5. Mary-Huard, T.; Daudin, J.J.; Robin, S.; Bitton, F.; Cabannes, E.; Hilson, P. Spotting effect in 

microarray experiments. BMC Bioinf. 2004, doi:10.1186/1471-2105-5-63. 

6. Dawson, E.D.; Reppert, A.E.; Rowlen, K.L.; Kuck, L.R. Spotting optimization for oligo microarrays 

on aldehyde-glass. Anal. Biochem. 2005, 341, 352–360. 

7. Sobek, J.; Aquino, C.; Weigel, W.; Schlapbach, R. Drop drying on surfaces determines chemical 

reactivity-the specific case of immobilization of oligonucleotides on microarrays. BMC Biophys. 

2013, doi:10.1186/2046-1682-6-8. 

8. Rao, A.N.; Grainger, D.W. Biophysical properties of nucleic acids at surfaces relevant to microarray 

performance. Biomater. Sci. 2014, 2, 436–471. 



Biology 2015, 4 571 

 

 

9. Jang, H.; Cho, M.; Kim, H.; Kim, C.; Park, H. Quality control probes for spot-uniformity and 

quantitative analysis of oligonucleotide array. J. Microbiol. Biotechnol. 2009, 19, 658–665. 

10. Khondoker, M.R.; Glasbey, C.A.; Worton, B.J. Statistical estimation of gene expression using multiple 

laser scans of microarrays. Bioinformatics 2006, 22, 215–219. 

11. Satterfield, M.B.; Lippa, K.; Lu, Z.Q.; Salit, M.L. Microarray scanner performance over a five-week 

period as measured with cy5 and cy3 serial dilution slides. J. Res. Natl. Inst. Stand. Technol. 2008, 

113, 157–174. 

12. Ambroise, J.; Bearzatto, B.; Robert, A.; Macq, B.; Gala, J.L. Combining multiple laser scans of 

spotted microarrays by means of a two-way anova model. Statist. Appl. Genet. Mol. Biol. 2012, 

doi:10.1515/1544-6115.1738. 

13. Vora, G.J.; Meador, C.E.; Anderson, G.P.; Taitt, C.R. Comparison of detection and signal 

amplification methods for DNA microarrays. Mol. Cell. Probes 2008, 22, 294–300. 

14. Shi, L.; Tong, W.; Su, Z.; Han, T.; Han, J.; Puri, R.K.; Fang, H.; Frueh, F.W.; Goodsaid, F.M.; Guo, L.; 

et al. Microarray scanner calibration curves: Characteristics and implications. BMC Bioinf. 2005, 

doi:10.1186/1471-2105-6-S2-S11. 

15. Lyng, H.; Badiee, A.; Svendsrud, D.H.; Hovig, E.; Myklebost, O.; Stokke, T. Profound influence 

of microarray scanner characteristics on gene expression ratios: Analysis and procedure for 

correction. BMC Genomics 2004, doi:10.1186/1471-2164-5-10. 

16. Dar, M.; Giesler, T.; Richardson, R.; Cai, C.; Cooper, M.; Lavasani, S.; Kille, P.; Voet, T.; 

Vermeesch, J. Development of a novel ozone- and photo-stable hyper5 red fluorescent dye for array 

cgh and microarray gene expression analysis with consistent performance irrespective of environmental 

conditions. BMC Biotechnol. 2008, doi:10.1186/1472-6750-8-86. 

17. Kuang, C.; Luo, D.; Liu, X.; Wang, G. Study on factors enhancing photobleaching effect of 

fluorescent dye. Measurement 2013, 46, 1393–1398. 

18. Drăghici, S. Statistics and Data Analysis for Microarrays Using r and Bioconductor, 2nd ed.; 

Taylor & Francis: Boca Raton, FL, USA, 2011. 

19. Dobbin, K.; Shih, J.H.; Simon, R. Statistical design of reverse dye microarrays. Bioinformatics 

2003, 19, 803–810. 

20. Gupta, R.; Auvinen, P.; Thomas, A.; Arjas, E. Bayesian hierarchical model for correcting signal 

saturation in microarrays using pixel intensities. Statist. Appl. Genet. Mol. Biol. 2006, doi:10.1155/ 

2008/231950. 

21. Bengtsson, H.; Jonsson, G.; Vallon-Christersson, J. Calibration and assessment of channel-specific 

biases in microarray data with extended dynamical range. BMC Bioinf. 2004, doi:10.1186/1471-

2105-5-177. 

22. Williams, A.; Thomson, E.M. Effects of scanning sensitivity and multiple scan algorithms on 

microarray data quality. BMC Bioinf. 2010, doi:10.1186/1471-2105-11-127. 

23. Kerr, M.K.; Afshari, C.A.; Bennett, L.; Bushel, P.; Martinez, J.; Walker, N.J.; Churchill, G.A. 

Statistical analysis of a gene expression microarray experiment with replication. Stat. Sin. 2002, 12, 

203–217. 

24. Stennett, E.M.S.; Ciuba, M.A.; Levitus, M. Photophysical processes in single molecule organic 

fluorescent probes. Chem. Soc. Rev. 2014, 43, 1057–1075. 



Biology 2015, 4 572 

 

 

25. Staal, Y.C.M.; van Herwijnen, M.H.M.; van Schooten, F.J.; van Delft, J.H.M. Application of four 

dyes in gene expression analyses by microarrays. BMC Genomics 2005, doi:10.1186/1471-2164-6-101. 

26. Qin, L.X.; Kerr, K.F. Empirical evaluation of data transformations and ranking statistics for 

microarray analysis. Nucleic Acids Res. 2004, 32, 5471–5479. 

27. Iqbal, A.; Arslan, S.; Okumus, B.; Wilson, T.J.; Giraud, G.; Norman, D.G.; Ha, T.; Lilley, D.M.J. 

Orientation dependence in fluorescent energy transfer between cy3 and cy5 terminally attached to 

double-stranded nuclelic acids. Proc. Natl. Acad. Sci. USA 2008, 105, 11176–11181. 

28. Ha, T.; Enderle, T.; Ogletree, D.F.; Chemla, D.S.; Selvin, P.R.; Weiss, S. Probing the interaction 

between two single molecules: Fluorescence resonance energy transfer between a single donor and 

a single acceptor. Proc. Natl. Acad. Sci. USA 1996, 93, 6264–6268. 

29. Rao, A.N.; Rodesch, C.K.; Grainger, D.W. Real-time fluorescent image analysis of DNA spot 

hybridization kinetics to assess microarray spot heterogeneity. Anal. Chem. 2012, 84, 9379–9387. 

30. Rao, A.N.; Vandencasteele, N.; Gamble, L.J.; Grainger, D.W. High-resolution epifluorescence and 

time-of-flight secondary ion mass spectrometry chemical imaging comparisons of single DNA 

microarray spots. Anal. Chem. 2012, 84, 10628–10636. 

31. Harrison, A.; Binder, H.; Buhot, A.; Burden, C.J.; Carlon, E.; Gibas, C.; Gamble, L.J.; Halperin, A.; 

Hooyberghs, J.; Kreil, D.P.; et al. Physico-chemical foundations underpinning microarray and next-

generation sequencing experiments. Nucleic Acids Res. 2013, 41, 2779–2796. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


