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Abstract: Mosaic is one of the most important sugarcane diseases, caused by single or compound
infection of Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV), and/or Sugarcane streak
mosaic virus (SCSMV). The compound infection of mosaic has become increasingly serious in the
last few years. The disease directly affects the photosynthesis and growth of sugarcane, leading to a
significant decrease in cane yield and sucrose content, and thus serious economic losses. This review
covers four aspects of sugarcane mosaic disease management: first, the current situation of sugarcane
mosaic disease and its epidemic characteristics; second, the pathogenicity and genetic diversity of the
three viruses; third, the identification methods of mosaic and its pathogen species; and fourth, the
prevention and control measures for sugarcane mosaic disease and potential future research focus.
The review is expected to provide scientific literature and guidance for the effective prevention and
control of mosaic through resistance breeding in sugarcane.

Keywords: sugarcane mosaic disease; characteristics; identification; control strategy; resistance
breeding

1. Introduction

Sugarcane (Saccharum spp. hybrids), the most important sugar and energy crop
originating in the tropics, is a perennial, high biomass herb ratoon C4 crop. It is widely
cultivated in more than 100 countries or regions in the tropics and subtropics, with a total
area of about 27 million hectares. The world annual output is about 1.95 billion tons of fresh
cane, which provides nearly 80% of sugar, 60% of bioethanol, and a total economic value of
75 billion U.S. dollars (FAO, 2019, http://www.fao.org/faostat/zh/#data/, accessed on 25
May 2021). Furthermore, the pressed cane juice can be used to produce diesel, jet fuel, and
other high-value products [1,2]. Sugarcane by-products can also be used for direct-fired
power generation, field fertilizers, and culture substrate for fruit tree seedlings [3,4].

Mosaic is one of the main viral sugarcane diseases. Systemic infection is caused by
the virus after it invades sugarcane. The incubation period is generally about 10 d, but
can be up to 20–30 d. The disease may even manifest in the second year of infection [5].
The disease was first described in 1892 by Musschenbroek [6] in Java as “yellow stripe
disease”. Subsequently, it was found in Australia [7], Puerto Rico, the United States [8],
and India [9]. In 1920, Brandes identified the disease as a transmissible viral disease
that could be transmitted by aphis (Rhopalosiphum maidis Fitch) [10]. Summers et al. [11]
speculated that the disease started in New Guinea and was introduced into Java from
infected sugarcane, and then further spread to the Americas and other countries [12].
So far, mosaic has been widely discovered in most sugarcane planting regions around
the world [13,14].

Before the 1990s, scientists generally agreed that mosaic was caused by the Sugarcane
mosaic virus (SCMV). Since then, the Sorghum mosaic virus (SrMV) [15] and the Sugarcane
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streak mosaic virus (SCSMV) [16,17] have been independently classified as the new mosaic-
causing viral species by the International Committee on Taxonomy of Viruses (ICTV) based
on their molecular characteristics. SCMV and SrMV are distributed worldwide [13,18],
and SCSMV mainly exists in Asia, including Bangladesh, China [19], India, Indonesia [20],
Pakistan, Sri Lanka, Thailand, and Vietnam [21,22]. More recently, the virus has also been
reported in Cote d’lvoire in West Africa [23]. In addition, compound infection incidences
with different combinations of SCMV, SrMV and SCSMV were frequently reported [24–26].

Sugarcane is an asexually propagated crop. If infected stalks are ratooned or used
as propagating material, the virus can accumulate in large quantities. Although viruses
transfer slowly between plant cells, they move quickly in vascular bundles, along with
the flow of plant nutrients [20,27,28]. As a result, the virus can spread to almost every
tissue, even the whole stool [29]. In infected sugarcane plants, chlorophyll is destroyed,
photosynthesis is weakened, and growth is significantly inhibited [30,31], resulting in
shorter internodes, fewer mill-able stems, shorter roots, and a significantly lower sprouting
rate and lower yield of cane stems [32–34]. Moreover, the disease also reduces juice
content, sucrose content, and the crystallization rate [35], which can ultimately reduce
sugarcane yield by 10–50% [36], or even 60–80% [12]. The disease has become a pandemic
in many countries or regions, including the United States, China, Cuba, Puerto Rico,
Argentina, Brazil, and Australia, causing huge economic losses and even bankruptcies to
the sugarcane industries [13,14,37].

In recent years, the prevailing sugarcane cultivars, such as ROC22 and Liucheng 05-136,
are highly susceptible to the mosaic disease in China [38,39]. In addition, growers’ long-
term use of self-produced propagating material, successive cropping, frequent introduction,
and improper production management have contributed to the increasing seriousness
of mosaic disease in almost all sugarcane growing areas, with the worst infection rate
being as high as 100% in some areas [5,14]. The sugarcane region of India faces the same
dilemma [40]. In this paper, the pathogenic characteristics, identification methods, and
control strategies of sugarcane mosaic disease were reviewed to facilitate the understanding
and precise management by providing a reference for green control and resistance breeding
in the future.

2. Characteristics of Mosaic Disease
2.1. Disease Symptoms

The symptoms of mosaic disease caused by SCMV, SrMV and SCSMV are similar,
especially in the middle and lower sections of new leaves. In comparison to healthy leaves
(Figure 1a), there are many irregular yellow and green inlays, stripes, or mottles alter-
nate with parallel veins on symptomatic leaves, more clearly visible against the sunlight
(Figure 1b). Some are mostly normal green with only a few narrow pale-yellow streaks,
some show very obvious whole leaf chlorosis, and the seriously infected leaves turn yellow
or yellow white, leaving only a few green islets or a small amount of red punctate necrosis
(Figure 1c) [12,13], or the tips of new leaves are abnormally twisted (Figure 1d). Some
varieties show cryptic or indistinct phenomena at a high temperature, but the symptoms
recur as the temperature drops [41].

2.2. Hosts

All three viruses infect sugarcane, sorghum (Sorghum bicolor L.), and corn
(Zea mays L.) [12,13,42]. The natural hosts of SCMV include panicum (Panicum miliaceum
L.), millet (Setaria italica L.), green bristlegrass (Setaria viridis L.), Johnson grass (Sorghum
halepense L.), Sudan grass [Sorghum sudanense (Piper) Stapf.], and more than 100 species in
40 genera of the Gramineae family [15,43–45]. Recent reports show that in nature, SCMV
can infect St. Augustine grass [Stenotaphrum secundatum (Walt.) Kuntze] [46], Colum-
bus grass (Sorghum almum Parodi.) [47], pumpkin [Cucurbita moschata (Duch. ex Lam.)
Duch.] [48], red-veined prayer plant (Maranta leuconeura erythroneura) [49], and canna
(Canna indica L.) [50]. SrMV can infect Miscanthus (Miscanthus sinensis cv.) [51] and cause
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the typical mosaic symptoms. The hosts of SCSMV include panicum (Panicum miliaceum L.),
buttercup (Ranunculus japonicus Thunb.), Sudan grass, Johnson grass, and some other
grasses of the Gramineae family [52–54].
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2.3. Transmissions

The primary infectious sources of mosaic mainly include infected plants of sugarcane
and other Gramineae hosts. In nature, transmission of SCMV and SrMV is primarily
by several aphid vectors including Dactynotus ambrosiae [55], Hysteroneura setariae [56],
Longiunguis sacchari [57,58], Rhopalosiphum maidis [10,59], and Toxoptera graminum [60–62]
in a non-persistent manner. Ants also have indirect transmission effect if they interact
actively with aphids in diseased sugarcane fields [5,63]. However, insect borne SCSMV has
not yet been detected [53,64,65], although Triticum mosaic virus (TriMV) and Wheat streak
mosaic virus (WSMV), which belong to the same genus and share a high sequence similarity
with SCSMV, can be transmitted by wheat curl mites (Aceria tosichella Keifer) [16,66].
The three viruses are easily transmitted over a short distance by machines, cutting tools,
and juice fluid friction, but transmission over long-distance is mainly through infected
materials [12,20]. A diagram of the specific transmission pathway is shown in Figure 2.

2.4. Epidemiology

The severity of mosaic disease in sugarcane fields is closely associated with sugarcane
variety, infected setts, climatic conditions, and intermediate hosts. Among the six Saccharum
species, S. officinarum are highly susceptible, S. sinense, S. spontaneum [67] and S. barber [68]
are highly resistant or immune, S. robustum [67,68] are susceptible to mosaic. This disease
was also found on S. edule [69], but the resistance to viruses is still uncertain. However, a
recent study showed that most of Saccharum species have poor resistance to SCSMV; only
three out of eight accessions of S. robustum among all of the 210 tested clones of Saccharum
are identified to be resistant [70]. Generally, sugarcane cultivars with more resistant
consanguinity also tend to show stronger resistance [65]. Young sugarcane plants are
more susceptible than old, mature plants [71]. Drought and less rainfall environments are
beneficial to the reproduction and activities of aphids, which promote the spread of mosaic.
However, an extremely hot climate is not conducive to disease transmission, leading to
slow virus proliferation, less disease symptoms, and less severe disease incidence [5,13].
In general, mosaic often occurs seriously in weedy or intercropping sugarcane fields [35].
High susceptibility of main varieties, relatively high temperatures and less rain, different
planting periods in the same region, long-term rotation, and single variety and long-term
successive cropping can all lead to a serious occurrence or epidemic of mosaic [72].
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3. Pathogenicity Characteristics
3.1. Taxonomic Status

SCMV, SrMV, and SCSMV belong to the Potyviridae family, of which SCMV and
SrMV belong to Potyvirus. Maize dwarf mosaic virus (MDMV), Johnsongrass mosaic virus
(JGWV), Zea mosaic virus (ZnMV), Cocksfoot streak virus (CSV), and Pennisetum mosaic
virus (PenMV) are grouped together under SCMV subgroup [15,73]. SCSMV belongs to
Poacevirus, as do TriMV and Caladenia virus A (CalVA) [17].

3.2. Morphology, Size, and Viability

Similar to all members of the Potyviridae family, the three viruses present non-
enveloped, flexuous-filamented viral particles [73]. The basic pathogenic characteristics of
the sugarcane mosaic virus is shown in Table 1.

Table 1. Basic pathogenic characteristics of sugarcane mosaic virus.

Virus
Species Virion Size Inactivation

Temperature Survival Time Dilution Limit
Standard

Sedimentation Constant
and Buoyancy Density

References

SCMV 630–770 nm × 13–15 nm 53–57 °C in vitro survival time is 17–24 h
at 27 ◦C and 27 d at −6 ◦C 10−3−10−5 160–175 S,

1.285–1.342 g/mL [45]

SrMV 620 nm × 15 nm 53–55 °C in vitro survival time is 1–2 d
at 20 ◦C 10−2–10−3 - [13]

SCSMV 890 nm × 15 nm 55–60 °C
in vitro survival time is 1–2 d

and 8–9 d at room temperature
and 4 °C

10−4–10−5 - [53,74]

Note: “-” means undetermined.

3.3. Genome Structure

The genome of SCMV, SrMV, and SCSMV is represented by a positive-sense single-
stranded RNA (+ssRNA) of about 10 Kb, consisting of untranslated regions (UTR) at both
ends and a single open reading frame (ORF) encoding for a large polyprotein. The viral
RNA harbour a genome-linked protein (VPg) at the RNA 5′-terminus and a poly (A) tract
at the 3′-terminus [75]. The genome structure of the sugarcane mosaic virus is shown in
Figure 3. The polyprotein is processed by the virus-encoded proteases P1-pro, HC-Pro and
NIa-Pro into 10 mature functional proteins [73,76]. In addition, SCMV and SrMV encode
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an additional PIPO [77], and SCSMV encodes P3N-PIPO, which are expressed from the P3
ORF through a +2 or +1 frame-coding slippage mechanism, respectively [78,79].
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were assembled based on NC003398, NC004035 and GQ388116, respectively. P1, Protein 1; HC-Pro, Helper component
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CP, Coat protein; P3N-PIPO, P3 N-terminus Pretty interesting Potyviridae ORF.

Table 2 describes the main functions of the proteins encoded by viruses of the Potyviri-
dae family. The PIPO and P3N-PIPO mainly affect the movement of the virus between
cell-to-cell movement. P3N-PIPO binds to CI to recruit itself into plasmodesmata to pro-
mote intercellular movement of the virus [77,80]. Compared with SCMV and SrMV, a highly
conserved motif of “Asp-Ala-Gly (DAG)” was absent in the CP sequence of SCSMV, which
is necessary for aphid transmission [81,82]. It is worth mentioning that RNA silencing and
RNA silencing repressors are mechanisms of defence and counter-defence interactions
between host plants and viruses [83]. HC-Pro is the first strong RNA silencing inhibitor
discovered [84], which has multiple targets in the RNA silencing pathway to regulate the
accumulation of different siRNAs [85]. Moreover, when it fuses with P1, the expression of
P1/HC-Pro and the inhibitory activity is enhanced [86]. The P1 protein of Poacevirus also
has a silencing inhibitory function, which is more obvious than HC-Pro. However, when
HC-Pro is present, the inhibitory activity of P1 on RNA silencing is reduced [87].

Table 2. The main role of 12 functional proteins of Potato virus Y.

Protein Name Role References

P1
• the sequence is the least conserved and its size variability is the highest, participate in

virus replication
• related to the widespread adaptation of the virus to host species

[88]
[87]

HC-Pro
• RNA silencing repressor, related to viral vector, cellular and long-distance movement
• participates in virus replication and symptom presentation
• the expression activity was enhanced by fusion with P1

[89]
[90]
[86]

P3 • participates in replication, accumulation, and cell-to-cell movement of the virus
• determines host range and symptoms

[91]
[92]

PIPO • conserved protein, affects the movement of the virus between cells [77]

P3N-PIPO • binds to CI, promote intercellular movement of the virus [80]

6K1 • be involved in intercellular movement of the virus
• participate in virus replication

[93]
[94]

CI • it has helicase activity, coping with and overcoming plant defense responses [95]

6K2
• participate in viral replication and intercellular movement
• be associated with long-distance transportation, symptom induction
• inducing vesicle formation

[96]
[97]
[98]
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Table 2. Cont.

Protein Name Role References

VPg • may act as primers in viral replication
• affect the cellular movement and long-distance transmission

[99]
[100]

NIa-Pro
• cleave polypeptide proteins
• viral replication
• may be associated with symptoms and host specificity

[101]
[102]
[103]

NIb-Pro • involved in replication
• catalyzes the formation of template and prime-dependent poly (U)

[104]
[105]

CP • play roles in viral cell-to-cell and long-distance movement, replication, and
vector transmission [73]

3.4. Genetic Diversity and Taxonomy

During evolution, SCMV, SrMV and SCSMV accumulated a rich pool of genetic
diversity. Before 2000, Summers [106,107] and Summers et al. [11] divided SCMV into
10 strains and sub-strains according to the disease symptoms of sugarcane varieties CO281,
CP29-291 and CP31-294. Tippett and Abbott [108] divided SCMV into five strains, namely,
A, B, D, E and F, according to the mosaic symptoms of CP31-294, but two strains, A
and H, according to CP31-588. According to serological cross-reaction, the evolutionary
relationship and characteristics of CP nucleotide sequence based on the 3’-end sequence of
the viral genome, Potyvirus isolates from Australia and the U.S. were divided into 11 SCMV
strains, namely, MBD, A, B, D, E, SC, BC, Sabi, ISIS, Bris, and Bund, and three SrMV strains,
namely H, I and M [15,43]. Since 2000, the genetic diversity of mosaic viruses isolates
from China [109,110], South Africa [111], India [112,113], Mexico [114], Argentina [115]
and Thailand [116,117], and others have also been reported based on the nucleotide and/or
amino acid sequence variability of CP [81,118], HC-Pro [119] and P1 [79]. To sum up the
results of genetic diversity, 216 relatively complete nucleotide sequences of the coat protein
genes from102 SCMV isolates from 26 countries, 58 SrMV isolates from five countries, and
56 SCSMV isolates from 11 countries are downloaded from the NCBI database (accessed
date 16 May 2021) and analysed using the maximum likelihood method (ML) of MEGA
v6.0 software (Raynham MA, USA). The results are depicted in Figure 4.

Plant RNA viruses mutate in a variety of ways, including natural selection and
substitution, transversion, deletion, insertion, recombination, reassortment, etc. [120,121].
Gell et al. [122] found that recombination was the main driving force for evolving SCMV
subgroup populations. Recombination and strong selection pressure may accelerate the
elimination process of deleterious mutations in the SCSMV genome P1 gene [79]. Strong
purifying selection has been dominant in Indian SCMV populations, in which the CI and
HC-Pro genes are prevalent [123]. He [64] reported that negative selection and genetic
drift rather than recombination were the main driving force for the evolution of SrMV and
SCSMV in China. In addition, natural selection, gene migration and geographical isolation
may also affect the evolution of virus population in different regions [22,81,124].
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4. Diagnosis/Identification
4.1. Visual Observation

Mosaic disease can be identified by visual inspection of sugarcane leaves for symp-
toms when evaluating germplasm resistance [38,39,125,126]. The method is simple and
timesaving. However, it cannot determine the virus types. In addition, it requires a higher
level of professional knowledge, skill, and ability to catch sugarcane leaf mosaic symptoms
with the naked eye.

4.2. Biological Identification

Traditionally, the type of virus, host range and transmission mode are determined
mainly based on the symptoms of the host plant after inoculation with the virus [11,127].
Before 1940, Summers EM artificially inoculated leaves of indicator plants of varieties CP31-
294 and Co281 with press juice friction from a symptomatic plant and made a judgment
based on whether the leaves showed any mosaic symptoms [11,106,107]. However, it is
hard to do, labour intensive, and difficult to determine the specific virus strain. The amount
of needed plant material can fill up the greenhouses and strict test conditions are required.

4.3. Microscopic Observation

The most prominent pathological feature of plant tissue cells infected by a virus of the
Potyviridae family is the production of columnar inclusions. The feature has been used
to distinguish among virus species. Edwardson [128] divided cylindrical inclusions into
four types: scrolls body and pinwheels (Type I); lamellar aggregates with arm extension
and pinwheels (Type II); scrolls body, pinwheels, and lamellar aggregates (Type III); and
scrolls body, pinwheels, and short and curved lamellar aggregates (Type IV). Studies
have shown that the characteristics of columnar inclusions in SCMV-, SrMV- [129] and
SCSMV-infected [53] sugarcane leaf cells were similar to III, I, and II, respectively. However,
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this method is seldomly used in practice due to the complicated operation procedure of
electron microscopy.

4.4. Serological Detection

Serological detection is a simple, rapid, and low-cost method for plant viruses, in-
cluding agar gel immunodiffusion (AGID), electroblot immunoassay (EBIA), double anti-
body sandwich enzyme-linked immunosorbent assay (DAS-ELISA), direct antigen coat-
ing ELISA (DAC-ELISA), indirect ELISA, and dot enzyme-linked immunosorbent assay
(Dot-ELISA) (also dot immunobinding assay, DIBA; or dot-bolt immunobinding assays,
DBIA) [74,130,131]. Hema et al. [74] detected SCSMV by AGID, DAC-ELISA and EBIA.
Mohammadi et al. [132] used DAS-ELISA and DIBA to detect SCMV and SrMV in infected
samples. SrMV was first detected in Miscanthus by Grisham et al. [51] using indirect
ELISA. Gaur et al. [133] used DAC-ELISA and DIBA to detect SCMV in infected cane juice
samples even when the samples were diluted to 1/150. Wang et al. [134] established a
high-throughput DAC-ELISA method for the detection of SrMV. However, serological
detection requires specific antiserums, and its sensitivity is relatively lower than molecular
detection techniques [130,131].

4.5. Molecular Detection

PCR-based molecular techniques have been developed and widely used in the de-
tection of the mosaic virus, such as direct-binding polymerase chain reaction (DB-PCR),
reverse transcription PCR (RT-PCR), immunocapture RT-PCR (IC-RT-PCR), duplex im-
munocapture RT-PCR (D-IC-RT-PCR), one-step multiplex RT-PCR, real-time quantitative
RT-PCR (qRT-PCR) and loop-mediated isothermal amplification (LAMP) [83]. These molec-
ular detection techniques have a high sensitivity and specificity and can identify virus
species rapidly and accurately. Yang and Mirkov [135] used DNA restriction enzymes to
digest RT-PCR fragments to produce SCMV- or SrMV-specific RFLP patterns without the
need of using identification host plants. Xie et al. [136] established a one-step quadruplex
RT-PCR method to simultaneously detect four viruses, namely, SrMV, SCMV, SCSMV and
Sugarcane yellow leaf virus (SCYLV). Smith and Velde [137] were able to detect SCMV by
RT-PCR in samples that were diluted 10,000-fold. Fu et al. [52] developed a qRT-PCR
method for the detection of SCSMV, which was 100 times more sensitive than conventional
RT-PCR. Hema et al. [138] reported that IC-RT-PCR was 5,000 times more sensitive than
DBIA and 10 times more sensitive than DB-PCR to detect SCSMV. Chen et al. [139] demon-
strated that the sensitivity of detecting SrMV by IC-RT-PCR 100-times higher than that of
indirect ELISA and 1000-times higher than that of Dot-ELISA and therefore recommended
IC-RT-PCR was more suitable for large volumes of samples. Subba et al. [140] developed a
D-IC-RT-PCR method that combined both serological and molecular methods to simultane-
ously detect and distinguish SCMV and SCSMV and was more sensitive than DAC-ELISA.
In addition, a new reverse transcription-LAMP (RT-LAMP) technology was also applied
to detect SCMV and SrMV with a lower sensitivity than RT-PCR and qRT-PCR [141]. The
primer sequence information of different molecular techniques for detecting sugarcane
mosaic viruses is shown in Table 3.
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Table 3. The primer sequence information of different molecular detection techniques for sugarcane mosaic viruses.

Technology
Name

Detection
Virus Primer Sequence (5′→3′) Sequence

Position Amplification Size (bp)
Annealing/
Incubated

Temperature (◦C)
Reference

RT-PCR
SCMV F: TTTYCACCAAGCTGGAA

R: AGCTGTGTGTCTCTCTGTATTCTC NIb-CP 873(-A), 885(-B/-D), 897(-E) 60 [135]

SrMV F: AAGCAACAGCACAAGCAC
R: TGACTCTCACCGACATTCC NIb-CP 871(-SCH/-SCI/-SCM) 60

One-step RT-PCR

SCMV F: CAATCTTGAGGAATGCGGAAAAC
R: ATCGATAGGCCCACAAATGAGTCT HC-pro 720

54 [136]
SrMV F: ACAGCAGAWGCAACRGCACAAGC

R: CTCWCCGACATTCCCATCCAAGCC CP 860

SCSMV F: ATTTTGCCGTCCCGTTTTACATC
R: AGCGCGTTGTCTTTCTTCTTCAGTCA NIa-NIb 1160

qRT-PCR SCSMV F: FAM-TGCTGCATTGATTTCGTGATGGTG-TAMRA
R: FAM-TGCTGCATTGATTTTGTGATGGTG-TAMRA CP 115 60 [52]

IC-RT-PCR
SCSMV F: GGACAAGGAACGCAGCCACCTCAG

R: TTTTTTCCTCCTCACGGGGCAGGTTGATTG CP 1047 55 [138]

SrMV F: ATCGCCATGGCTGCAGGGGTTGGAACGGTGG
R: ATCGCTCGAGGTGGTGCTGTTGCACCCCAAG CP ~1000 54 [139]

D-IC-RT-PCR
SCMV F: ATGTC(GA)AAGAA(GA)ATGCGCTTGC

R: -d(T)18(AGC)- CP ~900 56
[140]

SCSMV F: AAGTGGTTAAACGCCTGTGG
R: -d(T)18(AGC)- NIb-CP ~1400 56

RT-LAMP

SCMV

F3-4: GTGGTCTAATGGTATGGTGTATT
B3-4: TCTAGCTGGTGTCCTTGAA
FIP-4: CCGGAATGTTGGAGATGCGTGTTGGACAATGATGGATGGA
BIP-4: TTCAGTGATGCAGCTGAAGCACGCTGAAGTCCATATCGTG

CP - 63
[141]

SrMV

F3-4: ACAACAACAAGACATTTCAAACA
B3-1: GTTCCGATACTCTATGTACGC
FIP-4: CATTAATATTAGGTGAGCATCCGTTCTCTAGATGATACGCAGATGACAG
BIP-4: TTCAGTGATGCAGCTGAAGCACGCTGAAGTCCATATCGTG

CP - 63

Note: M = A/C, Y = C/T, W = A/T, R = A/G, and W = A/T in primer sequences. FAM: 6-carboxyfluorescein, TAMRA: 6-carboxy tetramethyl rhodamine. -A, -B, -D and -E indicate different SCMV strains; -SCH,
-SCI and -SCM indicate different SrMV strains. “-” means uncertained.
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5. Prevention and Control Strategy
5.1. Exploitation and Utilization of Resistant Germplasm

Selection and rational distribution of disease-resistant varieties are the most economic
and effective prevention and control measures against these viruses. The genetic base
of modern sugarcane cultivars is narrow, with about 80% from S. officinarum, 10–15%
from S. spontaneum, and 5–10% from recombinant chromosomes [142]. During the long
evolutionary process, the Saccharum and its related genera have formed extremely rich and
valuable germplasm resources [68,143], which contain large numbers of disease resistance
genes [144]. In recent years, some Saccharum hybrid clones with high resistance to mosaic
disease have been identified by natural infection or artificial inoculation, such as SP70-
1143, IACSP95-2078 [145], SWSwm1 [146], YG34, YG55 [147], ROC16 [38], GT03-2309, and
LC03-1137 [39]. The current artificial inoculation methods are shown in Table 4.

Table 4. Comparison of artificial inoculation methods for mosaic resistance evaluation.

Type Methods Characteristics Application References

Airbrush inoculation
The venom was uniformly
sprayed on the leaves of

sugarcane under high pressure

The operation is simple; but
the inoculation efficiency is

not high

Larger group
material [148–150]

Mechanical inoculation

Use fingers dipped in a little
quartz sand containing the
disease venom, through the
young leaf scratch infection

Strict inoculation conditions;
but the work efficiency is not

high, the wound is not
uniform, the effect of

vaccination is not stable

Small group
material [145,146,151]

Pricking or inject
inoculation

Use a micro syringe to absorb a
small amount of venom and
inject it into the axillary buds
and subcutaneous tissue of

sugarcane species

Venom dosage controllable,
standardized use, less damage

to plants, the effect of
inoculation was higher; but

inoculation efficiency mediocre

Moderate group
material [151,152]

Stalk cutting
inoculation

Cut off the above ground part
of the cane plant with a sharp

blade or branch shears.
Immediately drop quantitative
of virus liquid into the wound

and shade it for 24 h

Simple and efficient operation
method, the effect of

inoculation was higher; but
dark treatment environment is

difficult in the field, serious
damage to plants

Large group
material [147,153]

5.2. Acceleration of Molecular Breeding

Molecular marker-assisted breeding and genetic engineering improvements have
helped promote the development of resistant varieties. Molecular marker-assisted breed-
ing is an effective method to accelerate the breeding process of multi-resistant varieties.
However, the technology is limited by the lack of markers closely linked to disease re-
sistance. Sugarcane (2 n = 12 x = 100−130; genome size = ~10 Gb) is a highly complex
autopolyploid and aneuploid crop, and a complete reference genome of modern sugarcane
cultivated species is still lacking up to now [154,155]. The development of molecular
markers associated with economic target traits is an extremely slow process for sugarcane.
Previous studies on the development of molecular markers for mosaic resistance were
mainly focus on corn (2 n = 2 x = 20; genome size = ~2300 Mb) [156–164]. However,
these studies may provide a good reference for developing molecular markers and related
gene mining on sugarcane. In addition, genetic engineering is an effective way to obtain
disease-resistant sugarcane varieties [165]. The most mature strategy is CP gene-mediated
transfer since the first report of the introduction of the Tobacco mosaic virus (TMV) CP gene
into tobacco in 1986 [166]. Smith et al. [167] used a gene gun to bombard a SCMV-CP
gene into sugarcane meristem and obtained chimeric transformed plants. Subsequently,
Joyce et al. [168], Ingelbrecht et al. [169], and Sooknandan et al. [170] also succeeded in
obtaining transgenic sugarcane plants by using the same method. On the other hand,
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an RNA interference technology that targets sugarcane virus encoded RNA silencing
inhibitors has also been successfully used to develop highly effective disease-resistant
transgenic sugarcane plants [171–175]. Field experiments on transgenic sugarcane have
shown improved resistance to mosaic disease with significantly increased yield and sucrose
content [171,176–178]. However, none of the transgenic sugarcane has yet been applied in
field production due to regulations.

5.3. Application of Virus-Free Plantlets

The application of virus-free plantlets through tissue culture can not only eliminate or
slow down the incidence of mosaic disease, but also increase the sucrose content by more
than 0.5% and the cane yield by 20–40% [179]. In one case, the yield increased by more
than 100% [180]. The common methods of detoxification include heat treatment, stem buds
tissue culture detoxification, and ultra-low temperature therapy. SCMV elimination can be
achieved by cultivation at 52 ◦C, 57.3 ◦C, 57.3 ◦C, once every other day, 20 min each time,
without harming cane buds [179]. SCMV can also be removed by cryo-treating micro shoot
tips (~3 mm) [181] or by inserting 4~8 mm axillary bud explants into MS regeneration
medium supplemented with a 25 mg/L of ribavirin [182]. Hot water treatment for 10 min
at 55 °C was not effective for SCSMV elimination [183]. Detoxification by stem buds tissue
culture could completely eliminate SCSMV [184,185]. A combination of heat treatment and
axillary shoot tip culture had a better effect on virus removal [186].

To determine the technical specifications for the production and testing of sugarcane
virus-free plantlets, leaves were collected from the virus-free plantlets produced by the heat
treatment and axillary shoot tip culture technology in 2015, followed by tracking and PCR
testing the leaves of 120 putative virus-free plantlets collected from different companies at
different ecological demonstration sites in China [187]. The PCR results showed that SCMV
was not detected in 100% of the samples, the rate of SrMV detection was greater than 35%,
and the rate of SCSMV detection was more than 50%. Therefore, it was concluded that
SrMV and SCSMV were more difficult to be eliminated from infected sugarcane plants than
SCMV. Although the virus-free effect of sugarcane stalk can be improved by appropriately
increasing treatment temperature and time (30 min at 59 ◦C), the germination rate, however,
was significantly reduced to only about 20% and the water temperature was difficult to
control accurately in an industrial setting (unpublished).

5.4. Strengthen Cultivation and Control

Good field management is another effective way to enhance plant resistance and
reduce the spread of viruses. Specific measures include: (1) avoiding planting virus host
crops around or in the sugarcane fields [188]; (2) the timely removal of infected plants and
weeds; (3) improvement in soil structure, rational fertilization, and irrigation to promote
plant growth and improve disease resistance [189,190]; (4) chemical and biological control
of aphids [63]; and (5) fortifying cropping systems and paying attention to rotation with
non-host crops, such as soybeans, sweet potatoes and peanuts [191].

6. Perspective

The cultivation and planting of resistant varieties are the most economic and effective
methods to control sugarcane infecting viruses, and growers are most likely to adopt this
technology. However, due to the diversity of pathogens, the highly complex genome of
sugarcane, the wide segregation of traits among hybrid progenies, and the extremely low
probability of excellent gene aggregation, sugarcane cross-breeding may have to rely on a
huge population, for example, 1 to 1.2 million of plantlets to be planted annually in China.
Therefore, it is very difficult to select good varieties that have both commercial value and
mosaic resistance. In addition, field evaluation tests of virus-free plantlets from integrated
detoxification technology in China have shown that the “virus-free” effect is not ideal, even
if the plantlets were produced by a more effective method of combining heat treatment and
axillary bud or shoot tip culture. In view of all these facts, the development of molecular
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markers associated with disease resistance genes should be the most effective way to breed
sugarcane varieties resistant to different viruses. Sugarcane propagates asexually and F1
populations can be used for correlation analysis between genotypes and phenotypic traits.
There are also successful cases on genetic engineering via gene gun bombardment or gene
editing to improve disease resistance in sugarcane. Successfully edited alleles can be up
to 49 copies simultaneously targeting the chlorophyll content gene, which draws a new
blueprint for transforming the disease resistance pathway in sugarcane. We hope that the
present review can provide scientific references and thoughts for the effective prevention
and control of viruses in sugarcane.
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