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The hypervariable residues that compose the major part of proteins’ surfaces are gener-
ally considered outside evolutionary control. Yet, these “nonconserved” residues deter-
mine the outcome of stochastic encounters in crowded cells. It has recently become
apparent that these encounters are not as random as one might imagine, but carefully
orchestrated by the intracellular electrostatics to optimize protein diffusion, interactiv-
ity, and partner search. The most influential factor here is the protein surface-charge
density, which takes different optimal values across organisms with different intracellu-
lar conditions. In this study, we examine how far the net-charge density and other phys-
icochemical properties of proteomes will take us in terms of distinguishing organisms
in general. The results show that these global proteome properties not only follow the
established taxonomical hierarchy, but also provide clues to functional adaptation. In
many cases, the proteome–property divergence is even resolved at species level. Accord-
ingly, the variable parts of the genes are not as free to drift as they seem in sequence
alignment, but present a complementary tool for functional, taxonomic, and evolution-
ary assignment.
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Recent studies of live cells reveal that cytosolic crowding imposes some unique func-
tional challenges that have previously been unconsidered. Essentially, the cytosolic pro-
teins are not just sterically obstructive, but also interact electrostatically with one
another through repulsive and attractive forces (1). These diffusive interactions are
commonly referred to as “quinary interactions” (2), and their effect on the proteins
largely exceeds that predicted from simplistic hard-sphere crowding models (3). The
most dramatic effect of altering the quinary interactions is observed for the protein
motions. A protein that normally diffuses relatively freely in the cytosolic compartment
can be changed to get stuck to the intracellular surrounding by a single surface muta-
tion (4). The principal determinant behind this effect is the protein-surface charge
(4, 5). To maintain the cytosolic components suitably fluid, most biological macromo-
lecules, like proteins, nucleic acids, and membranes, carry repulsive net-negative charge,
and complete loss of this repulsion will naturally promote aggregation and functional
arrest (1). However, the role of the protein charge has turned out to be more subtle
than that: It modulates in detail the functional protein–protein encounters (1, 5–8).
Because the strength and duration of these dynamic encounters need to be kept within
certain limits for the cell to function optimally, the protein-charge decoration itself has
been suggested to be under biological control (1, 4, 9–11). This very idea challenges
the notion that the composition of the variable protein surfaces drifts freely and adds
another dimension to protein evolution and organism fitness (12). Attention then shifts
from the relatively small and highly conserved binding interfaces and active sites visible
in crystal structures to the least-conserved parts of the protein surfaces exposed to the
cytosolic surrounding. Proteome-wide studies of Escherichia coli confirm that there is
indeed a systematic bias toward negative charge density and show also that not any
negative charge density is acceptable: Proteins distribute around a moderately negative
value, away from which few deviations are observed (1, 13) (Fig. 1). Similar results are
obtained from measurements of isoelectric points, leading to the conclusion that the
majority of soluble proteins are acidic and that the degree of this acidity varies across
organisms (14–17). Classical examples are the proteomes of some halophilic archaea,
with net-charge densities 10 times more negative than observed for most other organ-
isms (18–23). Together, these findings show that the variable protein surfaces contain
previously unrecognized evolutionary cues, which can be captured in terms of specific
sets of physicochemical properties. The question is then whether organism identity can
be deduced from physicochemical observables alone. To explore this possibility, we
map here the divergence of proteome properties across organisms against the estab-
lished taxonomic classification and demonstrate that the resolving power is indeed
remarkably high. The results show that distinct clustering and separations of proteome
properties not only follow taxonomic divisions, but also reflect their adaptation to
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various biotopes and functional specializations. Given that the
data cover ∼18,000 organisms in all kingdoms of life, we focus
below on a few representative examples of divergent optimiza-
tions and refer the specialist readers to our proteome explorer
website for more specific analysis (https://proteome-explorer.
herokuapp.com/).

Results

Organisms in the Physicochemical Coordinate Space. It is well
known that cellular function relies on a complex network of
specific protein-binding events, the details of which can be
mapped out from the conservation of protein surfaces (24–27).
Here, we explore instead what can be learned from the ubiqui-
tous protein–protein interactions that are bound to be in com-
petition with specific binding. As outlined above, a principal
determinant for the diffusive interactions with the cellular inte-
rior is the protein net-charge density (4). To illustrate our
approach, we start by comparing the net-charge densities
(NCD) of each protein in the evolutionary divergent model
organisms Halobacterium salinarum (halophilic archaeon),
E. coli (gram-negative bacterium), and Homo sapiens (mammal)
(Methods). The results show that the net-charge densities adhere
to relatively narrow distributions centered around negative
mean values (Fig. 1). These narrow feature distributions, which

conveniently apply also to the other physicochemical observ-
ables analyzed in this study, allow us to simplify the compari-
son of the three organisms by reducing their proteomes to a set
of average coordinates (SI Appendix, Table S1 and Figs.
S1–S3). As base coordinates, we chose first the average net-
charge density (NCDaverage) and average protein size (average
molecular weight [MWaverage]), since these features are found
to influence the intracellular protein diffusion experimentally
(4, 13). Plots of NCDaverage vs. MWaverage show clear separation
between the three model organisms, indicating already at this
level a physicochemical diversification of their proteomes
(Fig. 1 and SI Appendix, Fig. S4). Most apparently, NCDaverage

of H. salinarum has a value ∼10 times more negative than
observed for E. coli and H. sapiens (Fig. 1). This simple proce-
dure can be extended to any other organism whose proteome is
represented in UniProt (∼10,000) or, with minor changes, in
the National Center for Biotechnological Information (NCBI)
Assemblies database (∼18,000; Methods and SI Appendix, Fig.
S1). Since the two datasets are found to yield very similar
results (SI Appendix, Fig. S5), we focus our analysis on the lat-
ter, which offers the largest taxonomic coverage.

The picture becomes even more persuasive upon inclusion of
all organisms, revealing the breadth and diversity of the physi-
cochemical landscape (Fig. 2). Archaea, Bacteria, and Eukaryota
not only occupy different physicochemical space, but also their
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Fig. 1. Outline of approach. (A) The UniProt Proteomes of Archaea, Bacteria, and Eukaryota were sampled and the physicochemical properties of each of
their proteins calculated (Methods). From this dataset, containing ∼10,000 proteomes, any species can be further analyzed with respect to its detailed protein
properties. (B) The distributions of protein MW and protein NCD for the proteomes of H. salinarum, E. coli, and H. sapiens. (C) Plot of the average MW and
NCD values, derived from the protein distributions in B. This two-dimensional representation shows clear separation of the three species. Corresponding
plots can be obtained for all UniProt Proteomes and, similarly, for all NCBI Assemblies (Methods; SI Appendix, Fig. S1; and Fig. 2). (D–F) Generally, the protein-
surface charge of individual proteins follows closely that of the proteome average (SI Appendix, Fig. S19). Shown are surface charge potentials in vacuum
(red for negative and blue for positive) of ribonucleotide reductase orthologs in H. salinarum (UniProt Q9HMU3 modeled on PDB 5im3), E. coli (PDB 2xap),
and H. sapiens (PDB 3hnc).
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distributions are markedly different in shape. While Archaea
and Bacteria spread over a broad range of NCDaverage values,
Eukaryota occupy a relatively narrow band (Fig. 2). Conversely,
Archaea and Bacteria are constrained to a relatively narrow
range of MWaverage, whereas Eukaryota shows a much larger
span that is also shifted to higher mass. The results underline
that the properties of the variable protein surfaces are by no
means random, but are biased to distinct regions of the param-
eter space and bear all the hallmarks of biological optimization.

Archaea and the Halophilic Niche. From the pattern of
archaeal proteome properties, three subpopulations are immedi-
ately recognized (Fig. 2). The picture clarifies further upon col-
oring the data according to organism lineage, i.e., phylum,
class, order, family, genus, and species (Methods and Fig. 3).
Distinction of the cluster at high-negative NCDaverage is clear-
cut (cluster 1), and its members represent two taxonomic clas-
ses of Euryarchaeota, i.e., Halobacteria and Nanohaloarchaea.
Both taxa inhabit hypersaline environments (28), and their
extremely negative proteomes have previously been linked to
osmotic pressure adaptation (29). Essentially, these archaea pre-
vent water loss to the hypersaline environment by accumulating
multimolar cytosolic concentrations of electrostatically screen-
ing KCl and NaCl. This, in turn, requires that the protein sur-
faces become more negative to maintain viable repulsion and
prevent full-scale aggregation (1, 30). The other two archaeal
clusters are less clearly separated in the NCDaverage

–MWaverage

projection but can be further deconvoluted by Gaussian mix-
ture models (SI Appendix, Fig. S7) or principal component
analysis (PCA) based on a larger set of physicochemical proper-
ties (SI Appendix, Fig. S8). Cluster 2 brings together an elusive
group of marine archaea for which taxonomic information is
yet scarce (31, 32). One-quarter of its members are currently
listed under the class Candidatus Poseidoniia (former Marine

Group II), while two-thirds of its members are associated
with unclassified archaea, under NCBI:txid2026739 (Fig. 3).
Another conspicuous feature of cluster 2 is that it displays
NCDaverage values intermediate between the extreme halophiles
and other organisms, indicating a separate line of functional
adaptation (1). Finally, cluster 3 is centered around NCDaverage =
0 and holds the main collection of archaeal taxa, including the
recently described phyla Thaumarcheota, Crenarchaeota, and Can-
didatus Lokiarchaeota (33, 34) (Fig. 3). This orderly separation
underlines that NCDaverage and MWaverage do not drift randomly
during the course of evolution, but closely follow the organism
lineage and habitat adaptation.

Bacteria and the Endosymbiotic Niche. A striking feature of
the bacterial subset is the long tail of net-positive proteomes
(Fig. 2). However, this anomalous positive charge is tied to the
identity of these organisms and their lifestyle. The bacteria
observed above NCDaverage = 0.001 eÅ�2 are all endosym-
bionts, such as Buchnera, Candidatus Hodgkinia, and Blattabac-
terium, which exclusively live inside insect cells (35–37). The
mutualistic relationship imposes a purifying selection that has
led to reduced proteomes with skewed charge distributions (38,
39). Consistently, these small proteomes are enriched in the
positively charged proteins targeted to nucleic-acid binding in
replication, transcription, and translation (SI Appendix, Fig.
S9), while the “missing” negatively charged proteins are
imported from the host (40). The other Bacteria exhibit a
rather uniform scatter in the NCDaverage

–MWaverage projection,
which is centered at a slightly negative value and lacks the sepa-
rated subclusters observed for Archaea (Fig. 2). Despite the
extensive overlap in this distribution, remarkable segregation
still emerges upon linking the data to taxonomy. For the five
largest phyla, i.e., Proteobacteria, Firmicutes, Actinobacteria, Bac-
teroidetes, and Tenericutes, the data reveal five partly overlapping
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Fig. 2. The average proteome properties of the three kingdoms of life. (A) Plot of NCDaverage vs. MWaverage based on 2,223 archaeal (red), 13,652 bacterial
(green), and 2,004 eukaryotic (blue) NCBI Assemblies. The data show clear divergence of proteome properties across the different organisms. (B–D) Density
maps of the Archaea, Bacteria, and Eukaryota datasets, revealing detailed features in the physicochemical landscapes. As outlined in Figs. 3–6, the distinct
peaks and clusters in these landscapes indicate various types of functional optimization at average protein level. For interactive versions of B–D, see
Movies S1–S3.
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Fig. 3. NCDaverage vs. MWaverage maps of Archaeal, Bacterial, and Eukaryotic NCBI Assemblies where the individual organisms are colored according to taxo-
nomic assignment. A–C, Left show the kingdom phyla, and A–C, Right show divisions into selected lower taxonomic levels, i.e., class or genus. Systematic
biases appear at all taxonomic levels in terms of NCDaverage and MWaverage, and these results can be reproduced in the smaller dataset based on UniProt
Proteomes (SI Appendix, Fig. S6). (A) The five most abundant phyla of Archaea, where the selected phylum Euryarchaeota (black) contains members of all
archaeal clusters (SI Appendix, Figs. S7 and S8). Upon division of Euryarchaeota into classes, it emerges that exclusively Halobacteria and Nanohaloarchaea
make up cluster 1, Candidatus Poseidoniia maps to cluster 2, while all other classes of Euryarchaeota group in cluster 3. (B) The five most abundant phyla of
Bacteria, where the largest phylum Proteobacteria (black) is further divided into classes. A notable feature is that the various classes of endosymbionts with
markedly reduced number of genes are separated from other bacteria by having positive NCDaverage values (SI Appendix, Fig. S15). Conversely, assemblies of
some Mycoplasma containing very small proteins are seen at MWaverage < 16 kDa (SI Appendix, Fig. S18). (C) The five most abundant phyla of Eukaryota, all of
which are biased to different regions of the property map. The most patent segregation involves Apicomplexa at high NCDaverage and MWaverage values. Upon
dividing Apicomplexa into genus, this divergence of proteome properties is most pronounced for Plasmodium, containing the malaria parasites. Other exam-
ples of taxonomic segregation of eukaryotes in the NCDaverage–MWaverage projection are shown in SI Appendix, Fig. S11.
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yet distinct clusters (Fig. 3). Each of these phyla further splits
up into lower taxonomic levels with well-separated proteome
properties that extend continuously down to bacterial classes
(https://proteome-explorer.herokuapp.com/).

Eukaryotes and the Plasmodium Parasite. The overall prote-
ome features of Eukaryota differ in two ways from those of
Archaea and Bacteria (Fig. 2). Eukaryotes not only have adapted
protein sizes that are 64% larger, but also show a cross-species
MWaverage variation much greater than observed for the prokar-
yotes. At the extremes, we find the clusters of Streptophyta
(plants) and Apicomplexa (parasitic protozoa) centered around
MWaverage = 40 and 80 kDa, respectively (Fig. 3). Contrasting
the flexibility in size, Eukaryota are relatively restricted in terms
of NCDaverage: Their values are confined to a narrow interval
between �10�3 and +10�3 eÅ�2, compared to a five-times
larger spread for the prokaryotes (Fig. 2). Even so, Eukaryota
reveal one marked division: A subset of species is offset to posi-
tive NCDaverage values and extreme MWaverage in Fig. 3 C,
Right. Intriguingly, this minor cluster holds the phylum Api-
complexa, including the genus Plasmodium and the malaria par-
asites (41–43). The largest phyla in the main eukaryote cluster
are Basidiomycota (filamentous fungi), Chordata, Streptophyta
(plants), and Ascomycota (sac fungi) (Fig. 3), where the distinct
peak in the NCDaverage

–MWaverage topology is caused by the
sheer number of species in the latter (Fig. 2). Eukaryota main-
tain also orderly physicochemical separation at lower taxonomi-
cal levels, as observed for Archaea and Bacteria (SI Appendix,
Fig. S10).

Additional Separation by Inclusion of Guanine–Cytosine
Content and Fraction of Charged Residues. Although the dis-
tinction of proteome properties in Figs. 2 and 3 is indeed sur-
prisingly detailed, it remains limited to two variables alone.
The question is then, What happens if the analysis is extended
to include additional properties of physiological interest? One
such property is the fraction of charged residues ( f averagecharged ), and
another is the enigmatic guanine–cytosine (GC) content (SI
Appendix, Table S1) (44, 45). Although the latter is not linked
to protein identity per se, it represents a key modulator of the
physicochemical behavior of DNA that also varies across organ-
isms in a phylogenetically consistent way (46). The effect of

this parameter change is illustrated as follows: For Archaea, the
f averagecharged� GC projection reveals additional complexity within
the halophilic cluster 1, where Halobacteria cluster at the high
end of the GC distribution, while Nanohaloarchaea occupy
more moderate GC values (Fig. 4). However, there are some
notable outliers at intermediate GC in both classes. Among
Halobacteria, the outliers correspond to different assemblies of
Haloquadratum walsbyi with peculiar square-shaped cells (47),
and the single nanohaloarchaeon outlier represents one of the
first described members of its class (28) (Fig. 4). The separation
of the two classes implies either that 1) the highly negative pro-
teomes of cluster 1 have arisen through convergent evolution or
that 2) their GC content has diverged. Irrespectively, the orga-
nized partitioning in the plot emphasizes that the proteome
properties do not drift randomly, but adjust to specific opti-
mized values. Corresponding separations within Bacteria are
shown in SI Appendix, Fig. S11, where, e.g., Proteobacteria, Fir-
micutes, and Bacteroidetes exhibit convergent proteome proper-
ties with divergent GC content. Within Eukaryota, the change
of parameters reveals an orderly division of the phylum Apicom-
plexa, where the genera containing the most members split up
into well-defined clusters. In turn, finer taxonomic differences
are detected across several species of Plasmodium, which can be
isolated due to their diverging GC contents (Fig. 4).

Separations Relating to Preferred Temperature and
Morphological Features. It is well established that adaptations
to extreme habitats and acquisition of certain cellular features
often involve convergent evolution. One such adaptation is the
ability to sustain extreme temperatures, where the bacterial pro-
teomes display significant physicochemical preferences (Fig. 5
and Movies S4 and S5). Upon coloring the bacterial species
according to their growth temperatures (Tgrowth), the thermo-
philes with Tgrowth > 60 °C cluster around NCDaverage = 0,
low GC, and high f averagecharged (Fig. 5 and SI Appendix, Fig. S12).
Conversely, the cold-adapted psychrophiles with Tgrowth <
15 °C show more negative NCDaverage, high GC, and low
f averagecharged (Fig. 5 and SI Appendix, Fig. S12). A notable outlier is
the model organism for thermophilic bacteria, Thermus thermo-
philus (48), which possesses relatively high GC and just moder-
ate f averagecharged (Fig. 5 and SI Appendix, Fig. S12). To exemplify
proteome bias linked to morphological classification, we use the
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“gram staining,” by which bacteria are grouped according to
their cell wall exposure (49). Separations occur here already in
the NCDaverage

–MWaverage plane where the gram-positive bac-
teria show proteomes that are overall more negatively biased
(Fig. 5). Clues to this difference are again found in their physi-
ological adaptation: gram-positive bacteria rely generally on
thick cell walls without external membranes, coupled to turgor
pressures that are considerably higher than those of their gram-
negative relatives (50, 51).

Uniform Manifold Approximation and Projection: Making the
Most of the Data. Uniform manifold approximation and pro-
jection (UMAP) is a dimensionality reduction technique that
has successfully been used to visualize data from single-cell
mass cytometry and RNA-sequencing studies (52, 53). In this
study, UMAP projections based on NCDaverage, MWaverage,
GC, and f averagecharged show that the global separations of Archaea,
Bacteria, and Eukaryota are basically retained, but with
improved congruency (Fig. 6). For Archaea, UMAP confirms
the three archaeal clusters in Fig. 6 and better resolves the
boundary between clusters 2 and 3 (Fig. 6). At lower taxo-
nomic levels, the classes Halobacteria and Candidatus Poseido-
niia within the phylum Euryarchaeota are moved farther apart,
and even subtler differences between the orders of Methanomi-
crobia emerge (SI Appendix, Fig. S13). For Bacteria and Eukar-
yota, the UMAP projections largely improve the separation of
the main phyla, reducing the overlap observed in Fig. 3 (SI
Appendix, Figs. S14–S17).
The power of the UMAP projections, however, is best dem-

onstrated by examining lower ranks in the taxonomic hierarchy.
For example, the well-studied class Gammaproteobacteria, con-
taining many medically, ecologically, and technologically
important groups of bacteria (54, 55), reveals clear differences
in physicochemical properties between closely related taxa
down to genus level (Fig. 6). In particular, the pathogen-
containing Klebsiella (56) stand out from their sibling genera
Escherichia, Enterobacter, and Salmonella. These genera also pro-
vide examples of broad property spreads that possibly relate to
their variable mosaic genomic structures, accounting sometimes
for > 50% of the protein content (57, 58). Correspondingly
distinct separations are observed for Eukaryota, where the

lineages for pathogens and other biologically interesting organ-
isms often run unbroken to individual species (SI Appendix,
Figs. S16 and S17). Although UMAP embeddings offer
remarkable resolving power, the physicochemical properties
underlying the separations are obscured by the nonlinear nature
of the method (53). Even so, the missing information can
strictly be traced back to the input parameters NCDaverage,
MWaverage, GC, and f averagecharged (Methods), making UMAP a quick
and sensitive tool for initial exploration of proteome differences
across large datasets.

Implications from Outliers: Taxonomic Misassignments and
Proteome-Quality Check. Because our analysis is based on aver-
age protein properties rather than on specific sequence details,
the position of an organism in the physicochemical space is rel-
atively robust and insensitive to variability in the individual
genes (SI Appendix, Figs. S5 and S6). The question is then
what the odd outliers that still emerge in the datasets represent.
Inspection of the halobacterial assemblies that are offset to
near-neutral NCDaverage values (Fig. 3) shows that these either
contain large numbers of pseudogenes or lack support for con-
clusive taxonomic assignment (SI Appendix). Although it
remains to be examined what further categories of outliers there
are, the ease with which they can be spotted offers a quick qual-
ity control of gene assemblies and taxonomic assignment (SI
Appendix, Fig. S18).

Discussion

The physicochemical features of biomolecules are key to cellu-
lar viability, and we demonstrate here that simplistic analysis of
protein-surface properties alone can be used for taxonomical
distinction of organisms across all kingdoms of life. In essence,
the protein surfaces of the various organisms display relatively
narrow net-charge density distributions, the average values of
which (NCDaverage) diverge in an evolutionarily consistent way
(Fig. 1). The driving force behind this divergence is possibly
the need to keep the proteome optimally fluid under different
adaptive pressures (1, 4, 14–16). A telling example is the
extremely negative NCDaverage values of Halobacteria, where
the gain of extra repulsive charge opposes proteome aggregation
in cells with high concentrations of screening salt (1, 19–21)
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(Fig. 2). However, such orderly divergence of proteome
NCDaverage is not limited to extremophiles, but is observed for
most organisms in minimalist MWaverage

–NCDaverage plots
(Fig. 3). Additional adaptive cues are revealed by extending the
physicochemical space to include other variables of interest,
such as the proteome f averagecharged and the genomic GC (Fig. 4).
Organism divergence is then resolved at most taxonomic levels,
ranging from distinct clustering of phyla down to local separa-
tions of genus and even individual species (Fig. 3 and SI
Appendix, Fig. S16). Corresponding patterns of separation
emerge also on a collective scale upon grouping the prokaryotic
organisms according to growth temperatures (Tgrowth), cell-wall
characteristics, and endosymbiotic lifestyle, where the prefer-
ence for a certain set of proteome features spans multiple taxa
(Fig. 5 and SI Appendix, Fig. S15). This convergence across dis-
tantly related organisms suggests that the proteome properties
are not coupled to the lineage or taxonomy per se, but dictated
by optimization of cellular function to a given set of habitat
conditions or morphological constraints. In other words, adap-
tation to a certain niche involves not only the acquisition of
specific sets of functional loci, but also adjustments of the pro-
teome properties as a whole, expanding the notion of “habitat
genomes” (59–61). Since the present analysis targets mainly the
variable protein surfaces, it provides evolutionary information
orthogonal to that obtained from conventional sequence align-
ments (62, 63). Similar attempts to classify organisms by their
protein features have previously been made on smaller subsets
of organisms, using isoelectric focusing (23), mass spectrometry
(64, 65), and computational estimates of protein isoelectric

point (16, 66, 67). The results from these studies are overall
consistent with the observations presented here, underlining
that optimization of the hypervariable parts of the protein sur-
faces occurs generally during evolution.

Regarding the applications of protein-property mapping, it
can readily aid 1) classification (Figs. 3–6 and SI Appendix,
Figs. S10, S11, and S13), 2) quality control of deposited
genomes, and 3) determination of variability and constraints in
physicochemical adaptations (SI Appendix). With respect to the
latter, one question concerns the very limits for life in extreme
environments (68), with implications for astrobiology (69) and
primordial evolution (70). A related issue is why there is such a
diversity of alternative adaptations for a given biotope. One
example is the cluster-2 Archaea with NCDaverage values inter-
mediate between those of most other marine organisms and the
brine-adapted Halobacteria (Fig. 3). Despite that, the cluster-2
Archaea are by no means extremophiles, but appear exclusively
in samples from the surface regions of temperate oceans around
the globe (31, 32). These archaea may then employ their own
physiological strategy to survive in this competitive niche, per-
haps by using an energy-conserving salt-in strategy similar to
that of Halobacteria (71). If so, their internal salt concentra-
tions will match that of the oceans at around 0.5 M NaCl,
where the functional electrostatic interactions are suppressed
due to excessive ion screening (1, 72, 73). Interestingly, this
seemingly unfavorable cytosolic situation applies also to any
prebiotic chemistry that has occurred in marine environments
(74), emphasizing the need to better understand these alterna-
tive, and perhaps ancient, adaptive solutions. To this end, it
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Fig. 6. UMAP representations of the three kingdoms of life, based on the physiochemical properties NCDaverage, MWaverage, GC, and faveragecharged : Top panels
mark the five largest phyla (Fig. 3), where splitting into lower taxonomic levels is shown only for Bacteria (Bottom). The UMAP separations at genus level are
largely, but not only, linked to differences in GC (SI Appendix, Fig. S14).
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remains to see whether the deviating proteome properties of
some pathogens and parasites can inform the optimization of
therapeutic targeting. One example is the positive NCDaverage

bias of the malaria parasites (Plasmodium), which clearly con-
trasts with that of the human host (Figs. 3, 4, and 6). Also, we
note the SOD1 mutations associated with the neurodegenera-
tive disease amyotrophic lateral sclerosis (ALS) preferentially
reduce the protein’s net-negative repulsive charge (6) and that
electrostatic interactions are bound to play a central role in the
formation of biological condensates (75, 76).
When it comes to protein compatibility across species, infor-

mation can be sought in the physicochemical profiles of organ-
isms involved in lateral gene transfer events. As one example,
the suggested donor for transfer of ribonucleotide reductases to
Halobacteria is the halophilic bacterium Salinibacter ruber (77).
Not only do these organisms share the same habitat, but
also the proteome NCDaverage of S. ruber is on the extreme neg-
ative side of the bacterial distribution and thus very close to
Halobacteria (SI Appendix, Fig. S20). Such matching of prote-
ome properties in lateral gene transfer is indeed expected to
favor functionality, which can be a useful consideration in syn-
thetic biology (78) and in cellular protein engineering in gen-
eral. Along this line, we observe by in-cell NMR that transfer
of the human HAH1 protein into E. coli causes a marked arrest
of its rotational diffusion, which predictably restores when the
protein is mutated to have average surface properties similar to
that of the E. coli homolog (4). While this single-protein case is
easy to understand, the evolution of the proteome-wide average
poses a more intricate problem. To acquire the halophilic char-
acter of H. salinarum, for instance, a cluster-3 archaeon must
on average add ∼20 negative charges to each protein surface (SI
Appendix, Fig. S19). Since the diffusive encounters between
intracellular proteins seem to be at the verge of specific interac-
tion (79), such an evolutionary pathway is expected to involve
numerous new binding constellations and loss of functional
colocalization (80). Also, it will cause substantial increase of the
protein–counterion ratios, an evolutionary transition across the
minimum in charge-screening length (1), and require large-
scale change of strategy for maintaining viable osmotic pressure
(81, 82). The improbable picture that emerges is an evolution-
ary pathway that goes uphill; i.e., the organisms’ fitness
decreases as charges accumulate on their protein surfaces, until
a breakthrough allows them to colonize a hypersaline environ-
ment. Although the changes of proteome properties between
divergent taxa are generally smaller, and lateral gene transfer
will speed up the transformation, the halophile example illus-
trates the extent of the problem and points to a question in cel-
lular evolution that is not yet resolved. Regarding the time
scales for physicochemical diversification, it is also of interest to
establish the relative rates of NCDaverage and GC alterations.
Candidates for such analysis are Halobacteria and Nanoha-
loarchaea with similar extreme NCDaverage values, but with GC
of 65 and 45%, respectively (Fig. 4).
Obviously, the proteome-wide properties on which the pre-

sent analysis focuses (Fig. 1) carry several simplifications and
are by no means comprehensive. For example, we have left out
the projections relating to surface hydrophobicity, despite that
this parameter represents one of the basic forces controlling
protein–protein interactions (4, 83, 84) and also indicates sys-
tematic cross-organism divergence complementary to that of
charge (SI Appendix, Fig. S21 and Movie S6). The reason is
that estimates of surface hydrophobicity from sequence data
alone remain uncertain and are better saved for approaches
based on high-resolution structures. Our analysis also does not

cover to what extent the physicochemical flavor of the intracel-
lular proteins responds to changes of expression patterns—
e.g., in the cell cycle, various development phases, and stress
responses—as well as the influence from the variable genomic
composition within many bacterial genera (57, 58, 85). For
instance, cytoplasmic acidification is reported to play a crucial
role in mounting endogenous protein condensation and heat-
shock response in yeast (86). Based on our current observa-
tions, the lowered pH is here expected to decrease the basal
net-negative repulsion, favoring at the general level protein–
protein association. To this end, the present study shows that
the hypervariable protein surfaces exhibit formerly unappreci-
ated signs of evolutionary control, possibly relating to their role
in modulating diffusive protein encounters and intracellular sol-
ubility (1). While these signs may go unnoticed in conventional
sequence alignment, they underline that global optimization of
protein crosstalk is a universal determinant of cellular fitness.
Thus, physicochemical profiling of proteins adds a perspective
on cellular function, going beyond specific genes to global pro-
teome features, and raises the question of whether there are
even more layers in the molecular optimization of organisms
waiting to be uncovered.

Methods

Datasets: NCBI Assemblies and UniProt Proteomes. Our knowledge of
the proteins expressed by any given organism is constantly expanding, in pace
with the growing number of sequenced genomes. To determine and cross-
validate proteome properties across species, two complementary datasets were
constructed over the course of 2 y: One was obtained from the NCBI in Decem-
ber 2019 and the other from UniProt Proteomes in October 2021. Both datasets
were designed to meet certain quality criteria. From NCBI, we analyzed the Gen-
Bank annotations of all assemblies and excluded those flagged as partial, anom-
alous, or derived from large multi-isolate projects. Also, since bacterial sequences
are vastly more abundant than those for archaea and eukaryotes, we limited our
bacterial subset to complete genomes only. From UniProt, we took only refer-
ence proteomes into consideration, as this dataset also serves as quality control.
Finally, records containing fewer than 50 proteins were disregarded across the
board, limiting the number of proteomes in the NCBI and UniProt datasets to
∼18,000 and 10,000, respectively (SI Appendix, Fig. S1). The taxonomic line-
ages were then obtained for every proteome in these datasets through their
NCBI TaxIds with TaxonKit, a command-line interface tool for handling NCBI tax-
onomy data (87), and these lineages were considered at six hierarchical levels,
i.e., phylum, class, order, family, genus, and species.

Considering that the 10,000 UniProt proteomes are constructed from
selected NCBI assemblies, it is notable that only 3,276 records are shared by the
two datasets. There are at least two reasons for this partial overlap. First, as
sequence data are in continuous development, some current UniProt Proteomes
map to more recent NCBI assemblies that did not exist in 2019. Second, many
bacterial UniProt proteomes are constructed from incomplete NCBI genomes at
lower assembly levels, i.e., contigs and scaffolds, not present in our NCBI data-
set, which included bacterial complete genomes only. A detailed comparison of
how our two datasets were derived is presented in SI Appendix, Figs. S5 and S6.

Physicochemical Features, Residue Compositions, and Organism
Profiles. The physicochemical properties of proteins were derived directly from
their sequences, yielding a total of 11 features (SI Appendix, Table S1). Protein
solvent-accessible surface area (SASA) was obtained from MW, using Miller’s
empirical equation (88). Protein net charge (chargenet) and the fraction of
charged residues (fcharged) were derived from the number of acidic (D and E) and
basic (R and K) residues in the individual protein sequences divided by
sequence length (lsequence). While chargenet has relevance for the description of
protein electrostatics (1), fcharged has been reported as a controlling aspect in the
context of protein hydration (89). SASA and chargenet estimates were then com-
bined to obtain protein NCD, which is a central parameter in the treatment of
colloidal systems (1). Based on the general architecture of protein structures, this
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derivation assumes that all charged residues are located outside the hydrophobic
core and contained at the protein surface. As an estimate of protein hydrophobic-
ity, we used the sequence fraction of the four most hydrophobic residues F, L, I,
and V (fhydrophobic). Finally, proteome size was defined by the number of anno-
tated genes (ngenes). To obtain a corresponding physicochemical parameter for
the DNA, we resorted to the whole-genome content of guanidine and cytosine
bases (GC), as listed in the NCBI Genome Reports for prokaryotes and eukar-
yotes. Thus, our physicochemical properties define an 11-dimensional space, in
which the various organisms are compared. In most figures, we base this com-
parison on the average features of all proteins in a given proteome, denoted
with the superscript average (Figs. 1–5 and SI Appendix, Figs. S4–S7, S10–S15
and S17–S21).

As complementary analysis, organism coordinates were also obtained for resi-
due composition, expressed as the proteome averages of the fractional abundan-
ces of the 20 naturally occurring amino acids. In other words, for each residue i
we count the number of occurrences in a sequence and divide this by lsequence to
obtain 20 fractions, fA, fC … fi such that∑

20
i fi ¼ 1:

Notably, the proteomes selected for downstream analysis were considered in
full. That is, they contain proteins of all sizes, including large proteins for which
the Miller approximation of SASA performs worse (1), and subcellular localiza-
tions outside the cytosol, including membrane proteins. The skewing introduced
by this simplification, however, remains small: Previous controls show that the
physicochemical features of whole proteomes are essentially indistinguishable
from those derived from cytosolic proteins of high abundance only (1). Except
for GC, which is identical for both the NCBI and UniProt datasets (SI Appendix,
Fig. S1), the exact score of each organism on every other feature can be different,
as the two databases of origin rely on different methods and criteria to build
their records. This allows us to evaluate the robustness of our results by compar-
ing to what extent they can be reproduced with the two datasets (SI Appendix).

Gram Staining and Optimal-Growth Temperature. To see how features
other than the organism's position in the taxonomic hierarchy are reflected in
the physicochemical properties of bacteria, data relating to growth temperature
(Tgrowth) and gram staining were obtained from BacDive (90). These records were
merged with our dataset of bacterial physicochemical features, through NCBI

TaxId, and yielded subsets of 1,146 entries with annotated gram stain and
7,780 entries with annotated growth temperatures.

Statistical Methods. Data analysis was carried out using custom Python code
(version 3.6) and the scikit-learn module (91). Decomposition of the archaeal
dataset into three clusters in the NCDaverage–MWaverage projection was based on
a Gaussian mixture model (GMM) with three subpopulations and tied covariance
(91). PCA of the same dataset was performed on 9 of the 11 physicochemical
features in SI Appendix, Table S1: lsequence and SASA were excluded because of
their inherent correlation with MW. PCA was also performed on all 20 features
of amino acid composition. Finally, UMAP was performed as implemented in
the Python module created by McInnes et al. (53). All reported results were
based on the four features NCDaverage, MWaverage, GC, and f averagecharged : After explora-
tion of several combinations of parameters, we opted for visualizations obtained
with 100 neighbors and 0.99 minimum distance (53), where the “number of
neighbors” affects how well the global structure is preserved, and the “minimum
distance” affects the local overlap between observations in the resulting projec-
tion. PCA and UMAP were run on the archaeal, bacterial, and eukaryotic subsets
separately, to avoid that the bacteria overshadow the other two kingdoms due to
their sheer number.

Ribonucleotide Reductase Structures. As base for the comparison, we used
the ribonucleotide reductase (RNR) structures for H. sapiens (Protein Data Bank
[PDB] code 3hnc) and E. coli (PDB code 2xap). The corresponding RNR structures
for H. salinarum and S. ruber were modeled on the homologous proteins from
Pseudomonas aeruginosa (PDB code 5im3) and Thermotoga maritima (PDB code
1xjk), respectively. Both models were built on SWISS-MODEL (92) with default
parameters, where the templates with highest sequence identity were selected.

Data Availability. All study data are included in this article and/or supporting
information.
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