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ABSTRACT

Motivation: There are a number of algorithms to infer causal regula-

tory networks from time series (gene expression) data. Here we ana-

lyse the phenomena of regulator interference, where regulators with

similar dynamics mutually suppress both the probability of regulating a

target and the associated link strength; for instance, interference

between two identical strong regulators reduces link probabilities

by �50%.

Results: We construct a robust method to define an interference-

corrected causal network based on an analysis of the conditional

link probabilities that recovers links lost through interference. On a

large real network (Streptomyces coelicolor, phosphate depletion),

we demonstrate that significant interference can occur between regu-

lators with a correlation as low as 0.865, losing an estimated 34% of

links by interference. However, levels of interference cannot be pre-

dicted from the correlation between regulators alone and are data

specific. Validating against known networks, we show that high num-

bers of functional links are lost by regulator interference. Performance

against other methods on DREAM4 data is excellent.

Availability and implementation: The method is implemented in

R and is publicly available as the NIACS package at http://www2.

warwick.ac.uk/fac/sci/systemsbiology/research/software.

Contact: N.J.Burroughs@warwick.ac.uk

Supplementary information: Supplementary materials are available
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1 INTRODUCTION

The falling costs of global gene expression (transcriptome) meas-

urement by microarrays, and more recently next-generation

sequencing, has spurred the development of network inference

techniques (Bansal et al., 2007; De Smet and Marchal, 2010;

Emmert-Streib et al., 2012; Hache et al., 2009; Maetschke

et al., 2013; Margolin and Califano et al., 2007; Markowetz

and Spang, 2007; Olsen et al., 2009; Penfold and Wild, 2011;

Werhli et al., 2006). Of particular interest, given their direct

bearing on mechanisms of regulation and information flow

through the cell, is the identification of causal regulatory signals,

the associated directed (causal) networks and regulatory path-

ways. Time series experiments potentially capture these signals,

but because of low temporal resolution of transcriptome data,

only simple models can be used for analysis. The most basic is a

linear auto-regression model (Lebre, 2009; Morrissey et al., 2010;

Opgen-Rhein and Strimmer, 2007),

Xt+1
i =�i+

XG
j=1

BijX
t
j+"ti ; ð1Þ

where Xt
i is the (log) expression level of gene i (i=1; . . . ;G) at

time t (t=1; . . . ;T), Bij is the connectivity strength, �i the addi-

tive constant and "ti Gaussian noise Nð0; ��1i Þ, (precision �i).
Despite the simplicity of these models, inference is computa-

tionally intensive given the high number of regressors; expression

data on 1000–10 000s of genes is typical depending on the experi-

mental conditions and organism, and potentially greater if gene

models (RNA splicing/transcripts) are distinguished. A factor

that considerably aids identification of regulatory links in these

systems is the fact that biological networks are sparse, i.e. the

connectivity matrix B=ðBijÞ is sparse with the average number of

regulators per gene being much smaller than the number of

genes. Part of this sparsity results from the fact that only a

subset of genes (more specifically, their associated proteins) can

be regulators; the set of potential regulators can thus be restricted

a priori to those identified from bioinformatic/literature consid-

erations as potential regulators, thereby reducing computation

considerably.
Sparse network models (Morrissey et al., 2010, 2011) use

Gibbs variable selection methods to determine which elements

of the matrix B are present in the regression; specifically, the

prior on Bij allows it to be zero with finite probability. The in-

dicator � ij 2 f0; 1g of a link j! i determines if Bij is non-zero

(when � ij=1), while Bij=0 if �ij=0. The indicator � is modelled

as a Bernoulli distribution with a prior probability � of being

non-zero, �ð� ij j�Þ�Berð� ij j�Þ, while � has a Beta prior �ð�Þ�B
eð� j0:5; 0:5Þ (Morrissey et al., 2010). Let D denote the time series

gene expression data fXt
ig and � the model parameters

fð�iÞ; ð�iÞ; ð� ijÞ; ðBijÞg. The likelihood is then given by

Lð�;DÞ=
YG
i=1

YT�1
t=1

N Xt+1
i j�i+

XG
j=1

�ijBijX
t
j ; �
�1
i

 !
: ð2Þ

The associated posterior can then be sampled using the biocon-

ductor package GRENITS (http://www.bioconductor.org/

packages/2.12/bioc/html/GRENITS.html).

In network models, interference has a direct bearing on the

posterior probability of links being present. Specifically in these*To whom correspondence should be addressed.
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sparse network models, �ð�ij=1 j DÞ is reduced if there is an-
other regulator k with similar dynamics to j. In the case of an
exact identity between the dynamics of j and k, there are three

identical regression models: � ij=1; � ik=0; � ij=0; �ik=1 and
� ij=1; � ik=1, and thus the probability of any one, and therefore
of �ð�ij=1 jDÞ is reduced. The relative weighting of these three

states is determined by the prior link probability �, which is low
in sparse networks, thereby downweighting the double link case;
therefore, only the two states �ij=0; � ik=1 and � ij=1; � ik=0

need to be considered, effectively halving �ð� ij=1 jDÞ relative
to the case when k is excluded from the network (proof in
Section 2.1.1). A key problem is gauging when regulators

might interfere, specifically how interference decreases with a
diminishing correlation between these regulators and thus decid-

ing how to select which regulators to use in the regression.
Failing to deal with this appropriately means that key regulators
might be missed because they are part of a correlated set of

regulators, and their link probabilities fall below threshold
through mutual interference. We developed a framework for
solving this problem based on the analysis of conditional poster-

ior link probabilities that identifies the interfering sets of regula-
tors. This allowed us to define an interference-corrected causal
network and, further, the relative weights of the interfering regu-

lators reflecting their likely contribution to the control of a given
gene.
The article is organized as follows. In Section 2, we analyse the

impact of identical regulators on network links, demonstrating
that the link probabilities of identical strong regulators are es-
sentially additive. We give a numerical demonstration of the

theory on an augmented experimental dataset, doubling up a
key regulator. In Section 3, we develop a framework to correct

for interference in network construction, a post-processing step
that clusters regulators and calculates regulator interference
within clusters for each target. In Section 4, we illustrate our

method on three experimental datasets that give rise to networks
with distinct architectures and demonstrate that interference is
data specific, there being no simple relationship between inter-

ference and regulator correlation. Further, we provide evidence
that the recovered links are functional. In Section 5, we discuss
the impact of these issues and the generality to other inference/

fitting methods.

2 THE REGULATOR INTERFERENCE PROBLEM

Causal network determination relies on causal signals leaving a
signature in the gene expression dynamics, essentially a correl-

ation between Xt+1 and Xt. However, if two (or more) regulators
have similar dynamics, Xt

j � Xt
k for all t, then the identity of the

regulator is unclear, the true regulator being either j, k or both.

This correlation in the data gives rise to an approximate sym-
metry for the likelihood, Lð�;XtÞ � Lð�; �j;kX

tÞ, where �j;k is
the exchange transformation j$ k. Lifting the symmetry to the

space of model parameters gives rise to an approximate exchange
symmetry on the parameters �, Lð�;XtÞ � Lð�

y

j;k�;X
tÞ. In par-

ticular, identical data Xj=Xk means that the likelihood has an

invariance symmetry, and Bij and Bik are unidentifiable in the
linear network model (1). The lifted symmetry in this case reads
�
y

j;kB�j=B�k, �
y

j;kBj�=Bk�, etc. In this section, we develop a

framework to analyse and detect interference between regulators

and demonstrate the impact of an exact symmetry (two identical
regulators) on real data.

2.1 Two identical regulators

2.1.1 Theoretical analysis of regulator interference Consider an
exact data symmetry �j;kX

t=Xt, i.e. Xj, Xk are identical. The like-

lihood is then invariant under the lifted symmetry �
y

j;k. The prior is
also likely to satisfy this symmetry, i.e. the prior on Bij is likely

identical to that of Bik. Thus, the posterior link probabilities satisfy
this symmetry, �ð� ij jDÞ=�ð� ik jDÞ and similarly all joint condi-

tionals. However, the aspect of the symmetry we are interested in is
whether the following two models predict different networks.

M1 Only regulator j is considered in the set of regulators, i.e.

regulator k is removed from the network.
M2 Both regulators j, k are present in the network.

These are nested networks because M1 is M2 under the con-
straint �ik=0, i.e. the conditional posterior probability �ð� ij=1

jD; � ik=0Þ is the link probability on M1, whereas that of M2 is
the posterior probability �ð� ij=1 jDÞ, (no constraints), both of

which can be computed from the joint distribution �ð� ij; � ik jDÞ.
We proceed to determine an expression relating �ð� ij=1 jD;

�ik=0Þ and �ð� ij=1 jDÞ. Throughout we consider � as fixed; in
practice, it has low posterior variance in the full network analysis

and so fixing � equal to the posterior mean in the following is a
good approximation. Firstly, we have

�ð� ij=1; � ik=1 jDÞ=
�2

�ðDÞ

Z
dBijdBik�ðBijÞ�ðBikÞ

Z
d~��ð~�ÞLð~�;Bij;Bik; � ij=1; �ik=1;DÞ

using Bayes formula and assuming independent priors. Here � is

the (fixed) link prior probability and ~�=�nfBij;Bik; � ij; � ikg.
The data symmetry �jk between j, k implies that Lð~�;Bij=

a; Bik=b; � ij=1; � ik=1;DÞ=Lð~�;Bij=a+b; �ij=1; �ik=0;DÞ.
With a Gaussian prior on Bij�Nð0; �

2Þ (variance �2), we note

that for an arbitrary function f,Z
dudve�

ðu2+v2 Þ

2�2 fðu+vÞ �

Z
1

2
dwdze�

ðw2+z2 Þ

4�2 fðwÞ

=
ffiffiffi
�
p

�

Z
dwe�

w2

4�2 fðwÞ

and thus deduce that,

�ð� ij=1; � ik=1 jD; �2Þ=
�

1� �
�ð�ij=1; � ik=0 jD; 2�2Þ

where we make explicit note of the prior variance �2 on Bij;Bik

because the dimension reduction above has doubled the prior

variance. This implies that the symmetry �jk results in a direct
relationship between the regulator link probability j! i when

one (Model M1) or both links (M2) are present up to changing
the Gaussian prior variance of Bij between Models M1 and M2;

the other strength coefficients Bis; s 6¼ j retain the original prior.
Assuming a sufficiently weak prior, we thus obtain an approxi-

mate equality �ð� ij=1; � ik=1 jDÞ � �
1�� �ð� ij=1; �ik=0 jDÞ.
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Therefore, we deduce that

ð1� �Þ�ð� ij=1 jDÞ � �ð� ij=1; �ik=0 jDÞ;

which gives

�ð�ij=1 jD; � ik=0Þ �
ð1� �Þ�ð� ij=1 jDÞ

1� �ð�ij=1 jDÞ
; ð3Þ

or

�ð� ij=1 jDÞ �
�ð� ij=1 jD; � ik=0Þ

1� �+�ð� ij=1 jD; � ik=0Þ
: ð4Þ

Hence, including an identical regulator in a network reconstruc-

tion reduces the link probability j! i by a factor of

1� �+�ð� ij=1 jD; �ik=0Þ, which can be close to 2 for a

strong link (�ð� ij=1 jD; �ik=0Þ � 1) in a sparse network

(� low). For weaker connections, the reduction factor is smaller

but the relative change proportionally greater, growing as

1+½ð1� �Þ=�ð�ij=1 jD; � ik=0Þ�.

2.1.2 Demonstration of regulator interference on experimental
data We use time series data for Streptomyces coelicolor
under phosphate depletion (Nieselt et al., 2010), expression

data consisting of 19 time points with 1 h sampling (see

Section 1.1 of Supplementary Material). In bacteria, the

PhoP two-component system (PhoURP, SCO4228-30 in

S.coelicolor) is the primary response pathway during phos-

phate depletion (Rodriguez-Garcia et al., 2007); transcription

of phoP (SCO4230) dramatically increasing within 1 h of de-

pletion (Nieselt et al., 2010), a signalling cascade that gives rise

to antibiotic synthesis within 20h (Wentzel et al., 2012)

through activation of the red (undecylprodigiosin, RED) and

act (actinorhodin, ACT) gene clusters. For demonstration pur-

poses, we selected a set of 120 differentially expressed (DE)

genes comprising 65 predefined DE regulators (removing

phoU/R that have a high correlation with phoP; the interfer-

ence of these three regulators is analysed in Section 4.1) to-

gether with a selection of phoP-dependent genes and phoP-

independent genes. We denote this dataset D1�phoP to reflect

that it has one copy of the phoP gene. We constructed an

augmented dataset by including one additional artificial regu-

lator, which we called SCO0000, with expression data that is

an exact copy of phoP. We called this dataset D2�phoP because

it has two regulators (SCO4230, SCO0000) with identical gene

expression.
The bioconductor package GRENITS was used for inference

of the gene regulatory network on D1�phoP, and D2�phoP (see

Section 2 of Supplementary Material). GRENITS uses a

Markov chain Monte Carlo (MCMC) algorithm to implement

Bayesian inference on the sparse network model (1), giving sam-

ples of the network from which link probabilities can be calcu-

lated. For the duplicated dataset D2�phoP, we calculated the

conditional link probabilities for SCO4230 and SCO0000 from

the MCMC samples, i.e. the probability of SCO4230 being on

while SCO0000 is off, and vice versa. As is shown in Figure 1, the

link probabilities for SCO4230 decreased dramatically when its

duplicate SCO0000 was included relative to the conditional prob-

ability when the duplicate was switched off. This demonstrates

the presence of regulator interference in causal networks under

an exact data symmetry. Our analysis also demonstrates that the

conditional probability allows the link probability to be accur-

ately reconstructed compared with network inference on a

reduced set of regulators, i.e. removal of the artificial (dupli-

cated) gene SCO0000 in this case. Specifically, the conditional

�ð� i SCO4230 jD
2�phoP; �i SCO0000=0Þ is identical to �ð� i SCO4230 j

D1�phoPÞ for each target i, lying down the diagonal of Figure 1.

Therefore, up to the proviso of sufficient samples to compute the

conditional, all analysis can be performed from one run of the

MCMC sampler through a post-processing step. Further, as the

conditional probabilities of SCO4230 and SCO0000 agree (con-

ditioned on each other), both lying on the theoretical curve (3)

(Fig. 1) the GRENITS sampler mixes well under this data du-

plication, i.e. an identifiability symmetry between regulators does

not affect mixing.

2.2 Multiple identical regulators

For n identical regulators Si, jSij=n, of the target i, the regulator

interference analysis of Section 2.1.1 generalizes to give the

approximate relationship (see Section 4.1 of Supplementary

Material)

�ð� ij=1 jD; � ik=0; 8k 2 SinfjgÞ

Fig. 1. Link probability suppression in the presence of an identical regu-

lator. For each target, the conditional link probabilities of SCO4230 (	)
and SCO0000 (�) (conditioned on the other regulator being off) are

plotted against their posterior link probabilities for the network inferred

on the dataset D2�phoP comprising 121 genes, including the regulator

SCO4230 and its artificial copy SCO0000. The conditional link probabil-

ity is computed from the MCMC samples (18000 samples) by condition-

ing on the respective duplicate being off. The theoretical relationship,

Equation (3) with �=0:026 (posterior mean), is shown (dashed line).

The conditional link probability of SCO4230 on D2�phoP is also plotted

against the link probability of SCO4230 inferred on D1�phoP (+), the

corresponding dataset that lacks the artificial regulator SCO0000

Regulator interference
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�
ð1� �Þn�1�ð� ij=1 jDÞ

1� 1�ð1��Þn�1

� �ð�ij=1 jDÞ
:

For strong links in a sparse network (� small), we get the

approximate relation

�ð� ij=1 jDÞ �
�ð� ij=1 jD; � ik=0; 8k 2 SinfjgÞ

n

Thus, interference by identical regulators in sparse networks

reduces link probabilities by the number of identical genes, the

network topology running randomly over the single regulator

networks because states with multiple links are severely down

weighted by �. The regulators thus share equally the causal

signal, and the true link probability of the causal dependence is

(approximately) given by the sum over the link probabilities of

these interfering regulators.

3 DETECTING NETWORK LINK INTERFERENCE

A continuity argument to the identical regulator case above, Section

2.1.1, suggests that we should expect interference to occur between

highly correlated regulators. However, the dependence of interference

(link suppression) on the degree of correlation between the regulators,

the expression levels of the regulators and their targets, is unknown. What

is clear is that correlated genes can interfere with each other, potentially

causing a significant reduction in the posterior link probabilities of dy-

namically similar regulators by as much as a factor of n for n highly

correlated regulators. Therefore, causal networks defined by application

of a simple threshold criterion, �ð� ij=1 jDÞ4	, are potentially erroneous
because interfering regulators may be lost since their posterior link prob-

abilities fall below the threshold 	. Here we establish a method to con-

struct a network corrected for interference.

Our method is as follows. Given expression (time series) data D (re-

stricted to DE genes), and a subset R of potential regulators based on, for

example, functional annotation, define the interference-corrected network

(ICN) Nð!; 	Þ with correlation and link thresholds !, 	 respectively, by

(1) Cluster the regulators R into correlated sets jCjk j 
 !, using the

correlation coefficient (or other similarity index) Cjk, defining clus-

ters CRsð!Þ; s=1; 2:::, possibly singletons. We determine levels of

interference between regulators within each cluster, ignoring inter-

ference between regulators outside these sets. Singleton clusters are

regulators where interference from all other regulators is ignored.

(2) Infer the network posterior distribution and the conditional pos-

terior link distributions for regulators in the clusters (here we use

MCMC samples from GRENITS). Specifically, compute for each

j 2 CRsð!Þ the conditionals �ð� ij=1 jD; � ik=0; 8k 2 CRsð!ÞnfjgÞ

for each target i.

(3) For a regulator j 2 CRsð!Þ and a target i, a link j! i in the net-

work Nð!; 	Þ exists if either of the following two conditions holds


�link : �ð�ij=1 jD;RÞ 
 	:

��link : �ð� ij=1 jD;RÞ5	 and

�ð�ij=1 jD;R; �ik=08 k 2 CRsð!ÞnfjgÞ 
 	:

For singletons, only the 
-link condition is relevant. A further numerical

restriction is also applied to �-links; the sample size for calculating the

conditional probability should be 
100 in order that a 90% confidence

interval can be computed; on smaller sample sizes, accuracy of this

estimate is poor. Small sample sizes can occur if there is a very strong

link in the cluster, then conditioning on that link to be off gives a small

number of samples. Acquiring a larger number of posterior samples

(running the sampler for longer) relaxes this limitation.

The 
-links in Nð!; 	Þ are the original links in Nð1; 	Þ (uncorrected

network), i.e. the ICN comprises the original network augmented with

recovered �-links. We define the link probability for each link in the ICN

as the maximum of its posterior link probability and the links’ conditional

probability based on the regulator’s cluster at threshold ! (if applicable).

The number of �-links in the ICN increases on average as the correl-

ation threshold ! decreases for a fixed link probability threshold 	.

However, as the correlation threshold decreases, interference amongst

clustered regulators becomes weaker as regulators with decreased levels

of mutual interference are clustered together. Therefore, to find a correl-

ation threshold where the partitioning of regulators into mutually inter-

fering sets is optimized, we use a scoring method that quantifies levels of

interference. We propose a score where a �-link has a weight inversely

proportional to the number of regulators in its cluster CRsð!Þ, giving the

�-link network score

Sð!; 	Þ=
X
s

X
j2CRs

X
i

Iðj! iÞ

j CRsð!Þ j
ð5Þ

where Iðj! iÞ is 1 if the �-link is present, otherwise 0. Then strong

interference among highly correlated regulators increase the score,

while weaker regulators (where only a proportion of the regulators in

the cluster have a conditional probability above threshold to a given

target) decrease the score. For instance, forming a new cluster (! decreas-

ing) comprising two �-links adds 1 to the score. But adding a third regu-

lator to the cluster that does not regulate that target (conditional below

threshold) reduces the contribution to the score to 2/3. Typically �-links

are stable in that those present at ! are a subset of �-links for all !05!.
We maximize the network score Sð!; 	Þ with respect to !, defining the

optimal correlation threshold !�ð	Þ and associated optimal ICN. In cases

where there is a tie, we use the highest correlation that maximizes the

�-link network score because further clustering gives no evidence of an

increase in interference.

The link probability threshold 	 is chosen based on the confidence

required for assigning links (Morrissey et al., 2010, 2011); in practice, it

is lower than desirable because posterior link probabilities are typically

low (see Supplementary Fig. S4). We note that the value 	=1=ð2� �Þ

has a special significance as regards interference analysis (the prior link

probability parameter � is fixed at its posterior mean), as it is the highest

value of the conditional link probability for two identical regulators, see

Equation (4) with �ð� ij=1 jD; �ik=0Þ=1. Thus, when 	51=ð2� �Þ,

some of the 
-links are interfering with each other, as shown in

Figure 1. Hence, to correctly assess interference, the link threshold

should be greater than 1=ð2� �Þ. In Section 4, we consider the effect of

	 on interference and its impact on !�ð	Þ on real datasets.

Finally, we note that different clustering methods are likely to give

slightly different results for the ICN, but identification of interfering

regulators is likely similar.

4 DEMONSTRATIONS ON REAL DATA
NETWORKS

In this section, we analyse interference on three experimental

examples. Firstly, the full expression dataset for S.coelicolor

under phosphate depletion (Nieselt et al., 2010), a second experi-
mental dataset for S.coelicolor under glutamate depletion

(Waldvogel et al., 2011) and expression data for the

Arabidopsis circadian clock (Windram et al., 2012) (see Section

1 of Supplementary Material). In each case, we do not subselect

regulators based on their (dynamic) similarity but construct the

Y.Wang et al.
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causal network with all potential regulators present. We demon-

strate in two of the networks that a high proportion of the re-

covered links are functional and quantify network accuracy.

4.1 Example 1: phosphate depletion causal network

The phosphate depletion data consists of 988 DE genes, of which

67 are predefined regulators comprising DNA binding proteins

and proteins capable of regulating gene expression indirectly

such as kinases (see Section 1 of Supplementary Material). The

regulators show a wide spread of correlation (Supplementary

Fig. S6a); we expect interference to be only important among

the highest correlating regulators and thus only examine the cor-

relation threshold in the interval (0.7, 1). We grouped the 67

regulators into highly correlated sets by a hierarchical clustering

method (Supplementary Fig. S6b). The merge points in the tree

are the values of ! at which the network Nð!; 	Þ is determined.

We used GRENITS to infer the casual network on all 988 genes

(see Section 2 of Supplementary Material). Interference was

then analysed on the merge points in 0:75!51 across the link

probabilities 	=0:4; 0:55; 0:6; 0:65; 0:7 following the method

in Section 3. All these 	 are in the tail of the posterior

link probability distribution (Supplementary Fig. S4a) and

significantly larger than the posterior estimate for random

links, �=0:0266� 0:0010 (distribution standard deviation).

Therefore, links on all these thresholds demonstrate evidence

of causal regulation at varying levels of significance.
An analysis of the ICN is shown in Figure 2. Because the

number of 
-links remains constant and, typically, �-links are

added to the network, the total number of links in the network

increases on average with respect to increasing clustering strin-

gency (decreasing !) for all 	 (Fig. 2a). The �-link network score

indicates that levels of interference are initially strong but

decrease as the cluster threshold falls 50.85. Thus, the score

has a maximum around 0.86–0.90 for all the link probability

thresholds (Fig. 2b), and therefore, the optimum !�ð	Þ is fairly

robust to changes in the link threshold 	. Interference is fairly

uniform across link strength with 30–40% of links being re-

covered at the optimum correlation threshold !�ð	Þ for each

given 	.
As discussed in Section 3, the link threshold should be greater

than 1=ð2� �Þ=0:507 for a full interference assessment. To

examine ICN structure and the potential biological importance

of the inferred links, we choose 	=0:55 for illustration, much

larger than � (the probability of random links) and close to the

minimum threshold for interference detection. The �-link net-

work score is maximized (for 	=0:55) at !=0:865 (the highest

absolute correlation with the maximum score) (Fig. 2b). The

network Nð0:865; 0:55Þ has a main hub centred on SCO3217,

the calcium-dependent antibiotic regulator cdaR and a smaller

Pho regulon hub around PhoURP (Fig. 3). There are 259

(a) (b)

Fig. 2. Analysis of the �-link composition of the S.coelicolor phosphate

depletion ICN with respect to link 	 and correlation ! thresholds. The

total number of links (a) and the �-link network score (b) for networks

Nð!; 	Þ are plotted against the absolute correlation threshold ! between

regulators for link thresholds 	=0:4, 0.55, 0.6, 0.65, 0.7, see legend. At

the correlation threshold !=1, the network comprises 
-links only deter-

mined from the posterior link probabilities

Fig. 3. Cytoscape visualization of the S.coelicolor phosphate depletion

optimal ICN, Nð0:865; 0:55Þ. Nodes are regulators (pink) and (non-regu-

lator) target genes (blue). There are 498 
-links (cyan) and 259 �-links

(magenta). The T-arrow at the end of a link denotes inhibition, and an

arrow denotes activation. Link length has no meaning. The network has a

large hub around SCO3217 (cdaR), targets making up the large diameter,

interferring with the close proximity hub SCO5881 (redZ), to the left, and

with another small hub SCO4425, positioned far left; these three regula-

tors are clustered together at !=0:865. The second interfering cluster is

the Pho regulon hub complex around SCO4228, SCO4229, SCO4230,

merged hubs on top right; again these three regulators are clustered at

!=0:865. There are five smaller hubs, SCO4261, SCO4908, SCO5877,

SCO7516 and SCO7463, lower right. Zoom into figure for detail or see

cytoscape file (Supplementary Material)
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recovered �-links of 757 links in the ICN, i.e. regulator interfer-
ence caused a loss of 34% of links, 103 in the cdaR hub, inter-
fering primarily with redZ (SCO5881), the principal regulator of

the undecylprodigiosin antibiotic gene cluster (with a correlation
of 0.95), and 125 in the phoURP hub, a result of cross-interfer-
ence between phoU, phoR and phoP (correlation coeffi-

cients40.93) with 69, 32 and 24 �-links, respectively.
Interference to a common target is highly heterogeneous

across regulators within a cluster. For illustration, classify targets
for clustered regulators according to the type of links in the ICN,

ranging from sole 
 targets (one regulator is an 
-link, other
regulators lack a link), mixed 
=� targets (at least one 
- and
�-link), partial � targets (at least one �-link but not all �, and no


) and complete � targets; these respective classifications have
increasing levels of mutual interference. The joint targets between
SCO3217 and SCO5881 in ICN N(0.95,0.55) then show a diver-

sity of classes, with the absolute target-regulator (time shifted)
correlation predicting the target classification (Supplementary
Fig. S9). Specifically, the sole 
 targets of SCO3217 have a

higher absolute correlation with SCO3217 than with SCO5881,
and vice versa, while complete � targets have closer correl-
ation coefficients. The degree of mutual interference also shows

variation (Supplementary Fig. S10); the complete � targets are
evenly weighted with similar conditional link probabilities,
whereas the partial �-links have greater differences in their con-

ditional link probabilities. Results are similar for the optimal
ICN but more complex because of the three-way interfer-
ence between SCO3217, SCO5881 and SCO4425. Interference

is thus heterogeneous within the target base of clustered
regulators.
To assess levels of accuracy of our recovered �-links, we exam-

ined the 24 targets predicted for PhoP [seven are in the same
operon as defined by (Charaniya et al., 2007)]; in the uncorrected
network, phoP had no targets, whereas phoU and phoR had 19

and 69, respectively at 	=0:55. It is highly likely that most of
these targets are actually regulated by PhoP, the principle regu-
lator of the phosphate response (Martin et al., 2012; Rodriguez-

Garcia et al., 2007). We examined two criteria, firstly, whether
these targets had distinctly different profiles under phoP knock
out (Thomas et al., 2012; Supplementary Figs S11 and S12), and

whether there was evidence of a PHO box upstream of the gene,
the binding site for PhoP (motif GTTCA). The first criteria
showed that five predicted targets were significantly altered at

the 0.5% level (SCO1196, SCO3899, SCO4726, SCO5390,
SCO6753), and three others at 5% (Supplementary Table S3).
The second criteria indicated that five targets (SCO3899,

SCO4545, SCO4653, SCO4726, SCO6753) and the operon
(seven genes) have strong evidence of a PHO box or a dyad,
(Multiple EM (Expectation Maximization) for Motif

Elicitation (MEME) score 410, resp. 6); five genes were in
both categories (Supplementary Table S3). Close examination
of the transcriptional profiles shows that many have a discernible

difference in the dynamics across phosphate depletion; typically,
"phoP shows slower changes in gene expression. All those with a
PHO box show this behaviour. Thus,450% of predicted targets

have supporting evidence of a PhoP binding site (Supplementary
Table S3). The two genes SCO1196 and SCO5390 underwent a
dramatic change in expression, but there was little evidence of the

presence of a PHO box. They may therefore be indirect targets or

possess functional but altered PHO boxes. Together, this pro-

vides strong evidence that correcting for interference is essential

because otherwise important targets may be missed. All of the

PhoP targets were lost in absence of an interference correction in

this case.

4.2 Example 2: glutamate depletion causal network

We examined the ICN for a second S.coelicolor dataset under glu-

tamate depletion (Waldvogel et al., 2011), a treatment that also

gives rise to the synthesis of RED and ACT antibiotics. The data

comprises 945DE genes including 59 predefinedDE regulators (see

Section 1 of Supplementary Material). The absolute correlation

between these regulators and the corresponding clustering tree

(Supplementary Fig. S7) are similar to those in the phosphate de-

pletion experiment (Supplementary Fig. S6). Under the same ana-

lysis as above, the optimal ICN occurred at a similar clustering

threshold, (	=0:55; !�ð0:55Þ=0:859; Supplementary Figs S13

and S14) and comprises 283 links of which 35 are �-links, i.e.
there is a substantially lower level of regulator interference in this

dataset with an estimated loss of 12% by regulator interference.

Thus, despite similar correlations among the regulators and a simi-

lar posterior link probability distribution (Supplementary Fig. S4b)

to that in the phosphate depletion experiment, regulator interfer-

ence, although significant at 35 �-links, was reduced. This may be

because of the different network structure; under phosphate deple-

tion the network comprises distinct separated large hubs, Fig. 3,

whereas under glutamate depletion the network is more dispersed

among a number of smaller hubs, Supplementary Fig. S14.

4.3 Example 3: Arabidopsis circadian clock network

The Arabidopsis circadian clock is one of the most well-

established biological networks containing both transcriptional

and translational regulation. We used transcriptome data com-

prising 10 regulators (Windram et al., 2012), every 2h up to 48h,

24 time points in total. There are four biological replicates at each

time point allowing the replicate causal linear model with Student

noise in GRENITS to be used for network inference (Morrissey

et al., 2010). The absolute correlation between these regulators

and the corresponding clustering tree are shown in

Supplementary Fig. S8. The ICNNð!; 	Þ was constructed follow-

ing the method in Section 3 (Fig. 4) and displayed similar trends

to the two previous larger networks (Fig. 2; Supplementary

Fig. S13). We constructed the optimal ICN for 	=0:55
(Fig. 5); the lowest link threshold for a full interference assessment

is 1=ð2� �Þ=0:543 in this case (Supplementary Fig. S5).
To validate our method, we compared our reconstructed net-

work with the Arabidopsis circadian clock model in (Pokhilko

et al., 2013), defining the ground truth network (Supplementary

Table S4). We inferred 12 links, which consist of 6 
-links and 6

�-links (Fig. 5). In particular, all the �-links are correct, whereas
only three of the 
-links are correct. The precision of our ICN

prediction is thus 75%, subject to the degree to which the net-

work is actually known. Furthermore, an analysis of the ICNs

across link threshold 	 shows that the optimal ICN always has

maximal precision for link thresholds 	=0:55 and above

(Supplementary Fig. S15). Finally, a comparison between

NIACS and Murphy’s Bayes Net Toolbox (Murphy and Mian,

Y.Wang et al.
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1999) shows that our method has much higher precision

(Supplementary Table S5).

5 DISCUSSION

In this article, we have proposed a method for dealing with the

problem of regulators with similar dynamics suppressing causal

link signals in the auto-regression model Equation (1). By

analysis of the level of interference between highly correlated

regulators (computed from the posterior conditional link prob-

abilities), we are able to correct for link suppression by near

identical regulators, and thus recover regulator links that

would otherwise be lost because their posterior link probabilities

are reduced below threshold. We defined an ICN Nð!�; 	Þ that
includes as a subnetwork the original network Nð1; 	Þ, i.e. our
method only adds links lost by interference. The ICN is defined

at the value of the correlation threshold !� where interfering

regulators are judged to be optimally clustered as measured

by a score that sums over weighted �-links; our score punished

clustering of inconsistent regulators through a lack of mutual

interference or no interference.
Our approach avoids a subjective subselection of the set of

predefined regulators, i.e. all regulators should be included in

the inference in absence of prior information, and, by a post-

processing step, interference is corrected. In effect, we are assum-

ing that there are potentially multiple regulators for a target, but

network inference is hampered by insufficient dynamic data to

separate signals from (individual) regulators with similar dy-

namics. Determining whether there are two true regulators as

opposed to one is not possible without additional experimental

data, e.g. experiments under conditions where the regulators

have distinct dynamics or conducting experiments with strains

where either regulator is expressed under an inducible promotor.

Our method crucially prevents loss of both regulators from the

inferred network. We demonstrated that the recovered �-links
for PhoP and the Arabidopsis circadian clock are functional,

with precision at least as good as that for the predicted 
-links.
In a comparison against other network inference methods on

simulated data (DREAM4), GRENITS is already highly com-

petitive, while performance is further improved when coupled

with NIACS to correct for regulator interference, the area

under precision recall curve increasing on average by 10%

(Supplementary Table S2). Most of the improvement is in the

crucial high confidence predictions (Supplementary Fig. S3).

NIACS outperformed the other methods in 10 of 14 cases.
For the ICN Nð!�; 	Þ, we assign the link probability as the

maximum of the posterior link probability and the conditional

probability (if applicable). However, we do not expect the con-

ditional probability �ð� ij=1 jD; �ik=0; 8k 2 CRsð!�ÞnfjgÞ to

truly reflect the probability of regulator j regulating i, as this is

dependent on the clustering set CRsð!�Þ. In essence, if there are

multiple regulators, they all affect the dynamics (if on), and a

true measure of their regulatory effects is in the presence of the

other regulators. Therefore, we recommend that �-links arising

from interference remain distinguished because their probabil-

ities are corrected and thus a direct comparison with 
-links
may be misleading. However, the relative weighting within a

cluster of regulators according to their conditional posterior

probabilities is a reflection of the evidence in the data as to the

identity of the true regulator. The identity of this true regulator

may also be discerned by using additional experiments or gene

annotations. These data can also be used as prior information in

GRENITS restricting allowable links, thereby removing some of

the regulator ambiguity.
Our analysis on three real datasets demonstrated that interfer-

ence is not simply a function of regulator correlation. In the phos-

phate depletion causal network (Example 1), for two highly

correlated regulators, we found a spread of interference among

their targets comprising a set of targets on which interference is

mutual, whereas other targets have only a sole regulator despite

(a) (b)

Fig. 4. Analysis of the ICN �-link composition with respect to link 	 and

correlation ! thresholds for the Arabidopsis circadian clock data.

The total number of links (a) and the score of �-links (b) for networks

Nð!; 	Þ are plotted against the absolute correlation threshold ! between

regulators for link thresholds 	=0:4, 0.55, 0.6, 0.65, 0.7, see legend

Fig. 5. Inferred Arabidopsis circadian clock ICN showing 
-links (cyan)

and �-links (magenta). Solid lines indicate predictions consistent with the

latest experimental data and model (Pokhilko et al., 2013), while the

dashed lines indicate predictions that are not thus far supported by cur-

rent literature. Arrows indicate activation and the T-arrows inhibition
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their high correlation; interference is thus heterogeneous on the
set of targets. These observations mean that interference must be
analysed on a per experiment, per target basis and the optimal
correlation threshold determined in each case.

In addition to regulator interference, we also observed another
phenomenon in our networks, whereby two (or more) regulators
enhance the causal signals of each other; specifically, the regula-

tors have elevated posterior link probabilities in the presence
of each other. We define pairwise synergistic regulators j, k on
target i as regulators with �ð� ij=1 jDÞ; �ð� ik=1 jDÞ4	, �ð� ij=
1 jD; �ik=0Þ; �ð� ik=1 jD; � ij=0Þ5	 (this definition can be
easily generalized to the case of multiple regulators). Causal
signal synergy between regulators was rare, with 3, 3 and 1 syn-

ergistic regulators in Examples 1, 2 and 3, respectively
(Supplementary Table S6). We emphasize that neither interfer-
ence nor synergy between the causal signals implies that a
mechanistic interference/synergy exists. Link suppression/

enhancement from interference/synergy in our context arises
because of similarity (correlation) in the regulator dynamics.
Interferencebetweendynamically similar regulators in causal net-

work inference is a general problem. It will occur in any statistical
hypothesis testing methodology for the model in Equation 1. For
instance, as theweightsBij inEquation 1 are suppressed under inter-

ference, and their variance increases under a lack of (a posteriori)
identifiability, any test for a non-zero coefficient will be subject to
loss of highly correlated regulator links (see Section 4.2 of
Supplementary Material). In this article, we have provided a meth-

odology to recover missing (suppressed) links within a Bayesian
context throughapost-processingof thenetworkposterior samples.
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