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Common neural correlates of 
real and imagined movements 
contributing to the performance of 
brain–machine interfaces
Hisato Sugata1,2, Masayuki Hirata1,3, Takufumi Yanagisawa1,3,4, Kojiro Matsushita1,5, 
Shiro Yorifuji3 & Toshiki Yoshimine1

The relationship between M1 activity representing motor information in real and imagined movements 
have not been investigated with high spatiotemporal resolution using non-invasive measurements. 
We examined the similarities and differences in M1 activity during real and imagined movements. 
Ten subjects performed or imagined three types of right upper limb movements. To infer the 
movement type, we used 40 virtual channels in the M1 contralateral to the movement side (cM1) 
using a beamforming approach. For both real and imagined movements, cM1 activities increased 
around response onset, after which their intensities were significantly different. Similarly, although 
decoding accuracies surpassed the chance level in both real and imagined movements, these were 
significantly different after the onset. Single virtual channel-based analysis showed that decoding 
accuracy significantly increased around the hand and arm areas during real and imagined movements 
and that these are spatially correlated. The temporal correlation of decoding accuracy significantly 
increased around the hand and arm areas, except for the period immediately after response onset. Our 
results suggest that cM1 is involved in similar neural activities related to the representation of motor 
information during real and imagined movements, except for presence or absence of sensory–motor 
integration induced by sensory feedback.

Brain–machine interfaces (BMIs) translate brain signals, which are recorded using invasive or non-invasive meas-
urement techniques, into commands that can control external devices such as prosthetic arms and computers1–3. 
This technology is expected to offer patients who have lost control of voluntary movements, including those with 
amyotrophic lateral sclerosis (ALS) and spinal cord injury, greater independence and an improved quality of life. 
Such improvements can be achieved with the use of external devices to communicate with others and manipulate 
the environment4,5.

Signals recorded from the primary motor cortex (M1) play a significant role in controlling external devices6–8. 
Recently, the importance of M1 signals for BMIs has been demonstrated for real and imagined movements using 
various types of signal platforms, such as electroencephalography (EEG)9,10, magnetoencephalography (MEG)11–17,  
and electrocorticography (ECoG)18–21. However, for imagined movements, the involvement of M1 activation 
remains controversial. A previous study reported that M1 is not necessary to perform an imagined movement22. 
Several other studies have not detected M1 activation or have shown only transient activation during imagined 
movements23,24. However, using direct cellular recordings, Georgopoulos et al.25 have demonstrated that M1 
activity contributes to motor imagery. Some recent studies that used invasive26 or non-invasive methods27–30 
also reported that imagined movements activate M1. In addition, we recently reported that the strength of func-
tional connectivities between M1 and the motor association area affects the performance of BMIs in both real 
and imagined movements31. Furthermore, M1 activity during imagined movements has been recorded not only 
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in healthy subjects but also in patients with stroke21, tetraplegia6,7,32, and ALS33. To the best of our knowledge, 
no studies have focused on the relationship between M1 activity representing motor information in real and 
imagined movements with high spatiotemporal resolution using non-invasive measurements. Considering the 
above findings, we hypothesized that there are common neural responses in M1 that are significantly active dur-
ing both real and imagined movements, and may therefore represent promising target signals for use with BMIs.

The aim of this study was to examine the similarities and differences in M1 activity during real and imagined 
movements in terms of neural decoding. Thus, we used MEG, which has several advantages in the analysis of 
neurophysiological signals compared with EEG and functional magnetic resonance imaging (fMRI). MEG has 
higher spatial resolution than EEG, and it can record a direct correlate of neural activity with a higher temporal 
resolution than fMRI. Spatially filtered M1 signals were extracted using a beamforming approach to classify the 
three types of unilateral upper limb movements in real and imagined movements on a single-trial basis, and the 
correlation of decoding accuracy between the two movements was examined.

Results
Intensities of contralateral M1 activities and decoding accuracy between real and imagined 
movements.  Electromyogram (EMG) showed a difference in response between real and imagined move-
ments (Fig. 1). Muscle activities were observed during the real movement but not during the imagined movement. 
There was no relationship between the EMG signals recorded during real and imagined movements (Fig. S1).

Figure 2A shows the time courses of brain activities in M1 contralateral to the movement side (cM1) dur-
ing real and imagined movements. For real movements, the intensity of cM1 activity gradually increased from 
− 500 ms and sharply peaked at 200 ms, whereas no such clear peak was observed for the imagined movement. 
Instead, two small peaks were observed at 150 and 250 ms. A significant difference in the intensity of cM1 activity 
between real and imagined movements was observed at 200 ms (Mann–Whitney U-test, p <  0.01) (Fig. 2A). To 
compare cM1 activity with other brain regions, the intensities of brain activity were also calculated from the fol-
lowing seven regions of interest (ROIs); contralateral S1 (cS1), frontal (c-frontal), and parietal (c-parietal) areas; 
ipsilateral M1 (iM1), S1 (iS1), frontal (i-frontal), and parietal (i-parietal) areas. However, there were no significant 
differences between the real and imagined movements in these brain regions (Fig. S2).

Using the normalized amplitudes of neuromagnetic activity, decoding accuracy was calculated at each time 
point in all cM1 virtual channels. For real movements, decoding accuracy gradually increased from − 500 ms and 
peaked at 100 ms (binomial test, p <  0.01) (Fig. 2B). The peak decoding accuracy averaged over subjects reached 
64.6 ±  15.2% (mean ±  SD). For imagined movements, decoding accuracy increased at − 100 ms, and two peaks 
were obtained at 50 and 300 ms (binomial test, p <  0.01) (Fig. 2C). The peak decoding accuracy averaged over 
subjects was 60.4 ±  13.9% at 50 ms. A significant difference in decoding accuracy between real and imagined 
movements was observed at 200 ms (p <  0.05, Mann–Whitney U-test) (Fig. 2D). To examine the representation 
of motor information in other brain regions, decoding accuracies were calculated from the other seven ROIs. 
The results showed that the second largest increase in decoding accuracy after that in cM1 was in cS1 (Fig. S3). 
Decoding accuracies were also calculated for real and imagined movements in the following frequency bands: 
alpha (8–13 Hz), beta (13–25 Hz), low gamma (25–50 Hz), and high gamma (50–100 Hz). Clear event-related 
desynchronizations (ERDs) were observed in the alpha, beta, and low gamma bands before response onset for 
both real and imagined movements, and event-related synchronization (ERS) was observed in the high gamma 

Figure 1.  A representative electromyogram amplitude during real and imagined movements. Robust 
muscle activities were observed during the real movement, but not during imagined movement, after the 
presentation of the execution cue (trigger).
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Figure 2.  Intensity of cM1 activity and decoding accuracy during real and imagined movements. (A) cM1 
activity sharply peaked at 200 ms in the real movement, whereas only small peaks were observed at 150 and 
250 ms in the imagined movement. A significant difference in the intensity of cM1 activity between real and 
imagined movements was observed at 200 ms (Mann–Whitney U-test, *p <  0.01) (error bar, standard error).  
(B) In the real movement, decoding accuracy gradually increased before response onset and peaked at 100 ms 
(error bar, SD). Decoding accuracy was plotted for the first sample acquired in the time window. The two 
horizontal solid and dotted lines indicate decoding accuracy at the chance level (33.3%; binomial test, p =  0.01 
for both). (C) In the imagined movement, decoding accuracy showed two peaks at 50 and 300 ms (binomial 
test, p <  0.01). (D) Significant differences in decoding accuracy between real and imagined movements were 
observed at 200 ms (Mann–Whitney U-test, p <  0.05).
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band which corresponded to onset for real movement (Fig. S4). However, none of these decoding accuracies were 
significant in cM1 (Fig. S5), or the other seven ROIs (Fig. S6).

In addition, the decoding analysis based on a single virtual channel showed a gradual and significant increase 
of decoding accuracy around the medial part of cM1 in line with response onset in both real and imagined move-
ments (binomial test, p <  0.01) (Fig. 3 and Supplementary movie 1, 2). Further, decoding accuracy increased 
around the medial part of cS1 corresponding to the response onset for both real and imagined movements 
(Supplementary movie 3 and 4).

In order to rule out the possibility that EMG activity may affect decoding accuracy during real and imagined 
movements, we examined their relationship in cM1. The results showed that there were no significant correlations 
between decoding accuracy and EMG activity for either movement (Fig. S7).

Correlations of decoding accuracy between real and imagined movements.  To examine the rela-
tionship between cM1 activity representing motor information in real and imagined movements, we calculated 
the spatial correlation of decoding accuracy between both movements at each time point. Figure 4 depicts the 
time course of the averaged spatial correlations. The correlation coefficients significantly increased from − 100 to 
300 ms (Pearson’s correlation test, p <  0.05). A similar result was also observed in cS1 from 100 to 300 ms but not 
in the other six ROIs (Fig. S8).

The temporal correlation of decoding accuracy between real and imagined movements was also examined 
in each virtual channel. Figure 5 shows temporal correlations of particular time ranges of decoding accuracy in 
cM1 between real and imagined movements. The temporal correlation significantly increased from − 200 ms 
(−450–50 ms) around the medial part of cM1, including the hand and arm areas [Spearman’s rank correlation 
test, p <  0.05, false discovery rate (FDR)-corrected] (Fig. 5, also see Fig. 6B). Although this significant correlation 
disappeared around response onset, it reappeared from 400 ms (150–650 ms) (Fig. 5 and Supplementary movie 5). 
Temporal correlations were also calculated in the other seven ROIs. The results showed a significant correlation 
between cS1 before and after response onset but not from 100 to 300 ms, which was weaker than that in cM1 
(Fig. S9) (Spearman’s rank correlation test, p <  0.05, FDR-corrected). These significant correlations tended to 
cluster around the hand and arm areas. The remaining six ROIs showed no significant temporal correlation.

Discussion
Many previous studies have used invasive or non-invasive measurements to demonstrate the importance of cM1 
activity for decoding movement types, directions, and trajectories during real and imagined movements6,7,20,34. 
Recently, we demonstrated the effect of functional connectivity between cM1 and motor association areas on BMI 
performance during real and imagined movements using MEG31. To the best of our knowledge, no previous stud-
ies have investigated the relationship between cM1 activity representing motor information in real and imagined 

Figure 3.  Spatial distribution of decoding accuracies averaged over subjects. Significant decoding accuracies 
were observed after response onset at the medial part of cM1, particularly around hand and arm areas, during 
both real and imagined movements. Decoding accuracy was plotted for the first sample acquired in the time 
window. Virtual channels with significant accuracies are marked with an “x” (binomial test, p <  0.01). A, 
anterior; L, lateral; M, medial; P, posterior.
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movements with high spatiotemporal resolution using non-invasive measurements. In this study, we performed 
neurophysiological and computational analyses to reveal the common neural correlates of cM1 activity related to 
motor representation using MEG.

The decoding accuracy significantly increased in line with the increase in cM1 activity for both real and 
imagined movements. Because there was no significant correlation between decoding accuracy and EMG activity, 
movement types were thought to be decoded only by cM1 signals. This result is consistent with a previous study, 
which reported that cM1 activity reflecting corticospinal motor output from the cM1 to the periphery was related 
to BMI performance6–8,20,21,35,36. In addition, our single virtual channel-based decoding analysis showed signif-
icant decoding accuracy around the hand and arm areas for both real and imagined movements after response 
onset, and these spatial distributions significantly correlated. Furthermore, the decoding accuracy between real 
and imagined movements showed a significant temporal correlation from − 200 to 0 ms and 400 to 600 ms. The 
significant correlation from − 200 to 0 ms shows a similar fluctuation in cM1 activity representing the movement 
type in both real and imagined movements. The correlation from 400 to 600 ms may reflect a similar decrease 
in cM1 activity at the end of both real and imagined movements (i.e., a similar decrease in decoding accuracy). 
Notably, decoding accuracy significantly surpassed the chance level for both real and imagined movements, and 
these spatial and temporal correlations were mainly observed around the hand and arm areas. These results 
suggest that the neural substrates involved in representation of movement type over cM1 overlap spatially and 
temporally. In other words, the cM1 somatotopic information needed to decode imagined movement may be just 
as useful as that required to decode real movement. Thus, our results support previous studies which showed that 
cM1 activity was useful for decoding both movement types6,8,10,14,21.

The second largest increase in brain activity and decoding accuracy after that in cM1 was observed in cS1 for 
both real and imagined movements. Our single virtual channel-based decoding analysis showed a significant 
increase in the decoding accuracy around the hand and arm areas for both movements. In addition, spatio-
temporal correlations were also found in cS1 as well as cM1. Previous studies have suggested that motor com-
mands descending from M1 to the spinal cord are collaterally forwarded to the sensory system37,38. This collateral 
descending output is termed “efference copy”. When the efference copy reaches sensory areas, the evoked activity 
similar to that of sensory feedback expected from the movement, has been reported39–42. Other studies have 
demonstrated overlapping sensory and motor representations in rodents43 and corticospinal neurons in the mon-
key S144,45. Furthermore, a recent study has provided evidence for a direct role of the sensory cortex in motor con-
trol using rodents46. These findings suggest the M1 and S1 are strongly coupled when integrating sensory-motor 
information. Considering that our result showed robust brain activity and high decoding accuracy in cS1 for both 
real and imagined movements, important information related to motor representation may be included in both 
cM1 and cS1.

Contrary to the common aspects mentioned above, cM1 activity and decoding accuracy temporarily differed 
between real and imagined movements after response onset. Corresponding to this period, the temporal corre-
lation of decoding accuracy between real and imagined movements also disappeared. This period is consistent 
with the latency of sensory feedback from the periphery to cS1 during voluntary movement47. Previous studies 
have reported that the anterior part of M1 is associated with movement, while the posterior part is activated by 
sensory inputs48,49 because of its abundant somatosensory afferents50. In addition, some non-primate studies have 
shown that M1 and S1 are reciprocally connected and that the synaptic inputs from S1 to M1 are stronger than 
those from M1 to S151. Furthermore, sensory-evoked activity is first presented to S1 and then propagated to M152, 
indicating that the sensory-motor connection plays an important role in integrating sensory-motor informa-
tion53,54. Considering that M1 reciprocally connects with S1 and also receives somatosensory input from it52 and 
muscle spindles55, the deficiency of somatosensory feedback resulting from a lack of voluntary movement may 
affect sensory-motor integration56–58. Thus, our results suggest that the significant differences in cM1 activity and 
decoding accuracy just after response onset are related to the presence or absence of sensory-motor integration 
that results from somatosensory feedback. Temporal characteristics similar to those in cM1 were also observed 
in cS1, which means that significant temporal correlations around the hand and arm areas in cS1 temporarily 

Figure 4.  Spatial correlation of decoding accuracies between real and imagined movements averaged over 
subjects. Significant spatial correlations were observed around response onset (Pearson’s test, *p <  0.05) (error 
bar, SD).
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disappear after response onset. This result may also stem from the presence or absence of sensory feedback and 
subsequent sensory-motor integration with real and imagined movements.

The decoding accuracy also increased in c-frontal and c-parietal areas near cM1 and cS1. These regions were 
previously reported to be involved in the representation of movement-related information59–61. However, our 
results showed that there were no significant spatiotemporal correlations in decoding accuracy between real 
and imagined movements, suggesting that the neural mechanisms of movement type representation may differ 
between real and imagined movements in these brain regions.

In the present study, we also calculated the decoding accuracy using frequency powers. However, no signif-
icant decoding accuracy was obtained in cM1 or other seven ROIs. Previous studies using non-invasive meas-
urements have successfully classified a moving state from a resting state using frequency band powers in the 
sensorimotor cortex10,12,62, whereas these features have been unsuited for inferring multiple movement types15. 
A recent study using MEG also showed that frequency powers were not capable of extracting motor information 
about movement type63. In contrast, previous studies using ECoG demonstrated that frequency band powers, 
particularly the high gamma band, were informative19,20, suggesting that our decoding results using frequency 
band powers may reflect a lower signal-to-noise ratio because of non-invasive MEG measurements for the high 
gamma band15. On the other hand, we obtained significantly high decoding accuracy using the averaged nor-
malized amplitudes of MEG signals. This feature mainly comprises the low frequency components of the signals 
extracted by averaging within sliding time windows. The low frequency signal component is reportedly suitable 
for decoding movement trajectories19,64, types8,14,35,36, and directions11,15. Given that the low frequency signal 
components have higher signal-to-noise ratios than the high frequency components, the decoding feature used 
in this study may have been suitable for classifying the unilateral upper limb movements, especially for MEG 
measurements.

In summary, cM1 neural activity representing movement type was similar for real and imagined movements, 
meaning that the measurement of cM1 activity is useful for decoding movement type. On the other hand, the 
intensity of activity and decoding accuracy in cM1 temporarily differed after response onset between real and 
imagined movements. Given that M1 reciprocally connects with S1 and receives somatosensory input from S1 
and muscle spindles, a lack of sensory-motor integration resulting from deficient somatosensory feedback may 
affect the significance of activity and decoding accuracy differences in cM1 between real and imagined move-
ments just after response onset. Previous studies have reported that BMI training combining proprioceptive sen-
sory feedback changes cM1 activity65 and facilitates functional recovery in stroke patients66, suggesting that the 
performance of imagery-based BMIs can be improved by utilizing appropriate somatosensory feedback. The 
absence of somatosensory feedback in current BMIs limits the quality of the movements67. Thus, understanding 
the interaction between efferent and afferent signals in M1 and S1 during real and imagined movements is essen-
tial for the development of high-quality BMIs and their application in various clinical fields, such as neuroreha-
bilitation. Further investigation may lead to the establishment of a preoperative evaluation method using invasive 
BMIs and their application in clinical settings.

Materials and Methods
Ethics statement.  This study was conducted in accordance with the protocol approved by the Ethics 
Committee of Osaka University Hospital (approval number 11125-4). Informed consent was obtained from all 
subjects prior to participation.

Figure 5.  Temporal correlation of decoding accuracy between real and imagined movements. Each plot 
depicts the correlation coefficients averaged over subjects at each time window. Temporal correlation began to 
increase significantly from − 200 ms (from − 450 to 50 ms) around the medial part of cM1, particularly around 
the hand and arm areas. These significant correlations disappeared around response onset and reappeared from 
400 ms (150–650 ms). Correlation coefficients at p <  0.05 were considered statistically significant and were 
plotted (Spearman’s rank correlation test, p <  0.05, false discovery rate-corrected).
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Subjects.  We enrolled 10 healthy volunteers (five males and five females; mean age: 25.8 years, standard 
deviation (SD): 7.4, age range: 21–35 years). All subjects were confirmed to be right-handed using the Edinburgh 
Handedness Inventory (EHI)68. All subjects had an EHI score of 100, no history of neurological or psychiatric 
diseases, and normal vision.

Tasks.  The experimental paradigm is shown in Fig. 6A. Participants performed two tasks, a motion task and 
an imagined task. We previously demonstrated the contribution of cM1 signals in the classification of movement 
types using the same motor task, on the basis of ECoG8 and MEG results14. An epoch began with 4 s in the rest 
phase, and a black fixation cross to fix the eyes of the subject on the screen was presented. Then, a Japanese word 
representing one of the three right upper limb movements (grasping, pinching, or elbow flexion) was presented 
to instruct the subject on which movement to perform or imagine after the execution cue appeared. Two timing 
cues, “>  < ” and “>  < ,” were subsequently presented one at a time, each for 1 s, to aid the subjects in prepar-
ing for the execution of real or imagined movements. In both the motion and imagined tasks, subjects were 
instructed to perform the requested movement immediately after the execution cue appeared. Each of the three 
types of movements was performed 60 times during real movement trials, and the movement in any given epoch 
was randomly selected. Then the imagined motor tasks were conducted in the same manner. Because we believed 
that performing real movements first would make it easier to perform the imagined movement, motion tasks 
were conducted before imagined tasks. To minimize fatigue, there was a minimum 30-min interval between the 
motion and imagined tasks.

MEG measurements.  Neuromagnetic activity was recorded in a magnetically shielded room using a 
160-channel whole-head MEG system equipped with coaxial type gradiometers (MEG vision NEO, Yokogawa 

Figure 6.  Task paradigm and location of virtual channels. (A) Experimental paradigm. Subjects performed 
the motion and imagined tasks in the same sequence. The trial consisted of four phases; the rest phase, 
instruction phase, preparation phase, and execution phase. In the rest phase, a black fixation cross “+ ” was 
presented for 4 s. Subjects fixed their eyes on the cross. In the instruction phase, a Japanese word representing 
one of three movements was presented for 1 s. Then, in the preparation phase, two timing cues, “>  < ” and 
“>  < ,” were presented one at a time, each for 1 s to aid the subjects in preparing for the execution of real or 
imagined movements. In the execution phase, subjects performed the real or imagined movement, as requested 
in the instruction phase stage, after the appearance of the execution cue “× .” Each of the three movements was 
performed 60 times. (B) Locations of the virtual channels are indicated by white dots on a three-dimensional 
brain model. Forty virtual channels were located on the left cM1 at intervals of 2.5 mm. The black dotted line 
indicates the location of the central sulcus. A, anterior; L, lateral; M, medial; P, posterior.
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Electric Corporation, Kanazawa, Japan). Subjects lay in supine position with their head centered. The position 
of the head was measured before and after the recording, using five coils that were placed on the face (the exter-
nal meatus of each ear and three points on the forehead). Using a visual presentation system and a liquid crys-
tal projector, visual stimuli were displayed on a projection screen positioned 325 mm from the subject’s eyes 
(Presentation, Neurobehavioral Systems, Albany, CA, USA; LVP-HC6800, Mitsubishi Electric, Tokyo, Japan). 
Data were sampled at a rate of 1000 Hz with an online low-pass filter at 200 Hz. To reduce artifacts from mus-
cle activity and eye movements, we instructed the subjects to rest their elbows on a cushion, to avoid shoulder 
movements, and to observe the center of the display without ocular movements or excessive blinking. To monitor 
unwanted muscular artifacts, muscle activity was simultaneously recorded on an electromyogram (EMG), with 
electrodes positioned on the flexor pollicis brevis, flexor digitorum superficialis, and biceps brachii muscles.

We also acquired structural MRIs, obtained using a 3.0 T MRI system (Signa HDxt Excite 3.0 T, GE Healthcare 
UK Ltd., Buckinghamshire, UK). To align MEG data with individual MRI data, three-dimensional facial surfaces 
were superimposed onto the anatomical facial surface provided by individual MRI data, with an anatomical 
accuracy of a few millimeters.

Virtual channels and preprocessing.  After data acquisition, a 60-Hz notch filter was applied to eliminate 
AC line noise. Eye-blink artifacts were separated and eliminated using signal-space projection, a method for sep-
arating external disturbances, implemented in Brainstorm (http://neuroimage.usc.edu/brainstorm)69.

To extract M1 contralateral to the movement side (cM1) signals from the MEG sensor, we used an adap-
tive, spatial filtering beamforming technique70. This approach is used to estimate the temporal course of neural 
activity at a particular site in the brain marked by an imaging voxel such as that derived from MRI. The output 
of such a spatial filter is termed a virtual channel or virtual sensor71. The beamformer is constructed to project 
signals exclusively from targeted voxels while eliminating residual noise to suppress signals from other parts of 
the brain. Thus, virtual channels provide data regarding neural activity at target voxels with a considerably higher 
signal-to-noise ratio than that of raw MEG data71. The point-spread function of the beamformer used in this 
study has been clearly shown by Sekihara72,73. In the present study, the σ c value was 0.36σ 1 (see Supplementary 
material for more information).

The target of the virtual channels was the cM1 gyrus. Using Montreal Neurological Institute (MNI) coordi-
nates, 40 virtual channels were selected in cM1 with an inter-sensor spacing of approximately 2.5 mm (Fig. 6B). 
Then, the virtual channel location coordinates on individual MRIs were extracted using MNI coordinates and 
warping parameters calculated with the help of the Statistical Parametric Mapping 8 program (SPM8, Wellcome 
Department of Imaging Neuroscience, London, UK) using an MRI-T1 template and individual MRI-T1 images. 
This procedure was applied for statistical analysis in accordance with the same MNI coordinates across subjects. 
A tomographic reconstruction of data was created by generating a single-sphere head model based on the shape 
of the head obtained from the structural MRI of each participant. The location of the virtual channel in cM1 con-
verted into individual coordinates from MNI were visually confirmed in all subjects. In order to contrast the cM1 
signals, the following seven ROIs were also extracted: cS1, c-frontal, c-parietal, iM1, iS1, i-frontal, and i-parietal. 
In each ROI, 40 virtual channels were extracted with an intersensor spacing of approximately 2.5 mm (Fig. S2).

Stimulus-locked analyses are not appropriate for investigating relationships between real and imagined move-
ments because any difference in the amplitude between the two movements could be due to a latency jitter in 
motor-related components. Such jitter can be caused by the fact that people respond at different times. To adjust 
the latency jitter in this study, we used the basic Woody technique74,75. This technique calculates cross-correlation 
between a single-trial waveform and the trial-averaged waveform (template) and shifts the latency of each 
single-trial waveform to that of its maximum correlation with the template. Although this technique was orig-
inally developed as an alternative averaging method for ERP analysis and many have used this technique to 
clarify brain function76–78, a recent study has extended its use to single-trial analysis79. In the present study, 
cross-correlations of waveforms between the single-trial waveform and template were calculated for each cM1 
virtual channel from − 500 to 500 ms (from the presentation of the execution cue). Each single-trial waveform was 
shifted using the latency with maximum correlation among all virtual channels (Table S1). Because the latency of 
the execution cue on each shifted single-trial waveform was different, we defined the time corresponding to the 
execution cue on the averaged waveform in each shifted waveform as a “response onset time.” The response onset 
time was set as 0 ms, and all time windows were relative to this time. After that, the baseline was set from − 3500 
to − 3000 ms. Data from each epoch were normalized by subtracting the means and then dividing them by the SD 
of the baseline values. The normalized amplitude of each cM1 virtual channel from − 2000 to 1000 ms was then 
resampled over an average 50-ms time window, sliding by 50 ms (61 time points in total).

Intensity of M1 activity during real and imagined movements.  To compare the intensity of cM1 
activity between real and imagined movements, we calculated the root mean square (RMS) from averaged nor-
malized waveforms of all cM1 virtual channels for both movements. The RMS analysis shows the activity of a 
selected area and effectively evaluates the global neural activity80. For both real and imagined movements, RMS 
amplitudes were averaged over the three movement types. Then, these averaged RMS amplitudes were statistically 
compared between real and imagined movements using the Mann–Whitney U-test. The intensity of brain activity 
between real and imagined movements was also compared in the other seven ROIs.

Decoding analyses.  Each of the consecutive four time points of normalized amplitudes (200-ms time win-
dow) in all left cM1 virtual channels was used as a decoding feature to classify the movement type from − 2000 to 
1000 ms with a 50-ms overlap. This time window was selected to obtain a high decoding accuracy and a detailed 
temporal fluctuation of decoding accuracy as previously reported81. A support vector machine operating on the 
MATLAB 2013a software (MathWorks, Natick, MA, USA), extended to discriminate multiple movements82, was 

http://neuroimage.usc.edu/brainstorm
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used to classify the movement type. Decoding accuracy was evaluated using a 10-fold cross-validation. Each 
dataset was divided into 10 parts; classifiers were determined from 90% of the dataset (training set) and were 
tested on the remaining 10%, so that the testing dataset was independent of the training dataset for each time 
point. This procedure was then repeated 10 times. The averaged decoding accuracy over all runs was used as a 
measure of decoder performance. The binomial test was used to confirm that the decoding performance signif-
icantly exceeded chance levels. In addition to the above analysis, decoding accuracy was calculated in each cM1 
virtual channel to examine which contains important information for representing the movement type. This 
single virtual channel-based decoding analysis was also performed in the other seven ROIs. Moreover, to examine 
the effect of frequency powers on decoding accuracy, decoding analysis was conducted in cM1 and other seven 
ROIs using the following frequency powers: alpha (8–13 Hz), beta (13–25 Hz), low gamma (25–50 Hz), and high 
gamma (50–100 Hz) bands. The power of each frequency band for each virtual channel was calculated using a fast 
Fourier transform for each 500-ms signal.

Comparison of decoding accuracy between real and imagined movements.  To examine the sim-
ilarities and differences in the cM1 signals representing motor information between real and imagined move-
ments, spatial and temporal correlations of decoding accuracy between the two movements were calculated. 
For spatial correlation, spatial distribution of decoding accuracies between real and imagined movements was 
analyzed using Pearson’s correlation test at each time point. Then, the correlation coefficient was averaged over 
subjects at each time point. In addition, using Spearman’s rank correlation test, temporal correlation was calcu-
lated at each 500-ms time window from − 1000 to 500 ms, sliding by 50 ms, in all combinations of virtual channel 
pairs. The correlation coefficient at each time window was then averaged over subjects. The results of the temporal 
correlation analysis were corrected for multiple comparisons using FDR. Spatiotemporal correlations were also 
calculated in the other seven ROIs using the same procedure.
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