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Abstract

Bacterial small non-coding RNAs (sRNAs) are known as novel regulators involved in viru-

lence, stress responsibility, and so on. Recently, a lot of new researches have highlighted

the critical roles of sRNAs in fine-tune gene regulation in both prokaryotes and eukaryotes.

Edwardsiella tarda (E. tarda) is a gram-negative, intracellular pathogen that causes edward-

siellosis in fish. Thus far, no sRNA has been reported in E. tarda. The present study repre-

sents the first attempt to identify sRNAs in E. tarda S08. Ten sRNAs were validated by RNA

sequencing and quantitative PCR (qPCR). ET_sRNA_1 and ET_sRNA_2 were homolous

to tmRNA and GcvB, respectively. However, the other candidate sRNAs have not been

reported till now. The cellular abundance of 10 validated sRNA was detected by qPCR at dif-

ferent growth phases to monitor their biosynthesis. Nine candidate sRNAs were expressed

in the late-stage of exponential growth and stationary stages of growth (36~60 h). And the

expression of the nine sRNAs was growth phase-dependent. But ET_sRNA_10 was almost

expressed all the time and reached the highest peak at 48 h. Their targets were predicted by

TargetRNA2 and each sRNA target contains some genes that directly or indirectly relate to

virulence. These results preliminary showed that sRNAs probably play a regulatory role of

virulence in E. tarda.

Introduction

Edwardsiella tarda (E. tarda) is a common and important pathogen of freshwater and marine

fish, which causes enormous economic losses to the world-wide aquaculture industry. The

pathogenesis of E. tarda has been studied for a long time and the virulence factors include type

III and type VI secretion systems (T3SS and T6SS) [1, 2], chondroitinase [3], nucleoid-associ-

ated protein [4], catalase [5], hemolysins [6, 7], flagella [8, 9], adhesion [10], sigma factors

RpoN and RpoS [11] and quorum sensing [12, 13].

But the fundamental pathogenic mechanism of E. tarda still remains to be discovered. In

recent years, some significant experimental and theoretical evidence suggested that small non-

coding RNAs (sRNAs) could coordinate virulence gene regulations and pathogen survival
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during infecting the host [14–17]. At the same time, sRNAs are crucial players of regulatory

cascades, coordinating the expression of virulence genes in response to environmental or

other changes [16, 17]. They are able to adapt the expression of virulence genes to stress and

metabolic requirements [17]. These sRNAs function either directly on virulence genes and/or

on regulators of virulence genes [16].

While sRNAs have been well known for some time and some examples have been con-

firmed in Escherichia coli and other pathogenic bacteria [18–22], our knowledge of the net-

works involving sRNAs and controlling pathogenesis in E. tarda is still in its infancy. Here, we

systematically identify sRNAs in E. tarda genome by RNA sequencing and bioinformatics pre-

diction for the first time. Then, the cellular abundance of validated sRNA was detected by

quantitative PCR (qPCR) at different growth phases to monitor their biosynthesis. In addition,

the potential targets of sRNAs were also predicted by bioinformatics analysis. Our results will

provide insight into the knowledge of virulence regulation of E. tarda and pave the way for

eradicating edwardsiellosis.

Materials and methods

Ethics statement

E. tarda S08 (Accession no. KX279865) was isolated from diseased turbot. Disease outbreaks

occurred on some marine turbot farms in Qingdao, China. The farm owners hoped us to

determine the causative agents of these outbreaks and assess potential therapies for the treat-

ment of these infections. So they provided a large number of diseased turbot to us for the

study. This experiment as described was carried out in strict accordance with the approval of

the Animal Care and Use Committee of the Institute of Oceanology, Chinese Academy of

Sciences.

Bacterial strains and growth conditions

E. tarda S08 isolated from diseased turbot was used for most experiments. The strain was rou-

tinely cultured in Tryptic Soy Broth (TSB, Difco) or TSA medium supplemented with addi-

tional 1% NaCl at 28˚C, 180 rpm. Colistin was added at a final concentration with 12.5 μg/mL

when necessary. The growth in the TSB was determined by spectrophotometric values

(OD540 nm) at the interval of 2 h. Then, the growth curve was plotted using optical density

against time points (2 h, 4 h, . . .. . ., 72 h). While the cultures of series of time points at the

interval of 6 h were collected for the next step experiments. All the samples were run in

triplicate.

In silico prediction of sRNAs

The genome sequences of E. tarda S08 (data unpublished) and E. tarda EBI202 (Accession no.

CP002154.1) were chosen for in silico prediction. The computational methods were applied for

the prediction of sRNAs including sRNAscanner and sRNAPredict3. sRNAPredict3 identified

sRNAs based on intergenic conservation and Rho-independent terminators in the closely

related bacterial genomes. sRNAscanner computes the locations of the intergenic signals using

the Positional Weight Matrix (PWM) strategy for the search of intergenic sRNAs. All the

parameters were set as the default analytical criteria for the two methods.

sRNA extraction and RNA sequencing

E. tarda S08 was grown in TSB medium at 28˚C and harvested with centrifugation (at 6, 000×g

for 5 min) at the series of time points. Finally, all the samples from different time points were
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mixed together at equal volumes. The sRNAs were isolated from cell pellets with bacterial

small RNA isolation kit (OMEGA, USA). All RNA was treated with RNase free DNase I and

library was built for Illumina Hiseq 2000 platform with library constructions kit following the

manufacturer’s protocol.

Promoter prediction and in silico validation of predicted sRNAs

The program BPROM was used to predict the promoters of the bacterial sRNAs. The promoter

prediction was conducted to search 200 bp upstream of the sRNA start site. RNAfold program

was used to carry out the secondary structure prediction based on the lowest folding energy.

The sRNAs were blasted into Rfam database to assess the novelty.

Quantitative PCR assays

Total RNA was extracted using Trizol reagent (Life tech, USA) and then reverse transcribed

using oligo dT and random mix primers (ToYoBo, Japan) according to the manufacturer’s

protocol. Quantitative PCR was performed to validate the reliability of predicted sRNAs and

check the expression abundance of the validated sRNAs at the different growth phages. The

qPCR primer pairs for the 10 candidate sRNAs were designed using Primer Premier 6.0. 16 S

ribosomal RNA gene was used as internal control for normalization of gene expression. Quan-

titative PCR was run on Bio-Rad CFX (USA) with initial denaturation of 3 min at 95˚C and a

subsequent run of 40 cycles each comprising 10 s at 95˚C, 10 s at 62˚C, and melt curve was per-

formed to assess the primer specificity. The samples were run in triplicate. The 2-ΔΔCq method

(relative quantization) was used in which Cq value (threshold cycle) was normalized to endog-

enous reference gene 16S (ΔCq = Cqtarget—Cqreference) [23]. Using student’s t test, data

were considered statistically significant when p< 0.05.

Target prediction of validated sRNAs

Web-based program TargetRNA2 was used to predict the target genes for each validated

sRNA. TargetRNA2 considers each mRNA in the replicon as a possible target of the sRNA. 80

bp before the start codon and 20 bp after the start codon were searched. After searching all

mRNAs in the specified replicon for interactions with the sRNA, TargetRNA2 outputs a list of

likely regulatory targets ranked by p-value.

Results

Bacterial growth condition of E. tarda S08

E. tarda S08 was cultured in TSB medium at 28˚C, 180 rpm. The OD540nm value was moni-

tored at the interval of 2 h and the growth curve was plotted (Fig 1). After 24 h, the strain was

showed to grow into post-exponential phage and after 40 h into stationary phage. It entered

into decline phase after 60 h.

Bioinformatic prediction of sRNAs and RNA sequencing

Two computational methods were used to predict the sRNAs and the comparative results were

provided as follows (Table 1). After aligned the results, a total of 10 sRNA candidates were pre-

dicted (>100 bp in length). Genomic location and the orientations of sRNAs were also ana-

lyzed. Table 2 categorized a detailed description of the candidate sRNAs.

Identification and validation of sRNAs
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Promoter and second structure analysis of candidate sRNAs

The web-based program, BPRORM, was implemented to perform the promoter analysis. By

searching 200 bp upstream of the candidate sRNA start site for the -10 box and -35 box, the

results showed that all 10 candidate sRNAs were successfully found the -10 and -35 promoter

sites and corresponding TF binding sites. The average distance for the -10 box and -35

box were 53 and 76 bp upstream of the candidate sRNAs, respectively. Secondary structure

analysis were carried out using RNAfold program and depicted in Fig 2. Next, the 10 candidate

sRNAs were undergone to blast against Rfam database for the novelty. Two of 10 candidate

sRNAs, named ET_sRNA_1 and ET_sRNA_2 (homologues to tmRNA and GcvB), showed the

homology in Rfam. While the other candidate sRNAs were first found. The sequence of 10

sRNAs genes was analyzed for terminator prediction. Rho-independent terminators were pre-

dicted at the 3’ end using ARNold (S1 File).

Experimental validation by qPCR assays under different growth phage

Further experimental validation was performed for the 10 candidate sRNAs. The qPCR primer

sequences used for sRNA genes were listed in Table 3. The total RNA was extracted from dif-

ferent time points and reverse transcribed. The cDNAs were used as the templates for qPCR to

assess the expression of candidate sRNAs. ET_sRNA_10 was almost expressed all the time and

reached the highest peak at 48 h (Fig 3). However, the other nine sRNAs were expressed in the

late-stage of exponential growth and stationary stages of growth (36~60 h). And their tran-

script level reached the highest point at the final phase of stationary growth (60 h) (S1–S9

Figs). This showed that the expression of the nine sRNAs was growth phase-dependent.

Fig 1. Growth curve of E. tarda S08.

doi:10.1371/journal.pone.0172783.g001

Table 1. The statistic results of predicted sRNAs.

Method No. of prediction Average length Max length Min length CRISPR

sRNAPredict3 111 156 bp 363 bp 66 bp 1

sRNAscanner 134 234 bp 560 bp 34 bp -

RNA sequencing 2668 83 bp 150 bp 50 bp -

doi:10.1371/journal.pone.0172783.t001
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Target prediction of validated sRNAs

Accurate prediction of sRNA targets plays an important role in studying sRNA function. The

targets of 10 sRNAs were predicted by TargetRNA2 (S2 File). TargetRNA2 outputs a list of

likely regulatory targets ranked by p-value (p�0.05). A total of 385 potential targets were iden-

tified. We parsed the predicted mRNA targets based on their respective protein function

(Table 4) [24]. Our result demonstrated that the majority of known targets for sRNAs were

Table 2. The feature description of 10 validated sRNAs.

sRNA name Start

position

End

position

SRNA length

(bp)

Orientations Up gene name Down gene name

ET_sRNA_1 2877375 2877738 364 + small protein B, tmRNA-binding

protein

putative integrase

ET_sRNA_2 797781 797578 204 + cysteine sulfinate desulfinase DNA-binding transcriptional

activator GcvA

ET_sRNA_3 2731396 2731835 440 - hypothetical protein potassium-transporting ATPase

subunit A

ET_sRNA_4 3081498 3081919 422 + lipid A biosynthesis palmitoleoyl

acyltransferase

outer membrane lipoprotein

ET_sRNA_5 1285062 1285378 317 + putative DNA-binding transcriptional

regulator

lysine transporter

ET_sRNA_6 1726729 1727058 330 + phage-related protein hypothetical protein

ET_sRNA_7 1931296 1931693 398 + hypothetical protein hypothetical protein

ET_sRNA_8 3480759 3481235 477 - 4-alpha-glucanotransferase glucose-1-phosphate

adenylyltransferase

ET_sRNA_9 284289 284627 339 - putative tartrate:succinate antiporter hypothetical protein

ET_sRNA_10 1443879 1444365 487 + hypothetical protein transcriptional activator

ET_sRNA_16s-

internal

3710745 3712281 376 - tRNA-Glu putative GntR-famly

transcriptional regulator

doi:10.1371/journal.pone.0172783.t002

Fig 2. Second structure of ET_sRNA_1~ ET_sRNA_10. (A) ET_sRNA_1 (B) ET_sRNA_2 (C) ET_sRNA_3 (D) ET_sRNA_4 (E) ET_sRNA_5 (F)

ET_sRNA_6 (G) ET_sRNA_7 (H) ET_sRNA_8 (I) ET_sRNA_9 (J) ET_sRNA_10.

doi:10.1371/journal.pone.0172783.g002
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involved in metabolism (114), virulence (59), and transport (35). However, a large number of

target genes were categorized as ‘other’ (49) and ‘hypothetical proteins’ (115), respectively

(Table 4). Each sRNA targets contain a number of genes that directly or indirectly relate to vir-

ulence. The result preliminary shows that sRNAs probably play regulatory roles of virulence.

Of course, the related work is being verified by experiments.

Table 3. The qPCR primer sequences used for sRNA genes.

sRNA name Primers used for qPCR

ET_sRNA_1 for: 5’actacgcactcgcagcttaataac

rev: 5’cggacagacacgccactaaca

ET_sRNA_2 for: 5’agacatggcggtggcgtaag

rev: 5’actaaatcactatggacagacagggta

ET_sRNA_3 for: 5’gcgatagaggacagcaacgataatg

rev: 5’aaccaacaggagtagcaccagtac

ET_sRNA_4 for: 5’ttacagcatgaagcatcggtcatagaa

rev: 5’gacggtgagtgagaggaagaggaa

ET_sRNA_5 for: 5’actcgctaataatccgccaaccatc

rev: 5’tttgtctgagccattagaaccctatcg

ET_sRNA_6 for: 5’cgacctcaagccgaacctcttc

rev: 5’atgttgccgctgccactacg

ET_sRNA_7 for: 5’accgctggagattccgctatgt

rev: 5’tgctacaactcactgccgtcac

ET_sRNA_8 for: 5’cgctacccgtttattccagcatcc

rev: 5’cgcctgtcatccgcaacaaca

ET_sRNA_9 for: 5’catcaggatggtggttctgagtca

rev: 5’cgccctctttaagtattcccattcaac

ET_sRNA_10 for: 5’cgctgatggatattccgccgatg

rev: 5’tggtgcttccctctgaacgatagtaa

doi:10.1371/journal.pone.0172783.t003

Fig 3. Quantitative PCR detection the transcript levels of ET_sRNA_10 under different growth phases.

Statistical significance (*p<0.05;**p<0.01) was obtained using ANOVA test.

doi:10.1371/journal.pone.0172783.g003
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Discussion

E. tarda is associated with edwardsiellosis in cultured fish, resulting in heavy losses in aquacul-

ture. The pathogenesis of E. tarda has been studied for a long time and some virulence factors

have been identified. However, the fundamental pathogenic mechanism of E. tarda still

remains to be discovered. More and more evidence shows that the use of sRNAs is among the

strategies developed by bacteria to fine-tune gene expression. They are involved in many bio-

logical processes to regulate iron homeostasis [25–27], expression of outer membrane proteins

[28, 29], quorum sensing [30, 31], and bacterial virulence [16, 17] through binding to their tar-

get mRNAs or proteins.

In this research, it is the first time to report the existence of small RNAs within the genome

of E. tarda. In principle, four major computational methods were applied for the prediction of

sRNA locations from bacterial genome sequences: (1) secondary structure and thermody-

namic stability, (2) comparative genomics, (3) ‘Orphan’ transcriptional signals and (4) ab initio
methods regardless of sequence or structure similarity [32]. Transcriptional signal-based

sRNA prediction tools include sRNApredict [33], sRNAscanner [34], and sRNAfinder [35].

sRNAPredict depends on the promoter signals, transcription factor binding sites, rho-inde-

pendent terminator signals predicted by TRANSTERMHP [36] and BLAST [37] outputs as

predictive features of sRNAs. sRNApredict3 is recent version of the sRNApredict suite that is

used in the efficient prediction of sRNAs, with a high level of specificity. Some researchers

found that sRNAPredict provided the best performance by comprehensively considering mul-

tiple factors [38]. The main advantage with sRNAscanner is that it uses its own algorithm and

the training PWM dataset to calculate the genomic locations of the promoter, transcription

factor, and terminator signals. Moreover, the sensitivity and specificity profile of sRNAscanner

was first evaluated through the Receiver Operator Characteristic (ROC) curves and confirmed

its satisfactory performance [32]. In this research, we choose transcriptional signal-based

sRNA prediction tools (sRNA predict3 and sRNA scanner) for in silico prediction.

Most of these tools are applied to locate the putative genomic sRNA locations followed by

experimental validation of those transcripts. Then 10 sRNAs were validated by RNA sequenc-

ing and qPCR, of which 8 novel sRNAs were found. The other two sRNAs, ET_sRNA_1 and

ET_sRNA_2, were homolous to tmRNA and GcvB, respectively. TmRNA (also known as 10Sa

RNA or SsrA RNA) is a unique bi-functional RNA that acts as both a tRNA and an mRNA to

enter stalled ribosomes and direct the addition of a peptide tag to the C terminus of nascent

Table 4. sRNA target categorization.

Target classification Number of predicted targets by category

Cell division 3

Cell wall 5

Metabolism 114

Ribosomal protein 3

Virulence 59

Other 49

Transport 35

Hypothetical protein 115

T3SS 1

T6SS 1

Total 385

Target genes are classified into ten categories based on either known or hypothetical function for E. tarda.

doi:10.1371/journal.pone.0172783.t004
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polypeptides. TmRNA is widely distributed among eubacteria and has also been found in

some chloroplasts [39]. The sRNA GcvB was first described in E. coli as being transcribed from

a promoter that is divergent from that encoding gcvA, which is a transcriptional regulator of

the glycine-cleavage-system operon [40–43].

What’s more, the cellular abundance of 10 validated sRNA was detected by qPCR at differ-

ent growth phases to monitor their biosynthesis. ET_sRNA_10 was almost expressed all the

time and reached the highest peak at 48 h, which indicated that ET_sRNA_10 was probably

house-keeping sRNA. But the expression of the other nine sRNAs was growth phase-depen-

dent and they were expressed in the late-stage of exponential growth and stationary stages of

growth. It had been reported that the expression of some sRNAs in gram positive and negative

pathogens was growth phase-dependent. The expression of 11 candidate sRNAs was character-

ized in Staphylococcus aureus strains under different experimental conditions, many of which

accumulated in the late-exponential phase of growth [44]. The characteristics of 11 sRNAs

were studied in Enterococcus faecalis V583, six of which were specifically expressed at exponen-

tial phase, two of which were observed at stationary phase, and three of which were detected

during both phases [45]. The expression of twenty-four sRNAs was also phase- and media-

dependent in Streptococcus pyogenesM49 [46]. In Clostridium difficile, the expression of six

sRNAs was growth phase-dependent, three of which (RCd4, RCd5 and SQ1002) were induced

at the onset of stationary phase, whereas three of which (RCd2, RCd6 and SQ1498) was high

during exponential phase and decreased at the onset of stationary phase [47]. Among the

twelve non-coding RNAs found in Listeria monocytogenes, two of these non-coding RNAs

were expressed in a growth-dependent manner [48]. In Brucella melitensis, three validated

sRNAs were significantly induced in the stationary phase [49]. In this research, nine sRNAs

show growth phase-dependent expression profile. In addition, it has been reported that the

expression of some virulence determinants and associated factors in E. tarda is also growth

phase-dependent [50–52]. So, we speculate that some of growth phase-regulated E. tarda
sRNAs may be involved in the control, as previously observed in some gram-positive and

gram-negative bacteria [53–55].

Despite the abundance of sRNAs in all bacterial lineages, little is known about their func-

tion and mechanism of action within the bacterial genomes and only a few sRNAs have been

assigned with functions till date [56]. Using TargetRNA2, we have predicted the target

mRNAs of 10 sRNAs.

Functional categorization of the target genes regulated by sRNAs resulted in identification

of genes involved in key pathways of cell division, cell wall, transport, virulence,type III secre-

tion system, type VI secretion system, ribosomal protein, and metabolism. A majority of these

pathways are critical for the growth and survival of E. tarda in the host cytoplasm. A significant

number (29.87%) of predicted target genes were categorized as ‘hypothetical protein’, which is

not surprising considering that nearly 30.89% of E. tarda EIB202 genes are still reported as

hypothetical proteins.

Of course, the related work is being verified by experiments. The mutant strains E. tarda
S08⊿SsrA, E. tarda S08⊿Gcv and E. tarda S08⊿ET_sRNA_10 have been constructed. The next step

is going to verify in vivo regulation functions of sRNAs. Once the regulation function of virulence

is further confirmed, the unique nature of sRNAs that can be exploited for the development of

novel diagnostic tools and therapeutic interventions will maybe come true in the future [57].

Conclusion

This report presents the study of small non-coding RNAs on E. tarda for the first time. Ten sRNAs

were validated by RNA sequencing and qPCR. ET_sRNA_1 and ET_sRNA_2 were homolous to

Identification and validation of sRNAs
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tmRNA and GcvB, respectively. However, the other candidate sRNAs have not been reported

till now. ET_sRNA_10 was almost expressed all the time and reached the highest peak at 48 h.

However, the other nine sRNAs were expressed in the late-stage of exponential growth and sta-

tionary stages of growth (36~60 h), which showed that their expression was growth phase-

dependent. And they probably played regulatory roles during the biological process. The targets

of 10 sRNAs were also predicted by TargetRNA2. Each sRNA targets contain some genes that

directly or indirectly relate to virulence. These results preliminary showed that sRNAs probably

play a regulatory role of virulence in E. tarda. The related work is being verified by experiments.

Supporting information

S1 File. Sequence analysis of novel sRNAs. The region in yellow and green shows start (5’)

and stop (3’) codons respectively. 5’ and 3’ start and ending sites respectively are as predicted

by SIPHT/ sRNAPredict3. The region in red shows Rho-independent terminators. The qPCR

primer sites are shown in blue.

(PDF)

S2 File. Predicted results of 10 sRNAs’ Targets from TargetRNA2.

(GZ)

S1 Fig. Quantitative PCR detection the transcript levels of ET_sRNA_1 under different

growth phases. Statistical significance (�P�0.05;��P�0.01) was obtained using Anova test.

(TIF)

S2 Fig. Quantitative PCR detection the transcript levels of ET_sRNA_2 under different

growth phases. Statistical significance (�P�0.05;��P�0.01) was obtained using Anova test.

(TIF)

S3 Fig. Quantitative PCR detection the transcript levels of ET_sRNA_3 under different

growth phases. Statistical significance (�P�0.05;��P�0.01) was obtained using Anova test.

(TIF)

S4 Fig. Quantitative PCR detection the transcript levels of ET_sRNA_4 under different

growth phases. Statistical significance (�P�0.05;��P�0.01) was obtained using Anova test.

(TIF)

S5 Fig. Quantitative PCR detection the transcript levels of ET_sRNA_5 under different

growth phases. Statistical significance (�P�0.05;��P�0.01) was obtained using Anova test.

(TIF)

S6 Fig. Quantitative PCR detection the transcript levels of ET_sRNA_6 under different

growth phases. Statistical significance (�P�0.05;��P�0.01) was obtained using Anova test.

(TIF)

S7 Fig. Quantitative PCR detection the transcript levels of ET_sRNA_7 under different

growth phases. Statistical significance (�P�0.05;��P�0.01) was obtained using Anova test.

(TIF)

S8 Fig. Quantitative PCR detection the transcript levels of ET_sRNA_8 under different

growth phases. Statistical significance (�P�0.05;��P�0.01) was obtained using Anova test.

(TIF)

S9 Fig. Quantitative PCR detection the transcript levels of ET_sRNA_9 under different

growth phases. Statistical significance (�P�0.05;��P�0.01) was obtained using Anova test.

(TIF)
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