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Helminths (worms) are one of the most successful organisms in nature given their
ability to infect millions of humans and animals worldwide. Their success can be
attributed to their ability to modulate the host immune response for their own benefit
by releasing excretory-secretory (ES) products. Accordingly, ES products have been
lauded as a potential source of immunomodulators/biotherapeutics for an array of
inflammatory diseases. However, there is a significant lack of knowledge regarding the
specific interactions between these products and cells of the immune response. Many
different compounds have been identified within the helminth “secretome,” including
antioxidants, proteases, mucin-like peptides, as well as helminth defense molecules
(HDMs), each with unique influences on the host inflammatory response. HDMs are
a conserved group of proteins initially discovered in the secretome of the liver fluke,
Fasciola hepatica. HDMs interact with cell membranes without cytotoxic effects and do
not exert antimicrobial activity, suggesting that these peptides evolved specifically for
immunomodulatory purposes. A peptide generated from the HDM sequence, termed
FhHDM-1, has shown extensive anti-inflammatory abilities in clinically relevant models
of diseases such as diabetes, multiple sclerosis, asthma, and acute lung injury, offering
hope for the development of a new class of therapeutics. In this review, the current
knowledge of host immunomodulation by a range of F. hepatica ES products, particularly
FhHDM-1, will be discussed. Immune regulators, including HDMs, have been identified
from other helminths and will also be outlined to broaden our understanding of the
variety of effects these potent molecules exert on immune cells.
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INTRODUCTION

Helminths are parasitic worms classified as flukes, tapeworms or roundworms according to their
appearance and the organ in which they reside during infection (1). Diseases caused by helminths
constitute the majority of Neglected Tropical Diseases (NTDs) as classified by the World Health
Organization (WHO). Helminths are one of the most successful infectious agents in nature as
infection is highly prevalent and, as a result, over one billion people are affected worldwide (2, 3).
One of the most prevalent zoonotic helminth diseases is fascioliasis caused by Fasciola hepatica and

Frontiers in Immunology | www.frontiersin.org 1 September 2020 | Volume 11 | Article 2182

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.02182
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fimmu.2020.02182
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.02182&domain=pdf&date_stamp=2020-09-02
https://www.frontiersin.org/articles/10.3389/fimmu.2020.02182/full
http://loop.frontiersin.org/people/1065090/overview
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-02182 August 30, 2020 Time: 10:12 # 2

Ryan et al. Fasciola hepatica as a Source of Novel Immunomodulatory Biotherapeutics

the larger Fasciola gigantica. This is a major foodborne disease
that is currently thought to impact approximately two million
people in over 70 countries, with developing countries more
severely affected (4, 5).

The clinical manifestations of helminth infections are diverse;
some infections elicit acute symptoms aligned with pathology
caused by worm migration through host tissues, while others may
be asymptomatic (6, 7). Co-evolution of humans and helminths
may have shaped the human immune system as helminths
developed sophisticated mechanisms to induce tolerance and
evade expulsion by the host enabling them to become successful
chronic pathogens (7–9). A range of genomic, transcriptomic,
immunomic, glycomic, and proteomic approaches alongside
database mining has provided further perspective on host-
parasite interactions and led to the identification of various
helminth molecules including those within excretory-secretory
(ES) products that influence the host inflammatory response (10–
15). These molecules have garnered much attention with the
ultimate aim of exploiting their immunoregulatory mechanisms
for the treatment of human diseases (16, 17). A number of
molecules from F. hepatica and other worms are currently under
investigation for immunotherapeutic potential and are the main
focus of this review.

FASCIOLA HEPATICA

F. hepatica infection of humans and livestock occurs primarily
through the consumption of encysted metacercariae. After
ingestion, the metacercariae excyst and become newly excysted
juveniles (NEJs) within the duodenum. What follows is the
highly pathogenic and infectious migratory stage of F. hepatica
infection where NEJs cross the intestinal wall to the liver via the
peritoneum (18, 19). This phase is characterized by inflammation
and damage until the NEJs reach the liver bile ducts where they
mature into egg-producing adults. Different T cell responses and
cytokine profiles observed in cells from the mesenteric (more IL-
5) and hepatic lymph (more IL-4) nodes of mice infected with
F. hepatica suggest that NEJ and hepatic-stage parasites produce
different antigens that alter host responses (20). Despite initial
inflammation, up to 50% of infected humans are asymptomatic
(21). This is an extraordinary feat for any infectious agent as
it indicates the ability to subvert the host immune response
which is typically armed to expulse a pathogen. An increased
abundance of IgG4 antibodies reactive to antigens (e.g., cathepsin
L1) suggests a Th2-driven response is mounted (22); however,
much of our knowledge of the immunology of fascioliasis
is derived from ruminant animal infection and experimental
models using rodents.

Immunology of Fascioliasis
Helminth infestations often exist as chronic infections as a
consequence of a Th2/regulatory response in the host that
can support the survival and integrity of host tissue and the
parasite (23, 24). The immune response mounted during the early
stages of fascioliasis is generally regarded as a mixed Th1/Th2

response where cytokines such as IFNγ, IL-4, IL-10, and TGF-
β are elevated. As the infection progresses, a Th2 response is
amplified in conjunction with suppression of Th1 inflammation,
thus allowing a prolonged infection that may be dependent on
IL-4 (20). In the early stages of bovine F. hepatica infection, both
IFNγ and IL-10 are increased, corroborating the idea that the
initial immune response is mixed (25). Stimulation of peripheral
blood mononuclear cells from cattle and sheep with F. hepatica
ES products showed similar profiles (26, 27). In addition, TGF-
β and IL-10 may modulate IL-4 and IFNγ in acute and chronic
infection, respectively (28).

A cellular source of IL-10 was revealed in murine F. hepatica
infection where, among increased macrophages and dendritic
cells (DCs) in the peritoneal cavity, there was a significant
population of CD25+Foxp3+ Treg and inducible Treg cells
with the propensity to secrete IL-10 (29). Infection of IL-10−/−
mice showed that IL-4 and IFNγ responses were hindered by
IL-10 (29). As IL-4 is a critical cytokine observed throughout
the pathogenesis of F. hepatica infection, the appearance of
an abundant population of alternatively activated macrophage
(AAM) as early as 7 days after infection of mice in unsurprising
(30). AAMs remain in the peritoneum for up to 3 weeks after oral
infection with F. hepatica metacercariae, highlighting their key
role in helminth disease (29). Eosinophilia in the peritoneum is
evident in murine liver fluke infection (29) and bovine F. hepatica
disease (31), and eosinophils contribute to tissue pathology,
particularly in the liver (32). However, in sheep, eosinophils
undergo apoptosis suggesting a mechanism by which F. hepatica
evades the host response (33).

FASCIOLA HEPATICA
EXCRETORY-SECRETORY PRODUCTS

As parasites release ES products during host infiltration, it was
deduced that they function as effector molecules capable of
modulating the host immune system, enabling parasite survival.
Various immunomodulatory molecules have been identified
in the ES products of F. hepatica (Table 1) (34). Many of
these molecules are advantageous to the helminth and, through
manipulation of host immune processes, they facilitate prolonged
parasitic infection. Anti-inflammatory effects (Figure 1) have
been reported in rodent models of infection and inflammatory
disease suggesting the potential for ES product development as
therapeutics. However, many of the products discussed below
are unique to certain life stages of the liver fluke leaving it
difficult to define mechanisms without analysis of their purified
or recombinantly produced forms.

Antioxidants
The antioxidant enzymes thioredoxin peroxidase/peroxiredoxin
(TPx/Prx) in F. hepatica ES products detoxify reactive
metabolites produced by the host (35, 36). F. hepatica ES
products induced AAMs and TPx did so without traditional
Th2 signaling, i.e., IL-4 or IL-13 (30, 37). Administration
of purified TPx to BALB/c mice induced a Th2 response as
well as expression of Ym-1, TGF-β, and IL-10, and release of
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TABLE 1 | F. hepatica-derived immunomodulatory molecules.

Molecule Abbreviation Actions References

Fatty acid binding protein FaBP, Fh12, Fh15 Reduction of pro-inflammatory cytokines in LPS-induced models of sepsis (44–46)

Helminth defense molecule FhHDM-1 Inhibits lysosomal acidification and prevents macrophage antigen presentation
Inhibits formation of the NLRP3 inflammasome and thus release of IL-1β

Reduces inflammation in models of multiple sclerosis, type 1 diabetes, and
allergic asthma

(53, 67, 69, 96)

Mucin Fhmuc Increases CD11b+MHCII+ macrophage during LPS stimulation and TLR4
expression is increased in DCs alluding to an increased Th1-type inflammatory
response

(58, 59)

TGF-like molecule FhTLM Inhibits SMAD2/3 signaling and induces a regulatory phenotype in bovine
macrophages

(64)

Kunitz-type molecule FhKTM Decreased inflammatory cytokine secretions in DCs (56)

Glutathione S-transferases FhGSTs Suppress NF-κB pathway stimulation in macrophages and mice with
endotoxemic shock have improved survival in the presence of GST treatment

(41, 42)

Thioredoxin Peroxidase/Peroxiredoxin TPx/Prx Induces Ym-1 expression and arginase activity in murine macrophages
Antagonizes actions of ROS and induces AAM phenotype

(30, 35, 37)

prostaglandin E2 (PGE2) from murine macrophages (30, 37).
Glutathione S-transferases (GSTs) constitute up to 4% of the
total protein in F. hepatica ES products and protect the helminth
from free radicals that arise from the host response mounted to
expulse the worm (38–40). In DCs, recombinant Sigma-class
GST (rFhGST-si) interacts with TLR4 to stimulate IL-6 and MIP-
2 production and CD40 expression via mitogen-activated protein
kinase (MAPK) and NF-κB activity (41). Crucially, rFhGST-si
inhibited development of Th17 cells without any interaction with
the Th2-type response (41). Although recombinant Mu-class
GST isoforms (rFhGST-mu) had no effect on DC activation (41),
anti-inflammatory properties of native FhGST-mu (nFhGST-mu)
were recently identified in monocytic cells stimulated with a
range of TLR agonists and bacteria such as Klebsiella pneumonia,
and treatment protected mice from endotoxemia (41, 42). In
addition, nFhGST-mu suppressed the NF-κB pathway possibly
via JAK/STAT signaling proteins and thus it was proposed that
nFhGST may be a key antigen utilized by F. hepatica to suppress
Th1 responses (42).

Fatty Acid Binding Proteins
F. hepatica fatty acid binding proteins (FaBPs) are a group of
chaperones that mediate lipid responses within the cell and are
closely linked with inflammation and metabolism (43). Four
FaBPs identified in F. hepatica are known antioxidants with a
nutritive role for the parasite (44). Investigations into their anti-
inflammatory properties demonstrated that the 12 kDa Fh12
product reduced pro-inflammatory cytokine production in the
LPS-induced model of murine sepsis (45). Similarly, the 14.5 kDa
Fh15 molecule attenuated production of IL-1β and TNF-α in
human THP-1 macrophages (46). In a murine model of sepsis,
Fh15 treatment was associated with a significant decrease in
circulating cytokines (46).

Cysteine Proteases
Cysteine proteases constitute approximately 80% of the ES
products from F. hepatica and they play major roles throughout
infection (47). Five clades of F. hepatica cathepsin L (FhCL)

have been identified; three associated with mature adult worms
(FhCL1, FhCL2, and FhCL5) and two specific to infective
juvenile stage (FhCL3 and FhCL4). Increased secretion of FhCL3
during the initial stages of infection aid the immature NEJ
by preventing attachment of host eosinophils (48). Conversely,
once the fluke has reached the liver, FhCL1/2 secretions
elicit anti-coagulant effects that allow blood feeding for the
parasite (49). FhCL1 dampened the Th1 response elicited by
administration of the Bordetella pertussis vaccine in mice (50).
The decrease in the IFNγ response concurs with previous
evidence that concurrent F. hepatica and B. pertussis infection had
a decreased Th1-centric response (51). Interestingly, the effects
of FhCL1 translated into decreased inflammatory mediators and
protective effects in LPS-induced septic shock (52). Although
recombinant FhCL1 partially activated DCs via TLR4, these
DCs suppressed the development of Th17 cells and did not
induce the differentiation of Th2 cells (41). Hypo-responsiveness
in peritoneal macrophages stimulated with LPS and FhCL1
indicated that MyD88-independent/TRIF-dependent signaling
through cleavage of TLR3 in the endosome was inhibited (52).
However, in murine models of type 1 diabetes (T1D) and multiple
sclerosis, FhCL1 treatment showed no benefit (53).

Protease Inhibitors
Kunitz serine protease inhibitors have been identified in the
total extract and tegument of F. hepatica (54). Interestingly,
F. hepatica Kunitz type molecule (FhKTM) has an unique
specificity for cysteine proteases (13) and was shown to associate
with cathepsin L (55). FhKTM induced a regulatory IL-27-
dependent phenotype in LPS-stimulated DCs that impaired Th1
and Th17 responses (56).

Mucin-Like Peptides
Analysis of the NEJ stage of F. hepatica infection led to the
discovery of proteins with similarities to mucins (57, 58).
A synthetic mucin-derived peptide (Fhmuc) increased peritoneal
CD11b+MHCII+ cells in mice exposed to LPS (59). In contrast
to other F. hepatica ES products discussed here, but similar
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FIGURE 1 | Immunomodulation by F. hepatica excretory-secretory products. (A) Excretory-secretory products from F. hepatica can modulate inflammatory
responses in macrophages and dendritic cells in several ways. They may inhibit activity of NF-κB and the subsequent release of pro-inflammatory cytokines (TNF-α,
IL-6, and IL-1β). They may also induce a regulatory phenotype through increased expression of factors such as Ym-1 or Smad2/3 which results in production of
regulatory factors (IL-10 and TGF-β), augmentation of Th2 responses and suppression of Th1 inflammation. (B) FhHDM-1 interacts with macrophages and prevents
lysosomal acidification which is necessary for antigen processing and major histocompatibility complex II (MHCII) presentation to T cells (68, 69). This action on the
lysosome by FhHDM-1 also prevents assembly of the NLRP3 inflammasome, inhibiting release of IL-1β from the macrophage. FhTLM, F. hepatica TGF-like molecule;
FhKTM, F. hepatica Kunitz-type molecule; FaBP, fatty acid binding protein; TPx, Thioredoxin peroxidase; Px, Peroxiredoxin, FhGST, F. hepatica Glutathione
S-transferase; FhHDM-1, F. hepatica helminth defense molecule-1.
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to FhCL1 and FhGST-si (41), Fhmuc elicits pro-inflammatory
properties, with increased LPS-induced TLR4 expression in
DCs and polarization of the T cell response (59). This ability
of F. hepatica to modulate the host immune response may
have potential implications for vaccination strategies (59). As
F. hepatica ES products contain significant levels of glycans, it
is probable that native F. hepatica mucin-like peptides undergo
glycosylation, which is not represented with the synthetic peptide.
Thus, the immunomodulatory effects of native Fhmuc might be
different to those described for the synthetic peptide. Indeed,
Rodríguez et al. have shown that glycans from F. hepatica
modulate DC function to induce a Th2 response and suppress
Th1 inflammation (60–62).

TGF-β Mimics
Three distinct TGF-β homologs were identified in F. hepatica
through bioinformatic approaches (63). F. hepatica activin/TGF-
like molecule (FhTLM) is highly conserved with other TGF-
β homologs from nematode parasites and has a limited
temporal expression pattern across parasite development (63).
Recombinant FhTLM supported NEJ viability and development
(63). FhTLM may be less potent than mammalian TGF-β,
however, SMAD-2/3 signaling characteristic of the regulatory
phenotype was observed in bovine macrophages as well as
alternative activation (64).

Helminth Defense Molecules (HDMs)
During helminth infiltration, increased bacterial infection is
common as a consequence of the characteristic tissue damage,
although the host inflammatory response remains stable. In
schistosomiasis, enteric bacteria are displaced during destruction
of the gut; however, symptoms of infection or sepsis are not
apparent suggesting the host may be immunosuppressed by
the parasite (65). Thus, it was hypothesized that parasites
secrete antimicrobial peptides (AMPs) similar to those released
by the host as a protective mechanism during infection.
Investigation of F. hepatica ES products discovered an 8 kDa
protein constitutively expressed at all stages of the life-cycle
and throughout infection (14). BLAST analyses indicated the
sequence was conserved throughout trematode helminth species
including Paragonimus westermani, Schistosoma mansoni, and
Schistosoma japonicum, and thus was named the helminth
defense molecule (HDM). HDMs are classified into three clades:
Schistosome HDMs, Fasciola/Asian fluke HDMs and Sm16-
like molecules. All clade members have a predicted N-terminal
peptide and α-helical structure as well as a highly conserved,
largely hydrophobic C-terminal sequence of approximately 35
residues (14).

F. HEPATICA HELMINTH DEFENSE
MOLECULE-1 (FhHDM-1)

The first discovered HDM was from F. hepatica (FhHDM-1,
Figure 1) (14). FhHDM-1 is predicted to have a predominantly
α-helical secondary structure with a C-terminal amphipathic
helix bearing structural and biochemical resemblance to

mammalian cathelicidins. Moreover, the 34 residue C-terminal
sequence from FhHDM-1 has striking similarity to the human
cathelicidin, LL-37 (14, 66, 67). Like LL-37, FhHDM-1 and
its conserved C-terminal fragment neutralize LPS preventing
TLR4 activation on target cells such as macrophages (14,
68). However, in a murine model of intratracheal LPS-
induced acute lung injury, intraperitoneal administration of
FhHDM-1 decreased neutrophilic lung inflammation, suggesting
mechanisms beyond LPS neutralization may be involved (69).
Perhaps unexpectedly, FhHDM and other HDMs did not elicit
any antimicrobial activity against different bacteria such as
Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus
aureus (70). However, in contrast to the mammalian AMPs, they
did not induce pore formation in macrophages or the release
of lactate dehydrogenase indicating that HDMs do not elicit
cytotoxic effects.

The immunomodulatory role of FhHDM-1 was investigated
in models of inflammatory disease where ES products showed
promise as anti-inflammatories. F. hepatica ES products
reduced inflammation in the non-obese diabetic (NOD)
T1D mouse model that correlated with an increase in M2
macrophages and Foxp3+ Tregs (71). Administration of a
synthetic FhHDM-1, but not FhCL1, in NOD mice had a
comparable effect with a decreased disease burden characterized
by improved survivor function and fewer mice developing
diabetes (53). While destruction of pancreatic β cells is
mediated mainly by autoreactive T cells (72), inhibition of
macrophage activity by FhHDM-1 may elicit positive effects
on clinical measurements (53). F. hepatica total extract, ES
products and FhHDM-1 have proven beneficial in other
autoimmune diseases, for example in the murine experimental
autoimmune encephalomyelitis (EAE) model of multiple
sclerosis (53, 73, 74). A predominant theory behind the
activity of helminth ES products is their ability to induce a
regulatory Th2 response that is often characterized by a M2
(AAM) phenotype in macrophages. While FhHDM-1 reduced
TNF-α and IL-6 secretion in LPS-stimulated macrophages
(53), there were no significant alterations in surface receptor
expression or release of Th1 suppressing cytokines, such as
TGF-β and IL-10. Furthermore, the auto-antigen specific T
cell response remained unchanged in EAE mice that received
FhHDM-1 despite showing reduced disease severity (53).
This implies that mechanisms other than an induced Th2
response may be responsible for decreased Th1/Th17-mediated
pro-inflammatory activity.

FhHDM-1 associates with lipid rafts in the macrophage
plasma membrane and is endocytosed (67). Within the
macrophage, FhHDM-1 is cleaved by lysosomal cathepsin L
to release a C-terminal peptide that can form an amphipathic
helix, and this peptide prevented acidification of the lysosomes
through inhibition of vacuolar ATPase (vATPase) activity
(67). Macrophage process antigens and present them to
MHC-II on CD4+ T cells; therefore, impairment of this
process via vATPase inhibition would prevent initiation of the
adaptive immune response (67). To further define FhHDM-
1 mechanisms, Donnelly and colleagues hypothesized that
inhibition of lysosomal activity in the macrophage (75)
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would impact on inflammasome activity and release of pro-
inflammatory IL-1β (76). Indeed, it was observed that FhHDM-1
reduced IL-1β release in macrophages stimulated with the NLRP3
activator NanoSiO2 and alum. The cysteine protease cathepsin B
is a pH-dependent lysosomal protease involved in activation of
the NLRP3 inflammasome (76). As FhHDM-1 inhibits lysosomal
acidification, it would inhibit cathepsin B activity and the NLRP3
inflammasome. Replicates of these experiments carried out using
the 34 residue C-terminal sequence of FhHDM-1 indicate that
these effects on the inflammasome are unique to FhHDM-1
(76). Gene expression analysis of macrophages stimulated with
LPS predicted that signaling associated with high-mobility group
box-1 (HMGB-1) and IL-17 were attenuated by FhHDM-1 (69).
This posed the question of whether FhHDM-1 nay be effective
in preventing allergic inflammation, which was subsequently
tested in a rodent model of house dust mite-induced asthma
(69). In this model, FhHDM-1 treatment reduced neutrophil and
eosinophil cell counts, inflammatory markers and airway mucus
content (69).

WHAT HAVE WE LEARNED FROM
OTHER HELMINTH
EXCRETORY-SECRETORY PRODUCTS?

Immunomodulatory functions and modes of action have been
outlined for ES products from several parasites. The filarial
worm Acanthocheilonema viteae releases a glycoprotein called
ES-62 that can interfere with DC TLR4 expression by inducing
autophagosomal degradation (77). By inhibiting mast cell
responses, ES-62 and its small molecule analogs prevented the
excessive inflammatory response in murine models of asthma
(78, 79). However, ES-62 also controls the Th1 response by
suppressing NF-κB-mediated inflammation in DCs (80). More
recently, ES-62 was found to inhibit IL-33/ST2/MyD88 signaling
and modulate the pro-inflammatory responses resulting from
crosstalk between ST2, FcεRI, and TLR4, which may contribute
to reported protective effects of ES-62 in chronic models of
asthma (81).

Mice with a gastrointestinal infiltration of Heligmosomoides
polygyrus have characteristic increases in the number of Treg
(CD4+CD25+) cells. ES products from this parasite potentiate
the expression of Foxp3 in CD4+ T cells in vitro through
mimicry of TGF-β (82). These findings led to the discovery of
H. polygyrus TGF-β mimic (Hp-TGM) that operates through
traditional TGF-β signaling pathways leading to polarization
of CD4+ T cells with potent suppressive abilities (83).
The recently identified H. polygyrus alarmin release inhibitor
(HpARI) binds to active IL-33 preventing its interaction with
ST2 both in murine and human models, and could provide
novel therapeutic options in Th2 dominated disease, such as
asthma (84).

S. mansoni ES products have pleiotropic effects on the immune
response. Factors released from the parasite and its eggs can
modulate both Th1 and Th2 responses. For example, IPSE (IL-
4-producing principle from schistosome eggs) expanded the
population of regulatory B cells, which in turn activated Tregs

via IL-10 (85) and Schistosoma haematobium IPSE showed
therapeutic efficacy in a murine model of hemorrhage in the
bladder (86). S. mansoni chemokine binding protein (SmCKBP)
is secreted from live eggs and can bind and neutralize the
neutrophil chemoattractant CXCL-8 (87). In an experimental
granulomatous inflammation model, blocking of live egg
smCKBP increased recruitment of neutrophils, macrophage and
eosinophils and the size of the egg granuloma, suggesting
this ES product may limit leukocyte recruitment to protect
the egg (87).

CONCLUDING REMARKS

The success of F. hepatica infection stems from the worm’s
ability to modify and manipulate the host immune response.
While many years of research have uncovered effective
mechanisms by which the parasite can establish a long-term
infection, there is much more to be revealed. Investigations
in various models of inflammatory disease indicated potential
therapeutic benefit of helminths and ES products, however, to-
date the majority of human clinical trials have not replicated
these findings (11, 88–91). While small animal models of
inflammatory disease provide valuable insights, they often
fail to recapitulate the various complex processes at play in
human conditions (91). There are a number of factors that
need to be considered such as differences in metabolism
and the impact of microbiota, particularly on the immune
response (92), that may affect efficacy of helminths and their
products. Nonetheless, clinical trial outcomes have highlighted
the need for a greater understanding of the complexity
of changes to the immune response induced by helminths
during infection.

A typical helminth genome contains around 50,000 genes,
which is much greater than the human genome (approximately
20,000), and it has been proposed that each parasite has
undergone specific adaptations for their particular niche
(93). Furthermore, as helminths have a multistage life cycle
with distinct developmental stages through select tissues and
organ systems, they may release distinct molecules within
a particular niche (e.g., the intestine or lung) or migratory
stages that exert more localized immunomodulatory effects
(94), which may be of relevance for targeting tissue-specific
inflammation. As recently reviewed by Cortés et al. (95) and
van der Zande et al. (9), a number of studies have identified
potential roles for helminth-host microbiome interaction
in the pathophysiology of helminth disease and in parasite-
mediated suppression of host inflammation, which may be
relevant for the targeting of gut and lung inflammation and
(immuno)metabolic dysfunction. In addition to the protein
molecules outlined herein, there are a number of other
families of helminth immunomodulators, which include
various carbohydrate, nucleotide and lipid mediators as well
as extracellular vesicles that require further investigation
(16). Better understanding of the individual components of
helminth ES products and in-depth characterization of their
functional roles using defined products may help shed further
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light on their potential efficacy as therapeutic or prophylactic
agents for human disease. The discovery and characterization
of HDMs from F. hepatica and other trematodes may provide
one such avenue for novel therapeutics for autoimmune and
inflammatory conditions. While further work is needed to
better define these molecules, their host targets and their
functional effects, there is an expectation that this work will
spark the development of novel biotherapeutics for an array of
inflammatory diseases.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

This work was supported in part by the Department for the
Economy (Northern Ireland; studentships to SR and JS), the
Medical Research Council Confidence in Concept Program
(SW, JD, and CT), Medical Research Council (MR/T016760/1
and MR/P022847/1; CT and SW). JD was funded by the
Science Foundation Ireland (SFI, Ireland) Research Professorship
grant 17/RP/5368.

ACKNOWLEDGMENTS

We apologize to colleagues whose work has not been cited due to
space limitations.

REFERENCES
1. Castro GA. Helminths: Structure, Classification, Growth, and Development.

Galveston, TX: University of Texas Medical Branch at Galveston. (1996).
2. Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, Diemert D, et al.

Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm.
Lancet. (2006) 367:1521–32. doi: 10.1016/S0140-6736(06)68653-4

3. Jourdan PM, Lamberton PHL, Fenwick A, Addiss DG. Soil-transmitted
helminth infections. Lancet. (2018) 391:252–65. doi: 10.1016/S0140-6736(17)
31930-X

4. Mehmood K, Zhang H, Sabir AJ, Abbas RZ, Ijaz M, Durrani AZ, et al. A review
on epidemiology, global prevalence and economical losses of fasciolosis in
ruminants. Microb Pathog. (2017) 109:253–62. doi: 10.1016/j.micpath.2017.06.
006

5. Mas-Coma S, Bargues MD, Valero MA. Human fascioliasis infection sources,
their diversity, incidence factors, analytical methods and prevention measures.
Parasitology. (2018) 145:1665–99. doi: 10.1017/s0031182018000914

6. Harris NL, Loke P. Recent advances in type-2-cell-mediated immunity:
insights from helminth infection. Immunity. (2017) 47:1024–36. doi: 10.1016/
j.immuni.2017.11.015

7. Cruz AA, Cooper PJ, Figueiredo CA, Alcantara-Neves NM, Rodrigues LC,
Barreto ML. Global issues in allergy and immunology: parasitic infections and
allergy. J Allergy Clin Immunol. (2017) 140:1217–28. doi: 10.1016/j.jaci.2017.
09.005

8. Helmby H. Human helminth therapy to treat inflammatory disorders- where
do we stand? BMC Immunol. (2015) 16:12. doi: 10.1186/s12865-015-0074-3

9. van der Zande HJP, Zawistowska-Deniziak A, Guigas B. Immune regulation
of metabolic homeostasis by helminths and their molecules. Trends Parasitol.
(2019) 35:795–808. doi: 10.1016/j.pt.2019.07.014

10. Cwiklinski K, Dalton JP. Advances in Fasciola hepatica research using ‘omics’
technologies. Int J Parasitol. (2018) 48:321–31. doi: 10.1016/J.IJPARA.2017.12.
001

11. Sotillo J, Toledo R, Mulvenna J, Loukas A. Exploiting helminth–host
interactomes through big data. Trends Parasitol. (2017) 33:875–88. doi: 10.
1016/j.pt.2017.06.011

12. McVeigh P. Post-genomic progress in helminth parasitology. Parasitology.
(2020) 147:835–40. doi: 10.1017/S0031182020000591

13. Smith D, Tikhonova IG, Jewhurst HL, Drysdale OC, Dvořák J, Robinson
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