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Abstract

The COVID-19 pandemic is bringing disruptive effects on the healthcare systems, economy

and social life of countries all over the world. Even though the elder portion of the population

is the most severely affected by the COVID-19 disease, the counter-measures introduced

so far by governments took into little account the age structure, with restrictions that act uni-

formly on the population irrespectively of age. In this paper, we introduce a SIRD model with

age classes for studying the impact on the epidemic evolution of lockdown policies applied

heterogeneously on the different age groups of the population. The proposed model is then

applied to age-stratified COVID-19 Italian data. The simulation results suggest that control

measures focused to specific age groups may bring benefits in terms of reduction of the

overall mortality rate.

Introduction

Governments across the globe are struggling to face the global COVID-19 pandemic, enacting

rules aimed at limiting the spread of the contagion and at safeguarding the capacity of the

healthcare systems, ultimately protecting the population from the most adverse outcomes of

the disease. To date (May 2021) the COVID-19 disease has produced a total of about 165 mil-

lion cases worldwide, and 3.5 million deaths [1]. The United States has been one of the most

severely hit countries, with a total of over 33 million cases and 6 hundred thousand deaths to

date [2]. The counter-measures enforced for controlling the contagion have been of diverse

intensity in different countries, ranging from bland (e.g., in Sweden) to medium (e.g., USA)

and strong (e.g., Italy and China) [3–5]. In all cases, the control measures included bans of var-

ious degree in personal mobility and travel, closures of commercial activities, bars, shops and

restaurants, interdiction of gathering in public places such as parks and beaches, closure of

schools and, in extreme cases, the shut down of industrial activities. One common aspect of

these restrictions, however, was that they acted over the population irrespective of age. This

somehow contrasts with the fact that the effects of the COVID-19 disease appear to have

increasing severity with the age of the infected individuals, the elderly unfortunately account-

ing for a large portion of the fatal cases [6–8]. This heterogeneity in the age distribution of
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mortality has been observed in many countries, with similar trends [9, 10]. Fig 1, for instance,

shows the percent mortality from the COVID-19 disease in Italy and in the US, in logarithmic

scale, as a function of the age class of the population: the increase of mortality with age is expo-

nential, in particular the mortality of the elder class of individuals aged 85 or more is 300 times

higher than that of individuals under 30 years old.

Clearly, in principle, heterogeneity in the mortality distribution can be attributed to (i) the

age dependency in susceptibility to the infection and/or to (ii) the age dependency of the sever-

ity of the symptoms and outcome of the disease probably due to a weaker immune system or

the presence of comorbidities. A recent study [12] on COVID-19 cases in Italy, Japan and

Spain, however, indicates that the contribution of age-dependency to susceptibility is not sup-

ported by existing data, while the age-dependencies of the mortality rate seems to determine

the age distribution in mortality from COVID-19.

The situation in most countries is thus such that on the one hand the part of the population

of schooling age and of working age is the most strongly impacted by the governments’ restric-

tions, and, on the other hand, the same portion of the population is the least affected by the

infection, at least in terms of mortality. The importance of the population age structure in

determining the pandemic’s progression and impact has been well recognized by researchers,

see, e.g., [6]. Indeed, demographic science shows how the effects of the pandemic can be dra-

matically different in populations with similar sizes but different age structures. Despite this

evidence, however, governments have so far largely neglected age structure in the definition of

their non-pharmaceutical policies against the pandemic. Even data on case and fatality disag-

gregated by age is scarcely available to researchers, and calls for countries to provide this data

have been repeatedly made, see, e.g., [6, 13]. Also, in a quite debated and controversial declara-

tion [14], a group of renowned scientists claimed that current lockdown policies are producing

devastating effects on short and long-term public health and, recognizing that vulnerability to

death from COVID-19 is very different in young-aged subjects than it is in the elder, proposed

a “focused protection” approach, whose philosophy would be “to allow those who are at mini-

mal risk of death to live their lives normally to build up immunity to the virus through natural

infection, while better protecting those who are at highest risk.”

The main scope of this paper is to explore via an analytical model the effects on the conta-

gion evolution of control policies that act heterogeneously on the different age groups of the

population. Since age is an important risk factor for severe COVID-19 symptoms, this can be

an additional control strategy to be considered for reducing the impact of the epidemic. Other

different control strategies have already been proposed, such as quarantine and strict isolation

policies [15, 16], regional strategies [17–19] or intermittent lockdowns [20].

In this paper, we first propose a modified Susceptible-Infectious-Recovered-Deceased

(SIRD) model with age classes for describing the mean-field time evolution of the number of

susceptible, infected, recovered and deceased individuals in each of the considered age groups.

Next, we pose this model in a suitable regression form which is amenable to an efficient

numerical scheme for the identification of the model parameters from real observed data. This

model is then trained on age-grouped COVID-19 Italian data covering the period from March

1st, 2020 to March 20th, 2021, [11]. This constitutes the reference baseline for evaluating the

effects of additional control measures. Control policies applied heterogeneously on the age

classes are next introduced in the model, tuning the estimated transmission rate parameters of

specific age groups. In particular, two different scenarios are investigated. The first one consid-

ers a strengthened lockdown applied to the eldest portion of the population. Instead, the sec-

ond scenario considers a relaxation of the restrictions for the population of schooling age. This

second scenario is useful for investigating the effects of the school openings.
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Fig 1. Mortality of the COVID-19 disease per age class. Italy data (top) based on COVID-19 data from [11]; US data

(bottom) based on COVID-19 data from https://data.cdc.gov/NCHS/Provisional-COVID-19-Death-Counts-by-Sex-

Age-and-S/9bhg-hcku, updated May 19, 2021, and on demographics data from https://www.statista.com/statistics/

241488/population-of-the-us-by-sex-and-age.

https://doi.org/10.1371/journal.pone.0264324.g001
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The results of these numerical experiments suggest that selective restrictions applied only

on the eldest age classes can significantly reduce the spread of the epidemic, while relaxing

the restrictions of the youngest age classes yields a negligible variation of the overall mortality

rate.

A modified SIRD model with age classes

We consider a geographical region, assumed as isolated from other regions, and within

such region we let the population be divided in K non-overlapping age classes. For each class i,
i = 1, . . ., K, we define the following quantities:

• Si(t): the number of individuals in the ith class susceptible of contracting the infection at day

t;

• Ii(t): the number of individuals in the ith class that are alive and infected at day t;

• Ri(t): the cumulative number of individuals in the ith class that recovered from the disease up

to day t;

• Di(t): the cumulative number of individuals in the ith class that are deceased due to the dis-

ease, up to day t.

The following assumptions underpin the model we develop: (a) individuals do not change

age class as t evolves, that is the age class is assigned at time t = 0 and then remains fixed for

the time range of our study; (b) the region under consideration is assumed to be isolated from

other regions, so that the total population remains constant in size; (c) the recovered subjects

are no longer susceptible of infection, at least within the time range of our study; (d) deaths

due to other reasons (different from the disease under consideration) are neglected. We let

CiðtÞ¼
: SiðtÞ þ IiðtÞ þ RiðtÞ; i ¼ 1; . . . ;K

denote the total number of individuals in the ith class, and

CiðtÞ¼
: X

K

i¼1

CiðtÞ ¼ SðtÞ þ IðtÞ þ RðtÞ

denote the total number of individuals in the population, being

SðtÞ¼:
XK

i¼1

SiðtÞ; IðtÞ¼:
XK

i¼1

IiðtÞ; RðtÞ¼:
XK

i¼1

RiðtÞ:

We denote with SiðtÞ the set of susceptible individuals in class i on day t, and with I iðtÞ the

set of infected individuals in class i on day t, for i = 1, . . ., K. For each class pair (i, j), we denote

with cij(t) the average number of class-j individuals with whom an individual of class i comes

into contact during day t. The contact factor cij depends on the size of the class-j population,

and on the behavior and activity levels of the classes, which may also reflect regulatory inter-

ventions such as mobility reductions and lock-downs. A fraction Sj(t)/Cj(t) of the cij(t) contacts

involve susceptible individuals, and in such cases an actual contagion occurs with probability

ξ, where ξ denotes the probability of infection transmission of the virus. Overall, we obtain the

following expression for the average number of infections that an individual in I iðtÞ produces

on individuals in SjðtÞ:

nijðtÞ ¼ xcijðtÞ
SjðtÞ
CjðtÞ

¼ bijðtÞ
SjðtÞ
CjðtÞ

;

PLOS ONE Age structure in SIRD models for the COVID-19 pandemic—A case study on Italy data and effects on mortality

PLOS ONE | https://doi.org/10.1371/journal.pone.0264324 February 24, 2022 4 / 17

https://doi.org/10.1371/journal.pone.0264324


where we defined the transmission-rate parameter from the ith class to the jth class as

bijðtÞ¼
:
xgijðtÞ:

The ensemble of the Ii(t) individuals will cause, on average, Nij(t) new infections in class i
on day t, where

NijðtÞ¼
:
bijðtÞIiðtÞ

SjðtÞ
CjðtÞ

:

Overall, the average number of new daily contagions in class j generated collectively by the

infected individuals of all classes during day t is

NjðtÞ¼
: X

K

i¼1

NijðtÞ ¼
XK

i¼1

bijðtÞIiðtÞ
SjðtÞ
CjðtÞ

: ð1Þ

Remark 1 (Model parsimony) We observe that, in practice, the transmission-rate parame-

ters βij(t) appearing in Eq (1) are unknown. It is actually one of the goals of the present work to

propose an effective technique for estimating these parameters (together with the other model

parameters discussed further on) by leveraging the available information from the system, that

is the measurements of the daily infected, recovered and deceased individuals. For a model

with, say, K = 10 age classes, such as the one considered in the experiments presented in this

paper, at each t one would have K2 = 100 transmission parameters to be estimated on the basis

of few measurements (precisely, 3Kmeasurements at each t). Even though the model parame-

ters are encouraged to have few variations over the estimation horizon (we discuss this when

we present the model with time-varying parameters, say, αT variations, where T is the number

of days for which the data is available and α� 1, we would have αTK2 transmission parameters

to estimate on the basis of 3TKmeasurements, and it is apparent that the number of parame-

ters grows faster than the number of available measurements. It is well known in the literature

(see, e.g., an early reference in [21]) that over-parameterized models tend to overfit the data

and to provide unstable and noisy estimates of the parameters.

For the these reasons, we purposely employ in the remainder of this paper an explanatory

model for the observed data which uses a simplified version of Eq (1). Precisely, we shall

assume that, for each class j, it holds that βij(t) = βj(t) for all i. In words, the transmission rates

from class i to class j depend only on the receiver class j. With such position, Eq (1) is rewritten

as

NjðtÞ ¼ bjðtÞIðtÞ
SjðtÞ
CjðtÞ

; ð2Þ

and the total number of transmission parameters to be estimated is reduced to a more manage-

able number of αTK.

Next, we consider that during day t a fraction γi(t) of the infected individuals in class i
recovers, and a fraction νi(t) of them dies from the disease. The above setup, using the simpli-

fied Eq (2), leads to the formulation of the following discrete-time dynamic equations for the

evolution of the contagion: for i = 1, . . ., K and t = 0, 1, . . .,

Siðt þ 1Þ ¼ SiðtÞ � biðtÞIðtÞ
SiðtÞ
CiðtÞ

ð3Þ
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Iiðt þ 1Þ ¼ IiðtÞ þ biðtÞIðtÞ
SiðtÞ
CiðtÞ

� giðtÞIiðtÞ � niðtÞIiðtÞ ð4Þ

Riðt þ 1Þ ¼ RiðtÞ þ giðtÞIiðtÞ ð5Þ

Diðt þ 1Þ ¼ DiðtÞ þ niðtÞIiðtÞ: ð6Þ

The model is initialized at some conventional t = 0 with values Si(0)>0, Ii(0)>0, Ri(0)�0,

and Di(0) = 0, for i = 1, . . ., K. Notice that it holds for all i = 1, . . ., K that

Siðt þ 1Þ þ Iiðt þ 1Þ þ Riðt þ 1Þ þ Diðt þ 1Þ

¼ SiðtÞ þ IiðtÞ þ RiðtÞ þ DiðtÞ ¼ Pi; 8t;

where Pi = Si(0) + Ii(0) + Ri(0) + Di(0) is the initial total population for the ith class. The ith
class population Pi is assumed to be a fixed fraction αi of the total population P exposed to the

contagion. The fractions αi, i = 1, . . ., K, are obtained from demographic data. The total

exposed population P is in turn assumed to be only a portion of the actual population Pop
of the region of interest. Denoting by ω 2 [0, 1] the (unknown) coefficient of proportionality

in P = ωPop, we have that

SiðtÞ þ IiðtÞ þ RiðtÞ þ DiðtÞ ¼ Pi ¼ aiP ¼ aioPop; 8t � 0;

where αi is given, while ω is one of the model parameters to be estimated from the observed

data. The last equation is used in the identification phase for obtaining the number of suscepti-

ble individuals in the ith class, since this number is not directly measurable otherwise:

SiðtÞ ¼ aioPop � IiðtÞ � RiðtÞ � DiðtÞ: ð7Þ

Model identification

We first consider a constant-parameter version of the model; then we introduce the time vary-

ing extension.

Regression model with constant parameters

If βj(t) = βj, γj(t) = γj, and νj(t) = νj for all t and all j = 1, . . ., K, the model (3)–(6) can be rewrit-

ten in the following regression form, for i = 1, . . ., K and t = 0, 1, . . .

Δiðt þ 1Þ ¼ Φiðt;oÞθ; ð8Þ

where

Φiðt;oÞ ¼
:

�
SiðtÞ
CiðtÞ

IðtÞe>i 0>K 0>K

SiðtÞ
CiðtÞ

IðtÞe>i � IiðtÞe>i � IiðtÞe>i

0>K IiðtÞe>i 0>K

0>K 0>K IiðtÞe>i

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

;

θ ¼
: β γ ν½ �

>
;
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0K is a vector of zeros of dimension K, ei is a vector of dimension K with a one in position i
and zeros elsewhere, β> ¼: [β1� � �βK], γ> ¼: [γ1� � �γK], ν> ¼: [ν1� � �νK], and

Δiðt þ 1Þ¼
:

Siðt þ 1Þ � SiðtÞ

Iiðt þ 1Þ � IiðtÞ

Riðt þ 1Þ � RiðtÞ

Diðt þ 1Þ � DiðtÞ

2

6
6
6
6
4

3

7
7
7
7
5
:

Our objective is to identify the model parameters ω 2 [0, 1] and θ� 0 on the basis of

observed data. For a given time horizon T> 0, the observed data at t = 0, 1, . . ., T, are Ii(t),
Ri(t), Di(t) for each class i = 1, . . ., K. From these data, and for given ω, we construct Si(t)
according to (7). Notice that the transition matrix Fi(t, ω) depends on ω nonlinearly, through

the dependence of Si(t) on ω.

We next define a quadratic cost with forgetting factor w 2 (0, 1]

f ðo; θÞ¼:
1

T

XT� 1

t¼0

wT� t
XK

i¼1

k Δiðt þ 1Þ � WΦiðt;oÞθ k
2

2
; ð9Þ

where W is a diagonal weight matrix, which takes into account the fact that the elements of

Δi(t + 1) might have different orders of magnitude.

The estimation problem amounts to solving minω,θ f(ω, θ) under constraints that θ� 0,

ω 2 [0, 1], and that Si(t)�0 for all t = 0, 1, . . ., T and i = 1, . . ., K. These latter constraints are

guaranteed to hold if

o � omin¼
: max

i¼1;...;K
max
t¼0;...;T

IiðtÞ þ RiðtÞ þ DiðtÞ
aiPop

:

We observe that, for fixed ω, the minimization of f with respect to θ = (β, γ, ν) can be done

efficiently by solving a linearly constrained least-squares problem. We call this the inner step

of the identification algorithm. The dependency of f on ω is instead non-convex, hence we

approach this issue via an outer gridding on ω 2 [ωmin, 1], as detailed in the following

algorithm.

Algorithm 1 (Estimation of constant parameters)

1. Grid n values ωi of ω in [ωmin, 1]. For each of these ωi:

2. Solve the constrained least-squares problem f�i ¼ minθ�0 fðoi;θÞ
and let θ�i be an optimal solution.

3. At the end of the loop, retain the ωi value that yielded the
minimal value of f�i, and return this ωi along with the corre-
sponding θ�i .

Model with time-varying parameters

While a constant-parameters model may be appropriate for describing a specific phase in the

evolution of a pandemic, it can hardly capture its overall characteristics over an extended

period of time. Clearly, the contagion rates βi(t) vary due to changes in the behavior of the pop-

ulation, induced, for instance, by restrictive measures on people’s mobility imposed by author-

ities. Similarly, the recovery and death rates γi(t), νi(t) may change due to medical response

policies that improve as knowledge and understanding of the virus progresses.
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To incorporate time-varying coefficients into a tractable model, we consider next an

approach with piece-wise constant parameters. That is, we let the parameters βj(t), γj(t), νj(t)
be variable with time, but we impose appropriate restrictions so to insure that they remain

constant over reasonable intervals of time, and only change value few times over the identifica-

tion horizon [0, T]. Such model captures the fact that the parameters may vary with time while

avoiding the overfitting that occurs if the variability is left unconstrained. Further, the identi-

fied periods over which the parameters are constant shall pinpoint the instants at which the

changes of phase in the contagion happen, such as, e.g., the instant when lockdown measures

are imposed or released.

The approach we propose is non-parametric: we let the values of βj(t), γj(t), νj(t) be variables

in the optimization problem, at each t = 0, . . ., T, and we impose sparsity over the discrete-

time derivative of these signals. That is, we impose that the discrete-time derivative of the

parameter signals is zero everywhere except for a few values (which will be determined by the

optimization algorithm), and this will imply that the parameter signals themselves are piece-

wise constant, see for instance Section 9.5 of [22].

Recalling the model expression in (8), we modify it to

Δiðt þ 1Þ ¼ Φiðt;oÞθðtÞ; ð10Þ

where all terms are defined as in the previous section, except for θ(t) which now contains the

time varying parameters:

θðtÞ ¼
:

β>ðtÞ γ>ðtÞ ν>ðtÞ
� �>

:

Letting

�β¼:

βð0Þ

βð1Þ

..

.

βðTÞ

2

6
6
6
6
6
4

3

7
7
7
7
7
5

; �γ ¼:

γð0Þ

γð1Þ

..

.

γðTÞ

2

6
6
6
6
6
4

3

7
7
7
7
7
5

; �ν¼:

νð0Þ

νð1Þ

..

.

νðTÞ

2

6
6
6
6
6
4

3

7
7
7
7
7
5

;

We write the discrete-time derivative vectors as

d�β¼: D�β; d�γ ¼: D�γ ; d�ν¼: D�ν;

where

D¼:

� IK IK 0 0 � � � 0

0 � IK IK 0 � � � 0

..

. ..
. ..

. ..
.
� � � ..

.

0 0 � � � 0 � IK IK

2

6
6
6
6
6
4

3

7
7
7
7
7
5

is a block matrix of size TK × (T + 1)K. Let further

Ek¼
: blockdiagðe>k ; e

>

k ; . . . ; e>k Þ 2 R
T;KT

; k ¼ 1; . . . ;K;

where ek is a vector of dimension K with all zeros except for a 1 in position k. With this nota-

tion, the expression Ekd�β denotes a vector of dimension T which contains the discrete-time

derivatives of the βk(t) signal, that is the transmission rate for the kth class, and similarly Ekd�γ ,

Ekd�ν denote the vector of discrete-time derivatives of the recovery and death rate for the kth

class.
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The way in which we pursue sparsity in the derivatives of the parameters’ signals is by intro-

ducing ℓ1-type penalty functions in the minimization objective. The objective function to be

minimized therefore takes the form

f ðo; �θÞ¼:
1

T

XT� 1

t¼0

wT� t
XK

i¼1

k Δiðt þ 1Þ � WΦiðt;oÞθðtÞ k
2

2
þ

þ
XK

k¼1

l
k
b
kEkd�βk1 þl

k
g
kEkd�γk1þl

k
n
kEkd�ν k1;

ð11Þ

where �θ> ¼: ½�β> �γ> �ν>�,W is a diagonal weight matrix, and l
k
b
; l

k
g
; l

k
n
� 0, k = 1, . . ., K, are

tunable tradeoff parameters. Increasing the value of, say, l
k
b

will tend to increase the sparsity of

the discrete-time derivative of βk(t), and hence to reduce the number of different periods

where βk(t) is constant. The estimation problem amounts to solving mino;�θ�0f ðo; θÞ under

constraints that ω 2 [0, 1], and that Si(t)�0 for all t = 0, 1, . . ., T and i = 1, . . ., K. The process

is summarized in the following algorithm, which follows the same lines as Algorithm 1:

Algorithm 2 (Estimation of time-varying parameters)

1. Assume suitable values of l
k
b
; l

k
g
; l

k
n
� 0, k = 1, . . ., K are given;

see comment below for a discussion on how to select them.

2. Grid n values ωi of ω in [ωmin, 1]. For each of these ωi:

3. Solve the constrained LASSO-type problem fi
� ¼ min�θ�0 fðoi;

�θÞ,
with f given in (11), and let �θ�i be an optimal solution.

4. Repeat point 3 until the loop on ωi is finished.

5. Let ω� be equal to the ωi value that yielded the minimal value
of f�i in the inner iterations, and return the corresponding
optimal parameter value �θ�.

The choice of the most appropriate values of l
k
b
; l

k
g
; l

k
n
� 0, k = 1, . . ., K is done via repeated

application of Algorithm 2 and ad-hoc adjustments. One suggestion is to start from common

value for all classes, that is l
k
b
¼ lb, l

k
g
¼ lg, l

k
n
¼ ln, for all k = 1, . . ., K. Further, set relatively

high values for λγ and λν, so that their corresponding signals result constant over the whole

time horizon, and adjust the value of λβ until a sensible number of periods (i.e., of constant

“pieces” in the signal) is obtained. Constant pieces in the β signal correspond to periods in the

pandemics evolution in which the containment measures are stable, such as the time in

between of a lockdown enforcement date and its release date, and hence the total number of

periods to be expected from the identified signal can reasonably be assessed a priori. Once a

good λβ value is obtained, we can proceed similarly by reducing the value of λγ and λν, always

keeping in sight the total number of periods of the corresponding signals, which should be

kept low. Finally, one can see if meaningful fitting improvements can be obtained by differen-

tiating the λ values among classes.

COVID-19 contagion in Italy

In this section we apply the proposed model with time-varying parameters to the various

stages of COVID-19 contagion in Italy. We first present the dataset used for our analysis and

then describe the proposed model fitting procedure.
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Italian COVID-19 data stratified by age class

In this analysis we consider the dataset presented in [11]. This dataset contains daily data

about COVID-19 cases that occurred in Italy over the period Jan. 28, 2020 to March 20, 2021,

divided into ten age classes of the population: 0-9 years, 10-19 years, 20-29 years, 30-39 years,

40-49 years, 50-59 years, 60-69 years, 70-79 years, 80-89 years and over 90 years. In our analy-

sis we focused on the period of time from March 1, 2020 to March 20, 2021. We decided to dis-

card data collected in January and February 2020, since in that period the data collection was

partial, not regular and, thus, unreliable. Moreover, as observed in [11], this dataset is affected

by a strong presence of noise and a high daily variability. For example, the number of new

cases drops during weekends due to a reduced number of swab tests performed in weekends.

In order to reduce such issues, we preprocess the data by computing the 7-day moving average.

In addition to this dataset, we also use the data provided by the National Institute of Statistics

(ISTAT) on the numerosity of the Italian population in each age class.

Model fitting

To describe the contagion evolution of the various age classes, we considered the model with

time-varying parameters described in previous section and we used the technique illustrated

in Algorithm 2 to identify the optimal parameters of the model. For the estimation of the opti-

mal parameters, we considered as training period the entire observation period from March 1,

2020 to March 20, 2021. As described in Algorithm 2, we first have to select suitable values of

l
k
b
, l

k
g
, l

k
n

and then we compute the objective cost f(ω, θ) as a function of ω. Since the contagion

rates β are the parameters most subject to fluctuations over time, we choose to set higher val-

ues for l
k
g
, l

k
n

than l
k
b
. We set l

k
b
¼ lb ¼ 7� 104, l

k
g
¼ lg ¼ 2� 105 and l

k
n
¼ ln ¼ 2� 105.

Using these values, we obtained that the optimal value of ω is 1. Fig 2 shows the corresponding

optimal parameters �θ�> ¼ ½�β�> �γ�> �ν�> �.
After having identified the parameters of the model, we can use the multi-simulation

method described in [23] (Sec. 4.2) to obtain the prediction of the model using the estimated

parameters. This method computes the state prediction x(t) at time t by means of an exponen-

tially-weighted average of the predictions x(t, t0) obtained when the model starts at given initial

conditions at t0 = 1, . . ., T, where 1 denotes the first day of our estimation period and T the last

one. Fig 3 shows the resulting per-class prediction. We can observe that the predictions nicely

fit the actual data for all the age classes. In order to quantitatively evaluate of the estimated

model, we compute the root mean square error (RMSE) between the actual data and the

model prediction. The results are reported in Table 1, which shows that the prediction error

can be considered negligible.

Contagion control by focused restrictions

In this section, we are interested in analyzing the effects on the contagion evolution of focused

restrictions that act only on specific age groups. In order to simulate the effects of such heter-

ogenous lockdown policies, we modify the contagion rates βi(t) corresponding to a selected

subset of age classes and evaluate the effects on the contagion evolution. For this analysis, we

considered the time period from Nov. 5, 2020 to March 20, 2021. This time period corresponds

to the introduction of lockdown policies in most of the italian regions, resulting in the closure

of schools, recreational facilities and shops in most of the country. In particular, we consider

two scenarios: a strengthened lockdown for the eldest age classes (i.e., over 70 years), or more

relaxed restrictions for the population of schooling age (i.e., under 20 years). The second sce-

nario is intended to investigate the effects of the school openings. For both cases, when t
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corresponds to the time period from Nov. 5, 2020 to March 20, 2021 we set the contagion rates

biðtÞ ¼ aiðtÞ�b�i ðtÞ, where �b�i ðtÞ is the optimal value estimated as described in the previous sec-

tion and α(t) is a tuning factor. In the first scenario, we set α(t) as follows

aiðtÞ ¼
1 � �þexp � t� t

s
þ lnð�Þ

� �
; if i � 8 and t � t

1; otherwise

(

;

where τ corresponds to the day when the restrictions were introduced (i.e., Nov. 5, 2020), ϕ is

the reduction factor, and σ is a scaling parameter. In the experiments, we set ϕ = 0.5 and σ = 5.

After a short transitory period, this definition of α(t) results in a reduction of 50% in the conta-

gion rates of the eldest age classes. Instead, in the second scenario we set α(t) as follows

aiðtÞ ¼
1 � cþ exp � t� t

s
þ lnðcÞ

� �
; if i � 2 and t � t

1; otherwise

(

;

where ψ is the increasing factor, and σ is a scaling parameter. In the experiments, we set ψ =

0.5 and σ = 5. Using this setting, after a short transitory period, we obtain an increment of 50%

Fig 2. Optimal parameters identified by the proposed model. The percentage of non-zero elements in Ekd�β� is 44%, the percentage of non-zero

elements in Ekd�γ � is 3%, and the percentage of non-zero elements in Ekd�ν� is 10%.

https://doi.org/10.1371/journal.pone.0264324.g002
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in the contagion rates of the youngest age classes. All the other parameters of the model are set

equal to the optimal values of the model estimated in the previous section. Fig 4 shows the

resulting parameters βi(t) as function of time. We now use the multi-simulation technique

described in [23] to project forward in time these scenarios. In order to evaluate the effects of

such type of focused restrictions, we compare these predictions against the multi-simulation

prediction obtained using the optimal parameters �θ� estimated in the previous section. This

corresponds to the case where the restrictions are applied uniformly to the whole population.

Fig 3. Per-class multi-simulation prediction using the optimal parameters �y�. The red curve describes the multi-simulation prediction, and the blue

crosses represent the actual data used for model training.

https://doi.org/10.1371/journal.pone.0264324.g003
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It is important to notice that, differently from what we have done in the previous section

where the exponential average is computed using the entire observation period from March 1,

2020 to March 20, 2021, in this case we apply the multi-simulation method performing an

exponential average of the predictions x(t, t0) with t0 = 1, . . ., τ, where τ corresponds to the

start day of the considered scenarios (i.e., Nov. 5, 2020). Fig 5 depicts the resulting per-class

multi-simulation predictions, instead Fig 6 shows the multi-simulation prediction of the over-

all population. In the case of a strengthened lockdown applied to the eldest age classes we can

observe that, even though the restrictions are reinforced only for three classes, the effects are

visible in all the age classes, significantly reducing the spread of the contagion and the overall

Table 1. RMSE between actual data and model prediction for the infected, deceased and recovered curves.

Class Infected Recovered Deceased

0-9 years 13 55 0

10-19 years 20 83 0

20-29 years 25 70 0

30-39 years 19 69 0

40-49 years 19 61 0

50-59 years 19 61 2

60-69 years 19 75 4

70-79 years 19 82 10

80-89 years 16 53 14

90 + years 3 21 10

https://doi.org/10.1371/journal.pone.0264324.t001

Fig 4. Time-varying contagion rates βi(t) in the two scenarios considered in the experimental section. A strengthened lockdown for the eldest age

classes (top), a relaxed lockdown for the youngest age classes (bottom). The dashed red line denotes the start day of these scenarios.

https://doi.org/10.1371/journal.pone.0264324.g004
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Fig 5. Per-class multi-simulation prediction. The blue curve corresponds to the case of a uniform lockdown obtained using the parameters �θ�

estimated from the actual data, the red curve corresponds to the case of a strengthened lockdown for the eldest age classes, and the yellow curve

corresponds to the case of a relaxed lockdown for the youngest age classes. The selective restrictions start at day 250.

https://doi.org/10.1371/journal.pone.0264324.g005
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number of deaths. Moreover, in Table 2 we compare the cumulative number of deaths in the

three scenarios for the time period from Nov. 5, 2020 to March 20, 2021. In particular, it is

important to observe that a selective lockdown applied only to the eldest age groups can result

in a significant reduction of the total number of deaths, with a decrease of 35% with respect to

the case of a uniform lockdown. Contrary, the results in Table 2 show that relaxing the

Fig 6. Multi-simulation prediction of the overall population. The blue curve corresponds to the case of a uniform

lockdown obtained using the parameters �θ� estimated from the actual data, the red curve corresponds to the case of a

strengthened lockdown for the eldest age classes, and the yellow curve corresponds to the case of a relaxed lockdown

for the youngest age classes. The selective restrictions start at day 250.

https://doi.org/10.1371/journal.pone.0264324.g006

Table 2. Per-class cumulative number of deaths for the time period from Nov. 5, 2020 to March 20, 2021.

Class Actual data Uniform lockdown Strengthened lockdown (class 8, 9, 10) Relaxed lockdown (class 1, 2)

0-9 years 10 15 13 22

10-19 years 22 23 20 33

20-29 years 58 82 75 88

30-39 years 136 230 208 246

40-49 years 461 650 589 697

50-59 years 1909 2750 2500 2939

60-69 years 5599 7419 6744 7933

70-79 years 14199 19215 11434 20555

80-89 years 25217 27727 16700 29453

90 + years 12872 14715 9072 15516

Total 60483 72826 47355 77482

https://doi.org/10.1371/journal.pone.0264324.t002
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restrictions for the youngest age classes may result in only a slight increase in the number of

total deaths with respect to the uniform lockdown. On the one hand such increase, of the

order of 6%, may be reasonably considered to be within the prediction error band of the

model and, on the other hand in practice it could be easily offset by the introduction of other

light non-pharmaceutical interventions on the released classes.

Conclusions

In this paper we presented a modified SIRD model with age classes for the COVID-19 infec-

tion evolution. This model allows for introduction and analysis of control policies based on

age-selective restrictions. In particular, we studied two scenarios: in the first one we considered

strengthened restrictions for the eldest age classes, while in the second one we considered

relaxed restrictions for the population of schooling age. The simulations suggest that such

selective measures may provide a reduction of the mortality rate similar to the one obtained

with a uniform lockdown, while having a lighter socio-economic impact.

In this work we focused on reducing the mortality rate. However, this is not the only quan-

tity that needs to be controlled during the COVID-19 pandemic. There are other quantities

that are important to monitor in order to analyze the evolution of the contagion, such as the

hospitalisation or the Intensive Care Unit admission rates. In addition, the period of time con-

sidered in this work ends in March 2021, when the vaccination campaign was just beginning.

For this reason, the proposed model does not take into account the vaccination rate. As future

work, we might expand the proposed model in order to consider also these quantities.
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