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1  | INTRODUC TION

Hippocampal perineuronal nets (PNNs) have been demon‐
strated to play a central role in neural plasticity, fear conditioning 
(Hylin, Orsi, Moore, & Dash, 2013; Thompson et al., 2018), and 
long‐term potentiation (Yamada & Jinno, 2013). PNNs regulate 
learning and memory via stabilization of inhibitory parvalbumin 
positive (PVALB+) interneurons (Yamada, Ohgomori, & Jinno, 

2015), providing protection against physical forces and reactive 
oxygen species (Cabungcal et al., 2013). PNN expression peaks in 
adulthood but is minimal in newborn and aged animals (Yamada & 
Jinno, 2013). The appearance of PNNs in juveniles coincides with 
the closing of critical developmental periods (Cornez et al., 2018; 
Pizzorusso et al., 2002), helping to solidify active synaptic net‐
works (Dityatev et al., 2007). Loss of PNNs in the brain has been 
linked to brain diseases associated with neurological and cognitive 
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Abstract
Introduction: Perineuronal nets (PNNs) are extracellular matrices that encompass 
parvalbumin‐expressing parvalbumin positive (PVALB+) fast‐spiking inhibitory in‐
terneurons where they protect and stabilize afferent synapses. Recent observations 
that gonadal hormones influence PVALB+ neuron development suggest that PNN 
regulation may be sexually dimorphic. Sex differences in PNN abundance and com‐
plexity have been reported in sexually dimorphic nuclei in zebra finch brains; how‐
ever, corresponding differences in mammalian brains have not been investigated.
Methods: In this study we assessed the number of cortical and hippocampal PNNs in 
juvenile and young adult male and female rats using fluorescent immunohistochem‐
istry	for	PVALB	and	the	PNN	marker	Wisteria	Floribunda	Lectin.
Results: We report here that PNNs are numerous and well developed in hippocampal 
cornu ammonis‐1 of adult males but are lower in juvenile and possibly adult females. 
No significant differences were observed between sexes in cornu ammonis‐3 or ad‐
jacent neocortex. There was an observed developmental difference in the neocortex 
as juveniles had more PVALB+ cells, but fewer PNN+ cells, than adults.
Conclusions: Because PNNs are integral for several hippocampal‐mediated learning 
and memory tasks, these observations have potential sex‐dependent translational 
implications for clinical strategies targeting cognitive dysfunction.
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dysfunction, including epilepsy (McRae & Porter, 2012), schizo‐
phrenia (Shah & Lodge, 2013), and Alzheimer's disease (Morawski, 
Brückner, Jäger, Seeger, & Arendt, 2010).

PNNs have been shown to play a direct role in bird song learning 
and a general capacity for learning in juvenile males (Balmer, Carels, 
Frisch,	 &	 Nick,	 2009).	 Concomitantly,	 several	 sexually	 dimorphic	
brain structures within the song learning and song production circuit 
also exhibit sex‐specific expression of PNNs, notably the HVC (cor‐
tex) and the robust nucleus of the arcopallium (amygdala homolog; 
Meyer, Boroda, & Nick, 2014). In mammals, PVALB hippocampal ex‐
pression is regulated by, and positively correlated with, gonadal hor‐
mones, especially 17β‐estradiol (Wu, Du, Buuse, & Hill, 2014), which 
also provides protection to PVALB+ neurons (Rewal, Wen, Wilson, 
Simpkins, & Jung, 2005). In addition, exposure to gonadal hormones 
during perinatal development helps sculpt many sex differences in 
the	mammalian	brain	 (reviewed	 in	Zup	&	Forger,	 2017;	McCarthy,	
2016), so a sexual dimorphism may also exist in mammalian hippo‐
campal PNN expression. Therefore, in this study we assessed corti‐
cal and hippocampal PNNs expression in male and female juvenile 
and young adult rats.

2  | METHODS

2.1 | Animals

All animal work was performed under the supervision of the 
University of Massachusetts Boston Institutional Animal Care and 
Use Committee. Male and female Sprague‐Dawley rats (postna‐
tal day 18, n = 8 male, 6 female; postnatal day 52‐86, n = 7 male, 6 

female) were sacrificed and brains fixed with 4% paraformaldehyde 
as previously described (Edwards, Madden, & Zup, 2018).

2.2 | Immunohistochemistry and microscopy

Brains were sectioned in a cryostat at 35 μm and prepared for fluo‐
rescent immunohistochemistry as previously described (Xu, Ouyang, 
Xiong, Stary, & Giffard, 2015). Briefly, sections were treated with 
sheep anti‐parvalbumin (PVALB; [1:500]; R&D Signaling cat# 
AF5058)	 and	 the	 PNN‐binding	 fluorescent	wisteria	 floribunda	 ag‐
glutinin	(WFA;	[1:500];	Vector	Labs	cat#	FL‐1351)	and	incubated	in	
594 nm secondary (Invitrogen cat# A‐11016). Z‐Stacks (1μm thick X 
35 sections) were acquired through cornu ammonis‐1 (CA1), cornu 
ammonis‐3 (CA3), and somatosensory cortex using a Zeiss Imager 
M2 equipped with an Apotome 2 for optical sectioning and collapsed 
into a maximum‐projection image for cell quantification. Average 
PVALB+ and PNN+ cell counts were acquired from six hippocampal 
sections per animal, using maximum projection images by an indi‐
vidual blinded to experimental group. Neocortical cell counts were 
acquired from the same sections in the adjacent somatosensory/
barrel cortex, dorsolateral to the rostral hippocampus, in order to 
limit variability in PVALB+ and PNN+ counts that could be due to 
tissue processing.

2.3 | Statistics

Cell counts were analyzed with a two‐tailed independent samples 
t test using SPSS (IBM version 22). A p value <0.05 was considered 
statistically significant.

F I G U R E  1   Hippocampus. (a) Representative images from cornu ammonis‐1 (CA1) of each group. (b) Enlarged views of representative 
images of adult male versus adult female perineuronal nets (PNNs). (c) Mean count of hippocampal parvalbumin positive (PVALB+) 
interneurons and neurons with PNN+ in juvenile (left) and adult (right) male and female rats. *p < 0.05, Bars represent mean ± SEM
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3  | RESULTS

3.1 | Hippocampus

Our analysis assessed the total hippocampus, as well as CA1 and 
CA3 sub‐regions, in males and females at two different ages. There 
were no significant differences in any measures for total hippocam‐
pus	or	 for	CA3.	 For	CA1,	 there	were	no	 significant	 differences	 in	
the average PVALB+ interneuron count between age (p = 0.66) or 
sex (p	=	0.17;	Figure	1).	However,	male	juvenile	rats	exhibited	nearly	
twice as many PNNs in CA1 than female juvenile rats (9.63 ± 3.80 vs. 
4.86 ± 2.14; p	=	0.02;	Figure	1c).	In	adult	animals,	CA1	PNN	counts	
trended in a similar fashion (10.42 ± 4.68 in males vs. 6.45 ± 2.58 
in females) however the difference was not statistically significant 
(p = 0.09). There were no differences between adults and juveniles 
when separated by sex in either males (p = 0.72) or females (p = 0.11). 
Figure	1	 represents	hippocampal	CA1	PVALB+	count,	PNN	count,	
and	PVALB+/PNN+	co‐labeled	cells	in	all	groups.	Qualitatively,	WFA	
staining was more intense and well defined in adult male CA1 versus 
female CA1, where fluorescence intensity was faint and PNNs did 
not	always	fully	envelop	the	PVALB+	cells	(Figure	1b).	WFA	staining	
in juvenile animals was similar between the sexes.

3.2 | Neocortex

Figure	2	outlines	observations	in	PNN	and	PVALB	expression	in	the	
neocortex	 where	 PNNs	 are	 commonly	 studied	 (Wang	 &	 Fawcett,	
2012). There was no overall sex difference in PVALB+ cell count 
between males (81.00 ± 19.25) and females (71.88 ± 20.10) or in 
PNNs between males (32.50 ± 12.90) and females (26.88 ± 13.89). 
However, we observed significant (p = 0.002) differences in both 
PVALB+ and PNN+ cell number between developmental time points. 
The neocortex of juveniles had nearly twice the number of parvalbu‐
min neurons (92.38 ± 9.52) as adults (60.50 ± 7.88). Despite the large 
amount of PVALB+ interneurons, juvenile rats had less than half 

the number of PNN+ cells observed in adults (18.63 ± 5.19 versus 
40.75 ± 5.24; p < 0.001). In contrast to observations in hippocam‐
pus, both male and female adult rats displayed robust cortical PNN 
staining	and	fully	enveloped	PVALB+	cells	(Figure	2b).

In both the hippocampus and neocortex, the percentage of 
PVALB+/PNN+ co‐labeling did not differ between adult and juve‐
nile females (p = 0.31). However, juvenile male rats exhibited a lower 
percentage of co‐labeling than adult males in the hippocampus 
(10.48 ± 3.09 vs. 6.84 ± 2.49, respectively) as well as in neocortex 
(38 ± 3.54; vs. 20.75 ± 1.06, respectively).

4  | DISCUSSION

This study is the first to report sex differences in mammalian hip‐
pocampal and cortical PNN expression. In addition to the differ‐
ences between sexes, we also report that male rats show greater 
differences in PNN expression and PVALB co‐expression between 
developmental time points than do female rats. Several recent stud‐
ies on PNNs have included both sexes in their experiments but did 
not conduct analyses between sex or comment on the presence 
or absence of sex differences (Chu et al., 2018; Saito et al., 2018; 
Yukawa et al., 2018). We report a male‐biased sex difference in CA1 
PNN expression by postnatal day 18, along with a trend for a similar 
pattern in adulthood. These findings are specific to CA1 in this re‐
stricted analysis, as no sex differences were observed in CA3 or the 
adjacent neocortex.

The sex‐specific expression of PNNs in CA1 may relate to ob‐
servations	of	sex‐specific	hippocampal	function.	For	example,	male	
hippocampal neurons have been shown to be more susceptible to 
oxidative injury (McCullough, Zeng, Blizzard, Debchoudhury, & 
Hurn, 2005), which may necessitate their increased PNN protec‐
tion. More generally, developmental maturation is often sexually 
dimorphic, and our observations suggest earlier CA1 PNN envelop‐
ment of PVALB+ interneurons in males at PND18. PNNs contribute 

F I G U R E  2   Neocortex. (a) 
Representative images from each group. 
(b) Mean count of cortical parvalbumin 
positive (PVALB+) interneurons and 
neurons with perineuronal nets (PNN+) 
in juvenile and adult rats. *p < 0.05, Bars 
represent mean ± SEM
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to the maturation of excitatory networks by modulating inhibition 
(Dityatev et al., 2007), and our observations may hold relevance 
to prior observations that juvenile males are more vulnerable to 
overexcitation and excitotoxicity during development (reviewed in 
McCarthy, 2016).

In addition to the juvenile sex differences in quantitative PNN 
expression, we observed that adult males display robust hippocam‐
pal PNN labeling, while PNN expression in adult females and ju‐
veniles	of	both	sexes	was	more	variable.	Fluorescence	 intensity	of	
WFA	staining	has	been	proposed	as	a	proxy	of	PNN	maturity	and	
function (Koppë, Brückner, Brauner, Härtig, & Bigl, 2016), suggest‐
ing these observations may indicate a difference in PNN regulation 
and function, implying differences in the underlying mechanisms 
regulating learning and memory between males and females. The 
observations in this study may hold clinical relevance as PVALB+ 
neurons have been shown to modulate drug responses in a sex‐ and 
anxiety trait‐specific manner (Ravenelle, Neugebauer, Niedzielk, & 
Donaldson, 2014), and PNNs are thought to modulate the response 
to common antidepressants (Karpova et al., 2011).

One limitation of this study was the limited sample size, and it 
is likely that the abundance of PNNs in the CA1 of adult females 
would also be significantly lower than adult males with a larger sam‐
ple size. Both parvalbumin and PNN development are highly region‐
specific (Ueno et al., 2018); however, in most cases PVALB+ neurons 
increase with age. Our finding that juvenile rats had nearly twice 
the number of PVALB+ interneurons in the neocortex compared to 
adults is in sharp contrast to many previous studies, however it is 
consistent with a prior report in the barrel cortex of mice (Nowicka, 
Soulsby, Skangiel‐Kramska, & Glazewski, 2009). This further sug‐
gests that PNN and PVALB expression are highly region‐specific. 
The observations in this study suggest that a more comprehensive, 
whole brain assessment may be warranted to definitely assess the 
spatial role PNNs play in neurodevelopment. Given the far‐reaching 
effects of PNNs on neurophysiology and their emerging prominence 
in neurological disorders (Wen, Binder, Ethell, & Razak, 2018), it is 
possible that even small differences in PNN abundance, especially 
during development, contribute to sex‐dependent effects in the hip‐
pocampus. As interest in PNNs is quickly rising, current and future 
studies investigating the role of PNNs in mammalian neuroplasticity 
should include consideration of age and sex.
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