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Results of previous studies provided evidence for the existence of a functional

gonadotropin-inhibitory hormone (GnIH) system in the European sea bass,

Dicentrarchus labrax, which exerted an inhibitory action on the brain-pituitary-

gonadal axis of this species. Herein, we further elucidated the intracellular

signaling pathways mediating in sea bass GnIH actions and the potential

interactions with sea bass kisspeptin (Kiss) signaling. Although GnIH1 and

GnIH2 had no effect on basal CRE-luc activity, they significantly decreased

forskolin-elicited CRE-luc activity in COS-7 cells transfected with their cognate

receptor GnIHR. Moreover, an evident increase in SRE-luc activity was noticed

when COS-7 cells expressing GnIHRwere challenged with both GnIH peptides,

and this stimulatory action was significantly reduced by two inhibitors of the

PKC pathway. Notably, GnIH2 antagonized Kiss2-evoked CRE-luc activity in

COS-7 cells expressing GnIHR and Kiss2 receptor (Kiss2R). However, GnIH

peptides did not alter NFAT-RE-luc activity and ERK phosphorylation levels.

These data indicate that sea bass GnIHR signals can be transduced through the

PKA and PKC pathways, and GnIH can interfere with kisspeptin actions by

reducing its signaling. Our results provide additional evidence for the

understanding of signaling pathways activated by GnIH peptides in teleosts,

and represent a starting point for the study of interactions with multiple

neuroendocrine factors on cell signaling.
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Introduction

Since the first discovery of gonadotropin-inhibitory

hormone (GnIH) in the quail, the presence of GnIH orthologs

has been reported in a variety of vertebrate species, including fish

(1, 2). Phylogenetic, synteny and functional analysis revealed

that the GnIH and NPFF genes, both of which belong to the

family of the RFamide peptides, may have diverged from a

common ancestral gene by whole-genome duplication during

vertebrate evolution (2, 3). Two paralogous G protein-coupled

receptors (GPCRs), GPR147 and GPR74, have been identified as

the common receptors for GnIH (GnIHRs) and NPFF (NPFFRs)

(2). However, GPR147 is regarded as the primary receptor for

GnIH based on the higher binding affinity of GnIH to GPR147

compared to GPR74 (4, 5). In turn, the NPFF precursor encodes

NPFF and NPAF mature peptides, and these two peptides

preferentially activate GPR74 (2). Multiple lines of evidence

indicated that GnIH not only suppresses reproduction in

vertebrates through its inhibitory actions on the brain-

pituitary-gonadal axis, but also participates in stress response,

feeding and reproductive behaviors (1, 2, 6). Despite its

functional significance, the detailed signaling pathways

mediating the actions of GnIH on target cells have not been

fully elucidated (7, 8).

Luciferase (luc) transactivation assays have been validated to

discriminate different GPCR pathways, such as cAMP response

element (CRE-luc), serum response element (SRE-luc), and

nuclear factor of activated T-cells response element (NFAT-

RE-luc) for adenylate cyclase (AC)/cAMP/protein kinase A

(PKA), extracellular signal regulated kinase (ERK)/mitogen-

activated protein kinase (MAPK) (principally considered

protein kinase C [PKC]-mediated activation), and intracellular

Ca2+ mobilization, respectively (9, 10). Until now, the

mechanisms underlying in the signaling pathways of GnIH

actions have been extensively elucidated in mammals (7) and

birds (11), but only in a few fish species using mammalian cell

lines transfected with the corresponding cognate receptors

combined with the response element luciferase assays (8).

There is an evident increase of CRE-luc activity and SRE-luc

activity induced by tilapia and chub mackerel GnIH peptides in

COS-7 cells transfected with their GnIHRs, indicating that their

GnIHR signals are transduced through PKA and PKC pathways

(12, 13). However, the three orange-spotted grouper GnIH

peptides markedly decreased forskolin-induced CRE-luc

activity in COS-7 cells expressing their cognate receptor, and

SRE-luc activity was also reduced by GnIH1 (14). Activation of

half-smooth tongue sole GnIHR by GnIH2 also significantly

inhibited forskolin-induced CRE-luc activity, whereas both

GnIH1 and GnIH2 evoked SRE-luc activity in COS-7 cells

expressing tongue sole GnIHR (15). The three zebrafish GnIH

peptides activated GnIHR2 and GnIHR3 through the PKA

pathway, whereas the PKC pathway cannot be activated by
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any of the three GnIH peptides via any of the three GnIHRs

(16). Interestingly, medaka GnIH exerted a dual action on CRE-

luc activity depending on the doses used and the presence/

absence of forskolin stimulation, indicating a possible switch of

coupling of GnIHR to Gai and Gas proteins in this species (17).

In mammals, ovine GnIH3 potently reduced gonadotropin-

releasing hormone (GnRH)-induced intracellular Ca2+

mobilization and ERK phosphorylation in primary pituitary

cell cultures (18, 19). Moreover, mouse GnIH peptides exerted

a suppressive effect on GnRH-elicited mRNA levels of

gonadotropin subunit genes by inhibiting AC/cAMP/PKA-

dependent ERK pathway in LbT2 cells (20). Whether and how

Ca2+ and ERK pathways participate in GnIH actions remains

unknown in fish, and merits further studies.

Using the European sea bass (Dicentrarchus labrax) as a

model, we cloned the full-length cDNA encoding the GnIH

precursor polypeptide that contained two putative mature

peptides (GnIH1 and GnIH2), developed a specific antibody

against GnIH2, and characterized its central and pituitary GnIH

projections (21). Subsequently, we investigated the effects of

intracerebroventricularly-administered GnIH1 and GnIH2 on

gene expression of brain-pituitary reproductive hormones and

their receptors along with plasma levels of Fsh and Lh, and

found that GnIH peptides played a suppressive action on the

reproductive axis of this species (22). We further demonstrated

that chronic peripheral implants of GnIH1 and GnIH2 peptides

delayed gonadal development and steroidogenesis during the

reproductive cycle of male sea bass (23). On the other hand, two

distinct forms of kisspeptins (Kiss1 and Kiss2) and kisspeptin

receptors (Kiss1R or Kissr2 and Kiss2R or Kissr3) have been

identified in sea bass, with Kiss2 being more potent in eliciting

gonadotropin secretion (24–26). In vitro functional analysis

showed that the two sea bass KissR signals are transduced

through the PKA and PKC pathways (25). Because little

information is available in teleosts regarding the signaling

pathway mechanisms of GnIH actions and the interactions

with cell signaling evoked by other neuroendocrine factors (8),

the aims of the current study, therefore, were (1) to examine the

potential intracellular signaling pathways (e.g. PKA, PKC, Ca2+

and ERK) evoked by the GPR147 GnIHR in response to sea bass

GnIH peptides, and (2) to investigate the possible interactions

with sea bass kisspeptin signaling.
Materials and methods

Peptides

Synthetic peptides (23, 24, 27) corresponding to European

sea bass GnIH1 (PLHLHANMPMRF-NH2) , GnIH2

(SPNSTPNMPQRF-NH2), NPFF (NSVLHQPQRF-NH2),

NPAF (DWEAAPGQIWSMAVPQRF-NH2), Kiss1 ([pGLU]
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DVSSYNLNSFGLRY-NH2) and Kiss2 (SKFNFNPFGLRF-NH2)

were purchased from ChinaPeptides Co., Ltd. (Shanghai, China)

with a purity of 98.09%, 96.18%, 96.18%, 96.54%, 96.10% and

96.12%, respectively, as determined by HPLC. All peptides were

amidated at the C-termini , and Kiss1 contained a

pyroglutamylated N-terminus. These neuropeptides were

prepared with distilled water and aliquots were stored at -20°C.
Plasmids

Both CRE-luc and SRE-luc plasmids (BD Biosciences

Clontech, CA, USA) contained the firefly luciferase gene and

have been validated in a previous study (25). The NFAT-RE-luc

plasmid also included the firefly luciferase gene and was

purchased from Promega (Madison, WI, USA). The pRL-TK

plasmid, which constitutively expresses the Renilla reniformis

luciferase gene, was provided by Promega and used for

normalization of the transfection efficiency. The entire open

reading frames of sea bass gnihr (GPR147-type), kiss1r and kiss2r

genes were obtained by PCR amplification using Q5® High-

Fidelity DNA Polymerase (New England Biolabs, Ipswich, MA,

USA) and the specific primers (Table 1), and then subcloned

into the HindIII and EcoRI sites of the expression vector

pcDNA3.1/Zeo(+) (Invitrogen, Waltham, MA, USA),

respectively. All receptor constructs (pcDNA3.1-GnIHR,

pcDNA3.1-Kiss1R and pcDNA3.1-Kiss2R) were extracted with

Endo-free Plasmid DNA Mini Kit (Omega Bio-tek, Norcross,

GA, USA) and verified by sequencing.
Reagents for cell culture, transfection
and signaling pathways

COS-7 cells (ATCC, Manassas, VA, USA), Dulbecco’s

Modified Eagle Medium (DMEM) containing high glucose (4.5

g/L, Gibco, Waltham, MA, USA), fetal bovine serum (FBS,

Gibco), 100×penicillin/streptomycin antibiotics (Gibco), Opti-

MEM (Gibco), Lipofectamine 3000 (Invitrogen), 5×Passive Lysis

Buffer (Promega), Dual-Glo® Luciferase Assay System

(Promega) , forskol in (FSK, Calb iochem) , U73122

(Calbiochem), and GF109203X (Calbiochem) were purchased

from the manufacturers. FSK, U73122, and GF109203X were
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dissolved in dimethyl sulfoxide and aliquots were stored at -80°C

as described elsewhere previously (28).
Transient transfection and luciferase
reporter gene assays

All experimental protocols were followed as described

previously (15, 29) with some modifications. One day before

transfection, COS-7 cells were seeded in 24-well plates at a

density of 1×105 cells/well/mL of DMEM supplemented with

10% FBS and 1% penicillin/streptomycin and maintained in a

humidified 5% CO2 atmosphere at 37°C. For each well, cells were

co-transfected with CRE-luc/SRE-luc/NFAT-RE-luc (200 ng),

pcDNA3.1-GnIHR (200 ng), and pRL-TK (20 ng) using

Lipofectamine 3000 in 500 mL Opti-MEM. After starvation

overnight, (1) cells were then treated with GnIH peptides (10,

100, 1000 nM), NPFF (1000 nM), and NPAF (1000 nM) for 6 h;

(2) cells were challenged for 6 h with 10 mM FSK alone or co-

treated with 1000 nM GnIH1, GnIH2, NPFF, and NPAF; (3)

cells were incubated for 6 h with 1000 nM GnIH peptides alone

or in the presence of U73122 (phospholipase C [PLC] inhibitor,

10 mM) and GF109203X (PKC inhibitor, 10 mM). Finally, cells

were harvested using 1×Passive Lysis Buffer (100 mL/well) and
luminescence was determined with Dual-Glo® Luciferase Assay

System on the LB963 luminometer (Berthold Technologies

GmbH & Co.KG, Bad Wildbad, Germany). Luciferase activity

values were calculated by dividing the firefly luciferase units by

the Renilla luciferase values for each sample. The values obtained

for the controls were set as 1 for each experiment, and the

experimental values which were divided by those of the controls

are presented as fold increase. Each transfection experiment was

performed in triplicate and repeated at least twice. A parallel

control transfection experiment was performed with the empty

pcDNA3.1 vector, CRE-luc, SRE-luc, or NFAT-RE-luc and the

internal reference pRL-TK.

In addition, we further evaluated the possible interactions

between sea bass GnIH and kisspeptin signaling involved in the

PKA pathway. First, to determine if GnIH peptides are capable

of activating Kiss1R and Kiss2R through the CRE-luc pathway

and vice versa, cells were co-transfected with pcDNA3.1-

GnIHR/pcDNA3.1-Kiss1R/pcDNA3.1-Kiss2R (200 ng/well),

CRE-luc (200 ng/well), and pRL-TK (20 ng/well). After
TABLE 1 Primer list for construction of pcDNA3.1-receptors.

Gene Primer sequence (5’-3’) GenBank accession no.

gnihr Forward: CCCAAGCTTATGGAGGTACTAGACAAC LN681206

Reverse: CGGAATTCTCAGTTATCCCACGCCTG

kiss1r Forward: CCCAAGCTTATGGTGGAATCAGCAGCC JN202446

Reverse: CGGAATTCTTAGGATCCAGATGAAAG

kiss2r Forward: CCCAAGCTTATGTACTCCTCCGAGGAG JN202447

Reverse: CGGAATTCTCAATTCATTGCATTATT
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starvation overnight, cells were treated with GnIH and

kisspeptin peptides (1 mM) for 6 h, and luciferase activity in

cell extracts was measured. Second, to investigate the potential

interactions among GnIHR, Kiss1R and Kiss2R signaling, cells

were co-transfected with pcDNA3.1-GnIHR, pcDNA3.1-

Kiss1R/pcDNA3.1-Kiss2R, CRE-luc, and pRL-TK, challenged

with GnIH and kisspeptin alone or a combination of the two

peptides for 6 h, and then harvested for assays.
Western blot analysis

Whether the ERK pathway is activated by GnIH peptides

was investigated by Western blot analysis (30). As mentioned

above, COS-7 cells were seeded in 24-well plates (2×105 cells/

well/mL of DMEM), transfected with pcDNA3.1-GnIHR (200

ng/well), starved overnight, and then challenged with 1 mM
GnIH1, GnIH2, NPFF, and NPAF for 10 min. The dose and

treatment time were chosen based on previous reports (20, 31).

Cells were harvested using 1×Cell Lysis Buffer (100 mL/well, Cell
Signaling Technology, Danvers, MA, USA) supplemented with

Pierce Protease and Phosphatase Inhibitor Mini Tablets

(ThermoFisher Scientific, Waltham, MA, USA), and protein

concentrations were measured with Pierce™ BCA Protein

Assay Kit (ThermoFisher Scientific). Equal amounts of total

proteins (14 mg/lane) were separated by 12% SDS-PAGE, and

then electrotransferred onto nitrocellulose membranes, which

was blocked with 5% bovine serum albumin in TBST at room

temperature for 1 h. The membranes were washed three times

(10 min each time) with TBST and incubated with Phospho-

p44/42 MAPK (Erk1/2) (Thr202/Tyr204) antibody (1:1000, Cell

Signaling Technology) overnight at 4°C. After another three

washes, the membranes were incubated with HRP-linked anti-

rabbit IgG antibody (1:2000, Cell Signaling Technology) at room

temperature for 1 h, washed, and visualized with Pierce™ ECL

Plus Western Blotting Substrate (ThermoFisher Scientific). The

protein bands were quantified using a densitometry software

(Bio-Rad, Hercules, CA, USA). Subsequently, the membranes

were incubated with Restore™ Western Blot Stripping Buffer

(ThermoFisher Sc ient ific) and reused for another

immunodection with p44/42 MAPK (Erk1/2) antibody (Cell

Signaling Technology) to normalize the blots.
Statistical analysis

Data are presented as the mean ± SEM and were analyzed by

one-way ANOVA followed by Duncan’s multiple range test

using SPSS17.0 software. Normality and homoscedasticity

assumptions were tested prior to the analysis. Differences were

considered to be statistically significant when p < 0.05.
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Results

Absence of sea bass GnIH receptor and
NPFF receptor in COS-7 cells

As depicted in Figure 1A, there was no response in CRE-luc

activity when COS-7 cells transfected with the empty expression

vector pcDNA3.1 were challenged with 1 mM GnIH1, GnIH2,

NPFF and NPAF peptides. Parallel treatment with 10 mM FSK

acted as a positive control (Figure 1A). Similarly, neither SRE-luc

activity nor NFAT-RE-luc activity were altered by the four

peptides tested (1 mM, Figures 1B, C). These data indicated

that COS-7 cells do not naturally express endogenous receptors

for sea bass GnIH and NPFF peptides.
Coupling of sea bass GnIH receptor to
Gai protein

As shown in Figure 2A, COS-7 cells transfected with sea bass

GnIHR did not respond to GnIH1 and GnIH2 at doses ranging

from 10 to 1000 nM in CRE-luc activity. As a comparative

control, 1 mM NPFF and NPAF also did not modify CRE-luc

activity (Figure 2A). However, these four peptides (1 mM)

significantly reduced FSK-stimulated CRE-luc activity

(Figure 2B), suggesting that sea bass GnIHR is coupled to Gai

protein and can be activated by both GnIH and NPFF peptides.
Coupling of sea bass GnIH receptor to
Gaq protein

SRE-luc was employed as a reporter gene for activation of

the PLC/PKC pathway. Both GnIH1 and GnIH2 increased SRE-

luc activity in COS-7 cells transfected with sea bass GnIHR in a

dose-dependent manner (Figure 3A). Similarly, a significant

induction of SRE-luc activity was observed by 1 mM NPFF and

NPAF (Figure 3A). These results indicated that sea bass GnIHR

is coupled to Gaq protein. To further confirm the involvement of

the PLC/PKC pathway, two specific inhibitors (U73122 and

GF109203X) were employed. As observed in Figure 3B, the

stimulatory effects of GnIH peptides (1 mM) on SRE-luc activity

were attenuated by 10 mM U73122 (PLC inhibitor) and totally

abolished by 10 mM GF109203X (PKC inhibitor).
Absence of GnIH and NPFF effects on
Ca2+ and ERK activation

NFAT-RE-luc was used to examine the possible

participation of intracellular Ca2+ mobilization in activation of

sea bass GnIHR. None of the peptides assayed (GnIH1, GnIH2,
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NPFF, and NPAF) had any effect on NFAT-RE-luc activity

(Figure 4A). On the other hand, ERK phosphorylation levels

were also unaffected by these four peptides (1 mM),

either (Figure 4B).
Activation of GnIH receptor reduces
kisspeptin receptor signaling

Subsequently, we investigated the potential interactions

between GnIH and kisspeptin on PKA pathway signaling.

There was no response in CRE-luc activity when COS-7 cells

expressing sea bass GnIHR were stimulated with 1 mM Kiss1 or

Kiss2 (Figure 5A). Similarly, there was no activation of Kiss1R
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and Kiss2R after treatment with 1 mM GnIH1 and GnIH2

(Figures 5B, C). FSK (10 mM, Figure 5A), Kiss1 and Kiss2 (1

mM, Figures 5B, C) acted as positive controls. These results

evidenced that each peptide functions via its own receptor.

Both Kiss1 and Kiss2 induced a significant increase in CRE-

luc activity in COS-7 cells co-transfected with sea bass GnIHR

and Kiss1R, while neither GnIH1 nor GnIH2 affected the

stimulatory effects evoked by kisspeptin peptides (Figure 5D).

Similar results were observed in COS-7 cells expressing sea bass

GnIHR and Kiss2R as a result of treatment with Kiss1 alone as

well as co-administration of Kiss1 and GnIH1/GnIH2

(Figure 5E). However, GnIH2 elicited a significant reduction

of CRE-luc activity when co-administered with Kiss2 compared

to the stimulation provoked by Kiss2 alone (Figure 5E).

Although not significant, there was also a slight reduction of
A

B

C

FIGURE 1

Effects of GnIH and NPFF peptides on CRE-luc (A), SRE-luc (B), and NFAT-RE-luc (C) activity in COS-7 cells transfected with the empty
pcDNA3.1 vector. Cells were challenged with each peptide (1 mM) for 6 h and then harvested for assays. FSK (10 mM) acted as a positive control.
Data are presented as the mean ± SEM (n = 6). Different letters indicate statistically significant differences between mean values (ANOVA one-
way p < 0.05).
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CRE-luc activity when cells were co-treated with Kiss2 and

GnIH1 (Figure 5E).
Discussion

So far, physiological functions of the GnIH/GnIHR system

have been investigated in different vertebrate groups, including

fish, but the intricate web of intracellular signaling pathways

mediating GnIH actions is still far from being fully understood

(1, 8, 32). Results of our previous studies have revealed the

existence of a functional GnIH system in sea bass, and provided

evidence for the inhibitory role of GnIH in the reproductive axis

of male sea bass, by acting at the brain, pituitary and gonadal

levels (33). In the current study, the potential involvement of the

PKA, PKC, Ca2+, and ERK pathways in the actions of sea bass

GnIH peptides was evaluated using COS-7 cells expressing their

cognate receptor. Neither GnIH1 nor GnIH2 had effects on basal

CRE-luc activity in COS-7 cells expressing sea bass GnIHR, but

efficiently reduced FSK-induced CRE-luc activity. These data

indicate that sea bass GnIHR couples to Gai protein, which is

consistent with previous studies in orange-spotted grouper (14),
Frontiers in Endocrinology 06
half-smooth tongue sole (15), and chicken (11). On the contrary,

tilapia GnIHR (12), chub mackerel GnIHR (13), and zebrafish

GnIHR2 and GnIHR3 (16) are coupled to Gas protein.

Interestingly, a switch between Gai and Gas proteins is

observed for medaka GnIHR (17). Taken together, these

results show that GnIHRs in various species seem to couple to

different heterotrimeric G proteins, which may underlie the

functional diversity of the GnIH system reported in fish. For

example, tilapia GnIH2 positively regulated both Lh and Fsh

release in vivo and in vitro (12), whereas sea bass GnIH1 and

GnIH2 down-regulated plasma Lh levels in vivo (22). It is worth

mentioning that NPFF and NPAF can also suppress FSK-

stimulated CRE-luc activity in COS-7 cells expressing sea bass

GnIHR, indicating that GnIHR is a candidate receptor for these

two peptides (5). Further studies are being directed in the

laboratory to investigate NPFFR (GPR74) signaling pathways

and how they are regulated by NPFF, NPAF and GnIH peptides,

in order to determine the potency of each peptide in eliciting

their responses through both paralogous receptors (GPR147

and GPR74).

In this study, both GnIH1 and GnIH2 increased SRE-luc

activity in COS-7 cells expressing sea bass GnIHR, indicating
A

B

FIGURE 2

Effects of GnIH and NPFF peptides on CRE-luc activity in COS-7 cells transfected with sea bass GnIHR. Cells were challenged with GnIH and
NPFF peptides alone (A) or co-treated with FSK (10 mM) and each peptide (1 mM, B) for 6 h and then harvested for assays. Data are presented as
the mean ± SEM (n=6). Different letters indicate statistically significant differences between mean values (ANOVA one-way p < 0.05).
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that this receptor may couple to Gaq protein and convey its

signaling via the PKC pathway, which is in line with previous

reports in tilapia (12), and tongue sole (15). However, orange-

spotted grouper GnIH1 reduced SRE-luc activity in COS-7 cells

transfected with its cognate receptor (14). No response in SRE-

luc activity was observed by any of the three GnIH peptides with

any of the three GnIHRs identified in zebrafish (16). Moreover,

the stimulatory effect of sea bass GnIH on SRE-luc activity was

inhibited by the PLC inhibitor U73122 and specially by the PKC

inhibitor GF109203X, as observed in tongue sole (15), further

confirming the involvement of the PLC/PKC pathway in sea bass

GnIH actions.

Very limited information is available with respect to Ca2+ and

ERK pathways mediating GnIH actions on target cells. Neither sea

bass GnIH1 nor GnIH2 altered NFAT-RE-luc activity and ERK

phosphorylation levels in the present study. Likewise, the three

mouse GnIH peptides tested had no direct inhibitory effect on basal

or kisspeptin-induced NFAT-RE-luc activity and ERK

phosphorylation levels in GT1-7 cells (10). In contrast, sheep

GnIH3 potently reduced GnRH-stimulated mobilization of
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intracellular calcium and phosphorylation of ERK in pituitary

gonadotropes (18, 19). Previous results showed that goldfish

Kiss1 can directly stimulate Lh and Gh release from primary

cultures of pituitary cells in a Ca2+-dependent manner (34), and

zebrafish Kiss2 can also enhance the ERK and Akt phosphorylation

levels in the female pituitary explants in vitro (35). Considering the

opposite actions of GnIH and kisspeptin on gonadotropin secretion

in sea bass (22, 24), we hypothesize that GnIH could antagonize

kisspeptin signaling involved in Ca2+ and ERK routes, which is a

promising topic of future research not only in sea bass but also in

other fish species.

As mentioned above, sea bass GnIHR is coupled to Gai
protein, while sea bass Kiss1R and Kiss2R are coupled to Gas
protein (25). This implies that activation of GnIHR could

interfere with signaling of Kiss1R and Kiss2R in this species,

as reported in half-smooth tongue sole, in which GnIH2 reduced

Kiss2-elicited CRE-luc activity in a dose-dependent manner

when COS-7 cells were co-transfected with half-smooth

tongue sole GnIHR and Kiss2R and co-stimulated with both

Kiss2 and GnIH2 (29). Indeed, in the present study, an
A

B

FIGURE 3

Effects of GnIH and NPFF peptides on SRE-luc activity in COS-7 cells transfected with sea bass GnIHR. Cells were challenged with GnIH and
NPFF peptides alone (A) or co-incubated with GnIH peptides (1 mM) in the absence/presence of 10 mM PLC inhibitor U73122 (B) and 10 mM PKC
inhibitor GF109203X (B) for 6 h and then harvested for assays. Data are presented as the mean ± SEM (n=6-9). Different letters indicate
statistically significant differences between mean values (ANOVA one-way p < 0.05).
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inhibitory action of sea bass GnIH2 on Kiss2-induced CRE-luc

activity was observed in COS-7 cells expressing both GnIHR and

Kiss2R, which is in accordance with the fact that GnIH2 and

Kiss2 are more potent regulators in the control of sea bass

reproduction than GnIH1 and Kiss1, respectively (22, 24). It

should be noted that GnIH2 (but not GnIH1) inhibited the

synthesis of Kiss1, Kiss1R, and notably Kiss2, in sea bass (22).

Reasons for the lack of effects of GnIH peptides on Kiss1R

signaling are not known, but could perhaps be due to a low ratio

of GnIHR to Kiss1R (1:1), which may cause less responsiveness

to the ligand. For instance, chicken GnIH inhibited GnRH

receptor (GnRHR) signaling more effectively as the ratio of

GnIHR to GnRHR increased (11). Thus, it seems necessary to

further investigate the temporal expression patterns of gnihr,

kiss1r and kiss2r mRNAs along the reproductive axis of sea bass

during a reproductive cycle. Another possibility is that GnIH

may exert more potent inhibitory actions partially through

GPR74 which also couples to Gai protein (36). Further

investigation is warranted to clarify whether a synergistic effect

can be detected for GPR147 and GPR74 combined.
Frontiers in Endocrinology 08
To the best of our knowledge, neuroanatomical co-

localisation of GnIHR with Kiss1R or Kiss2R in the same cell

has never been shown in sea bass or other fish species. However,

the presence of GnIHR (12, 37, 38) and/or kisspeptin receptors

(39–42) has been reported in the pituitary of several teleost

species, including sea bass, suggesting that some endocrine cells

of the adenohypophysis (e.g., gonadotropes, corticotropes,

melanotropes) could exhibit both receptor types. Interestingly,

the distribution of GnIH-immunoreactive fibres (21) overlaps

with Kiss2 projections and Kiss1R- and Kiss2R-expressing cells

(39) in many central areas of the sea bass, suggesting that GnIH

and Kiss receptors could also co-localise in brain cells of this

species. Therefore, future studies should also be directed to

elucidate which pituitary and brain cells co-express GnIHR

and Kiss1R/Kiss2R in sea bass.

In summary, we have investigated the possible signaling

pathways involved in the actions of sea bass GnIH peptides, and

revealed that sea bass GnIHR signals can be transduced via both

PKA and PKC pathways. In addition, our results support the

consideration that sea bass GnIH can interfere with kisspeptin
A

B

FIGURE 4

Effects of GnIH and NPFF peptides on NFAT-RE-luc activity (A) and ERK phosphorylation levels (B) in COS-7 cells transfected with sea bass
GnIHR. (A) Cells were challenged with GnIH and NPFF peptides for 6 h and then harvested for assays. (B) Cells were challenged with 1 mM GnIH
and NPFF peptides for 10 min and then harvested for Western blot analysis. Data are presented as the mean ± SEM (n=3-6).
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signaling involving the PKA pathway. The results obtained in

the present study enlarge our knowledge on GnIH signaling

pathways in teleosts and represent a starting point to further

examine the interactions of GnIH with other neuroendocrine

factors (e.g., GnRH, Npy, Spexin) on cell signaling.
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Mañanós E, et al. LPXRFa peptide system in the European sea bass: A molecular
and immunohistochemical approach. J Comp Neurol (2016) 524:176–98. doi:
10.1002/cne.23833

22. Paullada-Salmerón JA, Cowan M, Aliaga-Guerrero M, Morano F, Zanuy S,
Muñoz-Cueto JA. Gonadotropin inhibitory hormone down-regulates the brain-
pituitary reproductive axis of Male European Sea bass (Dicentrarchus labrax). Biol
Reprod (2016) 94:121. doi: 10.1095/biolreprod.116.139022

23. Paullada-Salmerón JA, Cowan M, Aliaga-Guerrero M, López-Olmeda JF,
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