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Two years into Coronavirus Disease 2019 (COVID-19) pandemic, a comprehensive
characterization of the pathogenesis of severe and critical forms of COVID-19 is still
missing. While a deep dysregulation of both the magnitude and functionality of innate and
adaptive immune responses have been described in severe COVID-19, the mechanisms
underlying such dysregulations are still a matter of scientific debate, in turn hampering the
identification of new therapies and of subgroups of patients that would most benefit
from individual clinical interventions. Here we review the current understanding of viral and
host factors that contribute to immune dysregulation associated with COVID-19 severity
in the attempt to unfold and broaden the comprehension of COVID-19 pathogenesis
and to define correlates of protection to further inform strategies of targeted
therapeutic interventions.
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1 INTRODUCTION

Since the end of 2019, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2,
previously referred to as 2019-nCoV) was identified as the etiological agent of Coronavirus Disease
2019 (COVID-19) (1). SARS-CoV-2 is an enveloped virus, positive-sense single-stranded RNA, of
the Coronaviridae family (2), the third of zoonotic transmission causing a large outbreak in humans.
Indeed, SARS-CoV emerged in South China in 2002 (3), the Middle Eastern respiratory syndrome
coronavirus (MERS-CoV) in Saudi Arabia in 2012 (4), and SARS-CoV-2 in the Chinese province of
Hubei in 2019. COVID-19 is characterized by a broad spectrum of clinical manifestations, ranging
from flu-like symptoms to systemic inflammation and multi-organ failure (5–10). Severe COVID-19
occurs in 14% of infected individuals, whereas critical COVID-19 in 5% (11).

SARS-CoV-2 is primarily transmitted by a direct, person-to-person transmission via the
respiratory route, whereby the virus is suspended either on droplets or, less commonly, on
aerosols (12). SARS-CoV-2 primarily infects epithelial cells in the airways via angiotensin-
converting enzyme 2 (ACE2), its primary target receptor. The binding is followed by a
proteolytic activation at the plasma membrane by the transmembrane protease serine 2
(TMPRSS2) or at the endosomal membrane by cathepsin L (13). The infection of the lower
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respiratory tract is followed by apoptosis, as a consequence of the
viral replicative cycle, and by recognition of the viral infection by
tissue-resident immune cells, as well as a first wave of inflammation
due to macrophage and neutrophils activation that attempt to
control the infection. This is followed by the recruitment of other
immune cells from the bloodstream, further exacerbating
inflammation, and eventually leading to the cytokine storm (14,
15). This represents the basis of pulmonary pathology,
characterized by alveolar damage, oedema, inflammatory
infiltrates, and fibrin deposition, resulting in the development of
bilateral interstitial pneumonia (16–18). Worsening of this clinical
picture involves manifestation of acute respiratory distress
syndrome (ARDS), vascular damage, thrombosis, disseminated
intravascular coagulation (CID), and multi-organ damage (7, 19).

ACE2 is also widely expressed in many other tissues, including
the oral and nasal mucosa, nasopharynx, stomach, small intestine,
colon, skin, lymph nodes, thymus, bone marrow, spleen, liver,
kidney, testis, and brain (20), as well as in the endothelial and
smooth muscle cells of these organs. In agreement with these
findings, several studies detected the presence of SARS-CoV-2 in
multiple organs of COVID-19 patients, including the brain,
intestine, pharynx, heart, liver, kidneys, testicles, and blood,
demonstrating its multi-organ tropism (21–23). How the virus
disseminates onto these organs is still not fully understood.

Since the beginning of the pandemic, many definitions of
COVID-19 severity have been employed, each focusing on
Frontiers in Immunology | www.frontiersin.org 2
different clinical aspects of the disease or referring to diverse
laboratory and instrumental cut-offs, therefore hindering the
reliable comparison of different studies and, in turn, the
recognition of specific factors associated with a poor prognosis
(24–32). To date, the most used classification system is the one
developed by the World Health Organization (WHO), which
distinguishes between four degrees of disease severity, based on
clinical indicators: mild, moderate, severe, and critical (33), as
summarized in Table 1.

Several clinical conditions have been associated with an increased
risk of severe COVID-19, and include older age, chronic lung disease,
cardiovascular disease, obesity, diabetesmellitus, liver disease, end-stage
renal disease, and immunocompromise. However, the specific
pathogenetic factors that dictate whether an individual will develop
the severe form of the disease still remain a matter of scientific debate.
The present narrative review article will shed light on our current
understanding of the immune dysregulation associated to COVID-19
severity and the underlying viral and host pathogenetic mechanisms.
2 IMMUNE DYSREGULATION
IN SEVERE COVID-19

The ultimate goal of the immune response is to clear the
pathogen and develop a memory so that at the second
encounter, the pathogen can be quickly cleared. The
TABLE 1 | WHO COVID-19 disease severity classification in adults.

Disease severity degree Characteristics Definitions

Mild disease No pneumonia Symptomatic patients meeting the case definition for COVID-19 without evidence of viral pneumonia or
hypoxia.

Moderate disease Pneumonia Patients with clinical signs of pneumonia (fever, cough, dyspnea, fast breathing) but no signs of severe
pneumonia, including SpO2 ≥ 90% on room air.

Severe disease Severe pneumonia Patients with clinical signs of pneumonia (fever, cough, dyspnea) plus one of:
•respiratory rate > 30 breaths/min;
•severe respiratory distress;
•or SpO2 < 90% on room air.
While the diagnosis can be made on clinical grounds; chest imaging (radiograph, CT scan, ultrasound) may
assist in diagnosis and identify or exclude pulmonary complications

Critical disease Acute respiratory Distress
Syndrome (ARDS)

Onset: within 1 week of a known clinical insult (i.e. pneumonia) or new or worsening respiratory symptoms.
Chest imaging (radiograph, CT scan, or lung ultrasound): bilateral opacities, not fully explained by volume
overload, lobar or lung collapse, or nodules. Origin of pulmonary infiltrates: respiratory failure not fully explained
by cardiac failure or fluid overload. Need objective assessment (e.g. echocardiography) to exclude hydrostatic
cause of infiltrates/oedema if no risk factor present. Oxygenation impairment:
•Mild ARDS: 200 mmHg < PaO2/FiO2 ≤ 300 mmHg (with PEEP or CPAP ≥ 5 cmH2O);
•Moderate ARDS: 100 mmHg < PaO2/FiO2 ≤ 200 mmHg (with PEEP ≥ 5 cmH2O);
•Severe ARDS: PaO2/FiO2 ≤ 100 mmHg (with PEEP ≥ 5 cmH2O).

Sepsis Acute life-threatening organ dysfunction caused by a dysregulated host response to suspected or proven
infection. Signs of organ dysfunction include: altered mental status (delirium), difficult or fast breathing, low
oxygen saturation, reduced urine output, fast heart rate, weak pulse, cold extremities or low blood pressure,
skin mottling, laboratory evidence of coagulopathy, thrombocytopenia, acidosis, high lactate, or
hyperbilirubinemia.

Septic shock Persistent hypotension despite volume resuscitation, requiring vasopressors to maintain MAP ≥ 65 mmHg and
serum lactate level > 2 mmol/L.

Acute thrombosis Acute venous thromboembolism (i.e. pulmonary embolism), acute coronary syndrome, acute stroke.
SpO2, oxygen saturation; CT, computed tomography; PaO2, arterial partial pressure of oxygen; FiO2, fraction of inspired oxygen; CPAP, continuous positive airway pressure; PEEP,
positive end-expiratory pressure; MAP, mean arterial pressure.
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development of an antigen-specific memory immune response is
a multifactorial process that begins with the initial viral detection
by pathogen recognition receptors (PRRs), e.g. Toll-like
receptors (TLRs), to initiate the IFN response. The initiation of
the innate machinery may occur already a few hours post-
infection and, while controlling the viral replication, tries to
prime the adaptive immune response to produce cytotoxic and
memory cells. The immune system of severe COVID-19 patients
present a peculiar array of alterations compared to mild ones,
which will be briefly described as follows (Figure 1).
Frontiers in Immunology | www.frontiersin.org 3
2.1 Innate Immunity
2.1.1 Cytokine Storm
An exaggerated inflammatory response is the main feature of
severe and critical COVID-19 that was soon well documented by
several reports (34–36). In general, serum levels of IL-2R, IL-4,
IL-6, TNF-a, IL-1RA, IL-1b, IFN-g are elevated (37), in
conjunction with increased levels of chemokines such as CCL2,
CCL8, CXCL2, CXCL8, CXCL9, and CXCL16 (38). Some of
these cytokines (IL-6, IL-10) and chemokines (CXCL9, CXCL10)
were found to be significantly higher in severe patients when
FIGURE 1 | Immune dysregulation in COVID-19 severe patients. The severe/critical form of COVID-19 disease is associated to a multi-layered immune dysregulation
involving both innate and adaptive immune responses. Created with BioRender.com.
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compared to milder ones (39). IL-6 has a pivotal role in driving the
hyperinflammatory response (35, 40, 41), and it is an independent
predictor of patient survival (42). Increased CXCL2, CXCL8, IL-6,
and IL-1b are consistent with neutrophilia that is often seen in
COVID-19 patients, particularly in those who are severely ill (34,
36, 43, 44). The cytokine storm has been suggested to be
characterized by a positive feedback loop. Indeed, the initial
wave of cytokines may induce a form of inflammatory cell death
(i.e. PANoptosis, composed of pyroptosis, apoptosis, and
necrosis), that further induces the release of cytokines,
eventually leading to the cytokine storm (45, 46). The
PANoptosis seems to be associated to the concomitant increase
of IFN-g and TNF-a. A recent study showed that the change in
cytokines and chemokines occurs within the first few days from
symptoms onset (47), suggesting that the dysregulation may occur
very early in the disease course. Finally, the overall increase of
cytokines is usually followed by elevated clinical laboratory
parameters such as C reactive protein (CRP), ferritin, and D-
dimer, which are well-established acute phase proteins, as well as
alanine aminotransferase (ALT), aspartate aminotransferase
(AST), and lactate dehydrogenase (LDH), that are markers of
tissue damage (43, 48).

Soon after the pandemic started, the cytokine storm became
the hallmark of severe COVID-19. However, the cytokine storm
is an important feature also in other respiratory infections. For
instance, influenza virus infection, which can result in a broad
range of clinical manifestations, is associated to a remarkable
pro-inflammatory response that, in absence of suitable anti-
inflammatory responses, leads to the establishment of the
cytokine storm (49–52). Similarly to COVID-19, the cytokine
storm mainly occurs in severe cases suggesting a common need
to give more insights into the underlying mechanisms to guide
future targeted therapeutic interventions.

2.1.2 Neutrophils
Neutrophils are crucial early mediators against infections, as they
can rapidly clear pathogens. In particular, neutrophils can employ
various intracellular and extracellular mechanisms to control
infections, i.e. phagocytosis, the release of cytokines and
chemokines, production of reactive oxygen species (ROS), and
release of neutrophil extracellular traps (NETs). NETs consist of
an extracellular mixture of chromatin, microbicidal molecules, and
oxidant enzymes in an attempt to control the infection. However,
when these processes are dysregulated, the tissue damage due to
hyperinflammation may take over. In the context of COVID-19,
neutrophils’ amount and functionality have been associated to
disease severity, with an increase at the local and systemic level (48,
53, 54). In particular, a substantial increase in neutrophils has been
shown in severe compared to mild COVID-19 (55); besides, they
had a more activated phenotype and were characterized by
NETosis (54, 56). Indeed, in serum of COVID-19 patients
various elements of NET have been identified, e.g. citrullinated
histone H3 and myeloperoxidase (MPO) (57). Interestingly, when
serum of COVID-19 patients is incubated with neutrophils
isolated from healthy individuals in vitro, the release of DNA-
bound MPO enzyme and extracellular chromatin structures with
neutrophils elastase were observed, suggesting a remarkable NET
Frontiers in Immunology | www.frontiersin.org 4
trigger (57). The ability of NETs to exacerbate inflammation and
microvascular thrombosis is in line with the pro-thrombotic
events observed in severe COVID-19 patients. Finally, severe
patients were characterized by occurrence of pro- and pre-
neutrophils precursors, as well as a transcriptional status of
dysfunctional and immunosuppressed neutrophils (58).

2.1.3 Monocytes
The secondmajor player during the first wave of innate response is
represented by the monocyte subset. Monocytes are quickly
recruited at the site of inflammation and can differentiate
into macrophages or monocyte-derived dendritic cells (DCs)
(59). Monocytes are further divided into immature classical
(CD14++CD16-), differentiated inflammatory transitional
(CD14+CD16+) and non-classical (CD14-CD16++) subsets.

In general, the peripheral blood of COVID-19 patients is
characterized by a reduction of the various monocytes subsets,
and such reduction increases with severity (60). Additionally, the
classical CD14++CD16- monocytes of severe COVID-19 patients
showed inflammasome activation, as evidenced by caspase-1/ASC-
speck activation (61). However, the down-regulation of the co-
stimulatory CD86 with the concurrent up-regulation of the
inhibitory PD-L1 molecule in classical monocytes coincided with
a reduced capability to stimulate naïve T cells in vitro (62),
suggesting that the enhanced pro-inflammatory status eventually
may lead to dysfunction. Furthermore, the reduction of transitional
and non-classical monocytes in peripheral blood is paired with
selective recruitment in the lungs and with an increase of peripheral
inflammatory markers such as IL-6 (60). The peripheral reduction
and local increase of monocytes were more marked in those
patients with superinfections in the lungs (60). Furthermore,
CD16hiCD14lo/- monocytes enriched in the lungs were
characterized by expression of HLA-DR, suggesting non-classical
monocyte-derived macrophages differentiation in situ (60),
whereas the remaining circulating monocytes of severe patients
are characterized by lower expression of HLA-DR (63, 64). Other
studies have shown an abundant pool of pro-inflammatory
monocyte-derived macrophages in the lungs (48), expressing
CXCL10+CCL2+ with a pro-inflammatory transcriptomic
signature composed of markers such as STAT1, IFNGR1,
IFNGR2, NFKB1 and IL1B (65). These pro-inflammatory
mediators can contribute to the immunopathology of the lungs.

2.1.4 Dendritic Cells
Dendritic cells (DCs) consist of two main types, i.e. conventional
or myeloid DCs (cDCs), i.e. CD1c+CD141+, and type I IFN-
producing plasmacytoid DCs (pDCs), i.e. CD123hi. Within cDCs
other subsets may be distinguishable, aimed at cross-presenting
antigens to CD8 T cells (cDC1), initiating Th response (cDC2),
or sharing features of cDC2 and monocytes (DC3) (62, 66).
Therefore, DCs may have a pivotal role in the response against
SARS-CoV-2 infection as they act at the bridge between innate
and adaptive response.

Overall, SARS-CoV-2 infection induces a peripheral
reduction of both subsets (67, 68), with a parallel influx in
lungs and lymph nodes (48, 68). The immunophenotype of the
DCs subset with regard to the homing and activation patterns
June 2022 | Volume 13 | Article 912336
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were also altered. In particular, a lower percentage of the homing
receptor integrin-b7+ (b7) and CD86+ DCs, as well as a higher
percentage of the C-C chemokine receptor type 7+ (CCR7) and
of the marker of immune tolerance and suppression indoleamine
2,3-dyoxigenase (IDO) were observed in COVID-19 patients.
Importantly, the alterations initially observed have been shown
to persist up to 7 months from infection, regardless of
hospitalization (68). The overall reduction of DCs observed
during SARS-CoV-2 infection is more pronounced in severe
COVID-19 patients and refers to both populations, cDCs, and
pDCs (60, 64, 67, 69), regardless of whether they presented
superinfections in the lungs (60). Severe COVID-19 patients
presented selective recruitment in lungs in particular of cDC2
(60). Additionally, within the DC3 subset, an increase of
CD163+CD14+ was observed in severe COVID-19 (62).

Finally, the reduction of DCs in the peripheral blood of
COVID-19 patients is accompanied by altered functionality
(64, 67, 69). For example, cDCs and pDCs are impaired in
their capacity of producing cytokines in response to TLR
stimulation (64), and in their capability to stimulate naïve T
cells in vitro, thus priming the adaptive immune responses,
which correlated with disease severity (62). Such impairment
coincided with lower levels of HLA-DR, CD86, and increased
levels of the inhibitory PD-L1 molecule (62, 64, 67, 69).

2.1.5 Natural Killer Cells
Natural killer (NK) cells are divided into cytokine-producing (i.e.
CD56bright) and cytotoxic (i.e. CD56dim) NK cells. Despite NK
cells have mainly antiviral and antitumoral functions, they can
also control fibrogenesis.

Overall, a feature of COVID-19 is the reduction of NK cells at
the periphery with a parallel increase in the lungs (48, 70, 71),
with an expression of both activation markers, such as CD38 and
CD69 (70, 72), and inhibitory receptors, such as NKG2A, PD-1,
CD39, TIGIT, and Tim-3 (70, 71, 73), particularly in severe
patients. Importantly, NK cells of severe COVID-19 patients
showed a distinct gene expression signature compared to those
with a milder form of disease, e.g. an IFN-a signature (71).
Furthermore, in parallel with such re-distribution, the
immunophenotype was altered, with enrichment of
inflammatory and proliferating cytotoxic CD56dim NK cells
(71), as well as adaptive CD57+ NK cells expressing high levels
of perforin and NKG2C (70, 74).

Additionally, with re-distribution and immunophenotype
alteration comes functional impairment. Indeed, normal NK
cells from healthy donors were able to reduce viral proteins
when co-cultured with SARS-CoV-2-infected lung fibroblasts in
vitro, as well as to reduce the expression of pro-fibrotic genes
such as COL1A and ACTA2 (71). Whereas, NK cells from severe
COVID-19 patients were not able to reduce viral proteins nor to
suppress pro-fibrotic genes (71). Indeed, NK cells of severe
COVID-19 patients showed an expression signature that is
typical of pulmonary NK cells of patients with lung fibrosis
(71). Similar findings were shown in another study of NK cells
co-culture with SARS-CoV-2 infected cells in vitro, from both
healthy and COVID-19 donors: NK cells from healthy donors
killed SARS-CoV-2 infected cells in a dose-dependent manner,
Frontiers in Immunology | www.frontiersin.org 5
whereas this did not occur in NK cells from severe COVID-19
patients, in whom lower NK cells counts also associated to a
slower decline of viral load (75). Interestingly, TGF-b was
identified as having a putative role in such impairment as NK
cells showed a remarkable TGF-b response signature,
characterized by downregulation of T-bet and integrin-b2, that
prevent the proper NK cells binding to SARS-CoV-2 infected
cells, granule exocytosis and cell-mediated cytotoxicity (75).
Interestingly, incubation of NK cells from healthy individuals
with plasma of severe COVID-19 patients in vitro induced
impairments in NK cells, which is in line with the positive
correlation between reduction and impairment of NK cells
with the systemic hyperinflammation (71, 75). Therefore,
hyperactivation and hyperinflammation are important
mechanisms of NK cells impairment, as described in the
settings of chronic stimulation (76).

2.2 Unconventional T Cells
Unconventional T (uT) cells represent about 10% of circulating T
cells and are a major component of the mucosal immune system,
exhibiting both innate and adaptive features. These immune cells
express invariant TCRs that recognize nonpeptide antigens in an
MHC-unrestricted manner and can promptly respond upon
activation with the production of cytokines, e.g. IFN-g, TNF-a,
and IL-17A, and cytotoxic activity without undergoing clonal
expansion and differentiation into effector cells. This
heterogeneous population encompasses three main lineages, i.e.,
mucosa-associated invariant T (MAIT), gdT, and invariant natural
killer T (iNKT) cells, which are engaged inmucosal homeostasis as
well as in antitumor and antimicrobial immunity (77).

MAIT cells, Vd2+ gdT cells as well as iNKT cells appear to be
greatly depleted in the peripheral blood of COVID-19 patients in
a severity-dependent manner (78–83). Residual circulating uT
cells show a significant increase in the expression of both
activation (78, 80, 81, 84) and exhaustion (78) markers, i.e.
CD69 and PD-1, respectively. CD69 expression on MAIT cells
has shown to be more pronounced in patients with detectable
SARS-CoV-2 viremia (80), as well as in those with a more severe
disease (80, 81, 84), suggesting a striking association between
MAIT cells activation and worse clinical outcome. On the
contrary, another study found a positive correlation between
CD69 expression on MAIT and iNKT cells at the time of
admission and the PaO2/FiO2 ratio, suggesting a possible
beneficial role of early MAIT and iNKT cells activation in
severe COVID-19 (78). Circulating uT cells of COVID-19
patients produce less IFN-g in the backdrop of more IL-17A, a
pro-inflammatory and pro-fibrotic cytokine (78), whereas MAIT
cells additionally showed an increased Granzyme B production,
with a direct correlation between MAIT cytotoxic activity and
severity of disease (80, 81).

The reduction of circulating uT cells is paralleled by increased
proportions of MAIT (78, 80) and gdT cells (85), expressing high
levels of activation and exhaustion markers in endotracheal
aspirates, bronchoalveolar fluid, and pleural effusions of
COVID-19 patients, suggesting recruitment of these cells in
inflamed lungs. This is further supported by a high expression
of MAIT cells chemoattractant such as CXCL10 in airway fluids
June 2022 | Volume 13 | Article 912336
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(78), as well as a reduced expression of chemokine receptors
involved in lung homing, e.g. CXCR3 or CCR6, on circulating
MAIT cells. Finally, as shown for circulating MAIT cells, also
local cells show increased production of IL-17A and Granzyme B
in the backdrop of decreased IFN-g (80, 81). The pro-
inflammatory IL-18 produced by monocyte/macrophages has
been described as one of the main driving factors for uT cells
activation and cytotoxicity. Indeed, a positive correlation
between plasmatic IL-18 and CD69 on MAIT and iNKT cells,
as well as Granzyme B by MAIT cells, was described (78, 81).

Taken together, these data suggest recruitment of uT cells to
the lungs as well as an excessive response with heightened
cytotoxicity and skewing toward IL-17A production, which can
contribute to lungs inflammation and fibrosis. Interestingly, the
similarities of MAIT cells alterations between COVID-19 and
obese patients (86–88), could partially explain the poorer
COVID-19 outcome in people with obesity (89).

2.3 Adaptive Immunity
The clinical aggravation of COVID-19 occurs approximately one
week from symptoms onset, which corresponds to the temporal
bridging between innate and adaptive immunity (7, 9, 90),
suggesting dysfunction in one or more steps of the adaptive
immunity priming. Lymphopenia is a common finding amongst
patients with SARS-CoV-2 infection that correlates with
increased severity (10, 34, 36, 91). Pathological studies have
also documented lymphocytes depletion in secondary lymphoid
organs specimens (92, 93). Therefore, the use of lymphopenia
and neutrophilia as a combined marker (neutrophil to
lymphocyte ratio, NLR) has been suggested crucial in assessing
disease severity (94, 95).

2.3.1 Immunophenotypes
Deep immune profile analysis of hospitalized COVID-19
patients showed a highly heterogeneous adaptive response and
ident ified two main d i s t inc t immunophenotypes :
immunophenotype 1, associated with severity, characterized by
highly activated CD4 T cells, fewer circulating T follicular helper
(cTfh) cells, and hyperactivated or exhausted CD8 T cells;
immunophenotype 2, associated with a more favorable
outcome, including less activated CD4 T cells, Tbet+ effector
CD4 and CD8 T cells, and proliferating B cells (96). The
activated features of phenotype 1 have been described in
several reports (39, 63), as well as the exhaustion features (36,
41, 48, 97–101). Exhaustion is a multifactorial and multifaceted
state characterized by expression of various inhibitory receptors
(e.g. PD-1, Tim-3, CTLA-4, and TIGIT), as well as low
proliferative capacity, reduced cytokines production and
cytotoxic potential of immune cells. It is plausible that immune
exhaustion in COVID-19 is a consequence of the general
prolonged activation and inflammation. Furthermore, CD4 T
cells differentiation into various subsets, e.g. Th1 and Th2, has
been shown to have an important role in influencing the clinical
outcome of infections such as HIV (102). In the context of
COVID-19, despite the general lymphopenia, an incorrect Th
polarization has been shown to be associated with outcome in
Frontiers in Immunology | www.frontiersin.org 6
several studies (103–105). In particular, a polarization toward
Th2 was associated with disease severity and with a worse
outcome. This may be due to the intrinsic features of such
subsets. Indeed, the Th1 subset coordinates the antiviral
response by means of CTLs and NKs activation; whereas the
Th2 subset activates cells such as eosinophils and basophils, thus
tends to inhibit the Th1 response.

2.3.2 Antigen-Specific T Cell Responses
The antigen-specific T cell response is highly heterogeneous,
both in the CD4 and CD8 T cells subsets. Indeed, virus-specific
T cells can differentiate into a broad range of subpopulations
with different effector functions such as: direct antiviral activity
via cytokines secretion and recruitment of many immune cells
(i.e. T helper cells, Th); cytotoxicity (i.e. CD8 T cells); support of
B cells maturation and antibody production (i.e. T follicular
helper cells, Tfh). The goal of the adaptive immune response is to
clear the infection and build a memory to rapidly intervene
upon secondary encounter with the pathogen. Memory
T cells differentiate from naïve T cells into central memory
T cells (TCM), effector memory T cells (TEM), and terminally
differentiated effector memory T cells (TEMRA).

In response to SARS-CoV-2 infection, antigen-specific T cells
are generally produced (106), as early as two days post-
symptoms onset, with CD4 T cells frequencies overcoming
those of CD8 T cells (107, 108). The presence of SARS-CoV-2-
specific CD4 and CD8 T cells has been associated with milder
disease (106, 107, 109). Furthermore, the functional properties
were altered in severe COVID-19 patients, as showed by a lower
percentage of polyfunctional CD4 T cells producing
simultaneously the classical Th1 cytokines, i.e. IFN-g, TNF-a,
and IL-2 (110). The importance of SARS-CoV-2-specific T cells
is further supported by the infection resolution in a COVID-19
patient who did not produce neutralizing antibodies but had
instead antigen-specific CD4 and CD8 T cells (107).
Interestingly, in critical/deceased COVID-19 patients, it has
been shown that SARS-CoV-2-specific T cell responses occur
and are comparable to that of moderate patients (111), though
not able to clear the infection and/or limit the systemic damage.

SARS-CoV-2-specific T cells can migrate into the lungs as part
of COVID-19 pathogenesis. An increased proportion of
inflammatory CXCR4+ CD4 and CD8 T cells in the lungs of
severe COVID-19 patients was shown (109), whereas in the lungs
of moderate patients, an increased proportion of resident memory
T cells was observed (48). Additionally, in a study of scRNA-seq
on nasopharyngeal and lung samples, a transcriptional signature
characterized by strong interactions between epithelial cells and
hyperactivated T cells was described, pointing to a potential direct
contribution of hyperactivated immune cells on epithelial cells
damage (53). These data suggest that inflammatory and
hyperactivated T cells are involved in immunopathology.

Finally, contrasting data exist on regulatory T cells (Treg).
Despite the generally low levels of SARS-CoV-2-specific T cells
described in COVID-19 patients, some studies described an
increase of Treg frequencies in severe COVID-19 patients (97,
109, 112), whereas others did not find such association (34).
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2.3.3 Antigen-Specific B Cell and
Humoral Responses
Humoral response is characterized by a first phase of short-lived
low-affinity antibody-secreting plasmablasts (PBs), followed by a
second phase of long-lived plasma cells and high-affinity
memory B cells formed upon the germinal center response to
generate long-lived plasma cells and high-affinity memory B
cells. Therefore, PBs produced during the acute phase tend to
quickly disappear, but upon re-infection memory B cells can
rapidly form IgG-secreting PBs.

Though the majority of studies focus on T cell and antibody
responses, perturbations in the B cell compartment associated
with COVID-19 severity have been described. Severe COVID-19
patients showed extrafollicular B cells activation with expansion
of PBs that inevitably produce high titers of antibodies, similarly
to what was reported in autoimmune diseases, which strongly
correlates with the level of proinflammatory cytokines (96, 113).
The lack of a positive correlation between the titer of neutralizing
antibodies and disease severity has been shown by several reports
(114, 115), though others have found reduced levels of SARS-
CoV-2-specific peripheral IgA, IgG, and IgG1 in severe/critical
COVID-19 patients (116). In particular, such populations are
characterized by CD19+CD27+CD38hi antibody-producing cells,
as well as CD11+ activated naïve B cells that differentiate in
effector B cells lacking naïve (IgD) and memory (CD27) markers,
i.e. CD19+CD27-CD38-CD24-IgD-CD11c+CD21-, also called
double-negative B cells (113, 117). The expansion of B cells
lacking memory markers has been described in several studies
and has been referred to as atypical memory B cells
(CD21loCD27-CD10-) (118). Additionally, a decrease of
switched memory B cells was suggested as independent risk
factor for mortality in COVID-19 patients (116), whereas
proliferating memory B cells were not associated with severity
(96). Importantly, the antibody-secreting cells produce high
levels of antibodies that can have neutralizing features in
severe COVID-19 patients, as shown in several studies (63,
119, 120). However, many severe COVID-19 patients fail to
develop the germinal center reaction, as shown in studies of
deceased COVID-19 patients where a lack of germinal centers
response in spleen and lymph nodes, as well as a reduction of Tfh
cells, was demonstrated (121). Indeed, this is further supported
by the association of cTfh frequency with a reduced severity
(107). Importantly, COVID-19 patients with somatic mutations
in memory B cells presented a quick recovery from SARS-CoV-2
infection (122, 123).

The mechanisms underlying the lack of disease control in the
backdrop of high levels of neutralizing antibodies still need
further clarification, however, the aforementioned data suggest
that an accurate B cell maturation, e.g. involving somatic
hypermutation, is pivotal for the development of cells with
high-affinity and breadth.

Finally, coordinated immune responses made by the three
arms of the adaptive response, i.e. CD4 T cells, CD8 T cells, and
antibodies, were shown to be associated with milder disease,
whereas uncoordinated responses were more often seen in aged
and severely ill individuals (107).
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3 UNDERLYING MECHANISMS OF
IMMUNE DYSREGULATION

In the following sections, we will review the mechanisms
underlying the immune dysregulation described in severe
COVID-19 patients. In particular, viral and host factors, as
well as the role of microbiota (Figure 2).

3.1 Viral Factors
The SARS-CoV-2 viral load an individual is infected with, i.e.
viral inoculum, certainly represent a first viral factor that may
potentially shape the immune responses. Given the severity of
the disease, human challenge studies aimed at evaluating disease
severity in relation to the initial viral inoculum are lacking;
however, several animal studies suggest interesting associations.
In a murine model of mouse-adapted SARS-CoV-2 intranasal
infection, a dose-dependent increase in morbidity and mortality
was observed (124). Furthermore, in a Syrian Hamster model of
SARS-CoV-2 infection, the severity of pneumonia increased with
viral inoculum when administered intranasally, whereas the oral
administration yielded mild pneumonia (125). The use of animal
models allows to exclude all variables that may influence the
outcome, e.g. genetic background, immunity, and environment.
In real-life settings, this cannot occur, and the studies evaluating
SARS-CoV-2 viral load in relation to COVID-19 outcome
quantify such parameter at hospitalization and/or at symptoms
onset, i.e. several days from priming. Therefore, several
mechanisms attempting to control a high viral inoculum may
have already taken place. This may explain the apparently
contrasting data among studies evaluating the association of
viral load in nasopharyngeal swabs with COVID-19 outcome.
Indeed, some reports have found an association with disease
severity (24–28), whereas others did not find a strong association
(29, 30), or did not even find it (31, 32).

Importantly, SARS-CoV-2 genome, proteins, or virus-like
particles have been detected in many other compartments than
the respiratory tract (21–23, 126, 127). How the virus spreads in
the other organs is not fully understood, even though there is some
evidence that the viral presence in the bloodstream, i.e. referred to
as SARS-CoV-2 RNAemia, may be a first critical step.Whether the
RNAemia corresponds to infectious viral particles is still under
discussion. A study showed a direct cytopathic effect upon Vero-
E6 cells infection with the plasma of an immunocompromised
patient, and these cells produced virions (127). In the same study,
infectious SARS-CoV-2 virus has been isolated from several
tissues, i.e. heart and kidney (127). Another study visualized
SARS-CoV-2 virions in centrifuged plasma pellets by means of
several imaging-based approaches in a cohort of SARS-CoV-2
infected individuals with different degrees of severity, none of
them were reported to be immunocompromised (128). Therefore,
these data suggest that SARS-CoV-2 RNAemia could be partially
explained by SARS-CoV-2 viremia. Despite the viral control in
immunocompromised patients is highly impaired compared to
immunocompetent individuals, similar mechanisms of replication-
competent SARS-CoV-2 spreading may occur in those
immunocompetent patients with multi-organ involvement. The
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FIGURE 2 | Underlying mechanisms of immune dysregulation. Several viral and host factors have been described as influencing one or more steps of the immune
response during SARS-CoV-2 infection. In particular, the early phases of the immune response may be influenced by i) viral factors, such as viral inoculum, Spike
mutations and viral interference of host IFN pathways, as well as ii) host factors, such as ACE2 polymorphisms and URT microbiota. Whereas viral up-regulation of
host HLA-G, inborn host mutations, auto-reactive Abs vs IFN, HLA and KIR polymorphisms, past coronavirus infections may influence the later phases of immune
responses. In this context, gut-lung axis perturbations may further fuel systemic inflammation. TLRs, Toll-like receptors; IFN, Interferon; Abs: Antibodies; HLA, Human
Leukocyte Antigens; KIRs, Killer Cell Immunoglobulin-like Receptors; URT, Upper Respiratory Tract; ACE2, Angiotensin-converting Enzyme 2. Created with
BioRender.com.
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detection of SARS-CoV-2 genome in the bloodstream occurs in a
relatively small fraction of infected individuals (7, 24, 129, 130); its
levels were consistently associated with poor outcomes and were
mainly observed within critically ill patients (127, 128, 130–132).
SARS-CoV-2 viral load measured in plasma is usually lower than
the load measured in the respiratory tract and can be detected as
early as the first week from disease onset (130, 133, 134), suggesting
that in some patients can be an early event in the pathogenesis. The
low levels of plasmatic SARS-CoV-2may be a strong limiting factor
to the isolation of sufficient replication-competent viruses.
Interestingly, whereas a strong positive correlation is observed in
SARS-CoV-2 viral load measured in different districts of the
respiratory tract, their correlation with RNAemia significantly
drops (130, 135). However, those individuals with high viral
loads both in the lungs and in the plasma succumb rapidly (127).
These different mechanisms may underly compartmentalized
immune responses (135), and potential organ-specific evolution,
as shown in immunocompromised patients (127).

Finally, SARS-CoV-2, as any other RNA virus, is
characterized by high mutation and recombination rates (136),
with heterogeneous consequences in the viral proteins. Each
mutation may confer a new/improved skill that, together with
those of the other mutations, confer at the new strain the typical
characteristics of a Variant of Concern (VOC) that negatively
impacts public health. To date, five VOCs have been identified by
the World Health Organization (WHO), i.e. B.1.1.7 (Alpha),
B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), and B.1.1.529
(Omicron). Some of the accumulated mutations possess
important immune evasion features that could influence the
immune dysregulation observed in COVID-19 patients, e.g. the
mutation E484K in the RBD portion of the Spike protein, present
in the Beta and Gamma VOCs. In in vitro and in deep mutational
scanning (DMS) studies E484K has shown to induce evasion
both from monoclonal treatment and humoral response (137,
138). Additionally, the most recent Omicron VOC, which is
heavily mutated, with 15 out of 30 mutations located in the RBD
portion, contains various mutations that could individually
escape neutralizing Abs, i.e. K417N, G446S, E484A, and
Q493R (139). This may occur in the backdrop of mutations
that confer an advantage on transmissibility, e.g. the mutation
N501Y, present in Alpha, Beta, and Gamma VOCs, which
increases the affinity of the RBD for ACE2, thus increasing
transmissibility (140). It has also been shown both in vitro and
in animal models that such mutation increases the rate of virus
replication (141). In the Omicron VOC, the additional Q498R
mutation makes the binding affinity to ACE2 even stronger
(142). The Spike mutation E484K present in the Beta and
Gamma VOCs also increases the affinity of the RBD for ACE2
(143). Additionally, the mutation P618H, present in Alpha and
Omicron, can greatly enhance spike cleavage, thus increasing
transmission (142). Interestingly, a study of replication
competency in human ex vivo explant cultures has shown that
Omicron replicates faster than all the other VOCs in the
bronchus but less efficiently in the lung, which can partially
explain the reduced severity in the backdrop of an enhanced
transmissibility (144).
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Viruses have developed countless countermeasures to directly
influence the diverse aspects of human antiviral responses. The
SARS-CoV-2 attempt to interfere with immunity starts with the
innate response, which is the first line of defense aimed at
containing viral replication and dissemination while priming
the adaptive immune response. Several SARS-CoV-2 proteins
have been described as affecting the IFN response. However, the
most characterized so far are the non-structural protein 1 (nsp1)
and ORF6, both of which have already been described as
virulence factors in SARS-CoV infection (145, 146). In SARS-
CoV-2 infection, they act via different mechanisms. Nsp1
reduces translation by means of the interaction with the 40S
subunit of the ribosome, leading to lower interferons (IFNs) and
interferon-stimulated genes (ISGs) products synthesis while
protecting the viral translation (147, 148). ORF6 blocks the
IRF3 and STAT1/2 nuclear translocation by means of
interaction with export factors such as Rae1 and Nup98 (149,
150). Interestingly, a study evaluating the gene expression profile
of several cell lines upon infection with different SARS-CoV-2
multiplicities of infection (MOIs), showed that low-MOI
infection yielded a classical signature of reduced IFNs in the
backdrop of increased chemokines, whereas high-MOI infection
maintained high levels of IFN (38). These data may suggest that
the action of viral antagonists of interferon signalling may be
ineffective in conditions of high-MOI, as a high viral burden may
be able to activate the usual innate antiviral mechanisms.
Whether this occurs in vivo remains to be determined.
Furthermore, as mentioned earlier, one of the hallmarks of
severe COVID-19, as well as of severe influenza virus infection,
is the establishment of the cytokine storm. Previously, much
attention was put on the highly pathogenetic avian influenza
virus H5N1 due to the zoonotic transmission and high mortality
rate. Interestingly, the avian H5N1 virus could replicate more in
myeloid cells compared to the human adapted virus, and the
higher RNAs induced a striking cytokine production thus
leading to a more severe outcome in murine models (151).
This was attributed to internal viral genes such as polymerase
and the non-structural proteins.

One of the mechanisms by which NK cells are activated is the
“missing-self” mode by which infected cells down-regulate self-
antigens. In particular, activating NK receptors recognize
pathogens-induced markers, whereas inhibiting NK receptors
bind to self-antigens such as the non-classical HLA class I
molecule HLA-E. It has been shown that SARS-CoV-2 encodes
a peptide, i.e. non-structural protein 13 (Nsp13), that binds to
HLA-E stabilizing the complex on the surface of infected cells.
However, instead of binding the inhibitory NKG2A receptor, it
prevents such binding, thus leading to the activation of NK cells
(152). However, whether it represents an advantage for the
pathogen in viral infections such as CMV, characterized by an
expansion of adaptive NKG2C+ NK cells, still remains to be
elucidated (153).

An additional evasion mechanism employed by several
viruses is the up-regulation of HLA-G in the host cell. HLA-G
is a non-classical HLA Class I antigen that has immune
inhibitory features via receptor signalling and exists in various
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forms, i.e. membrane-bound (HLA-G 1-4) and soluble (sHLA-G
5-7). Several polymorphisms have been described, some of which
are associated with a higher expression (154), therefore, with a
potential heightened inhibitory capacity. Upon SARS-CoV
infection of lung epithelial Calu-3 cells, an upregulation of
HLA-G was observed, whereas this did not occur when
infecting with MERS-CoV (155). Unfortunately, very few
reports exist on its potential clinical impact on SARS-CoV-2
infection and it certainly merits further evaluation. sHLA-G was
found increased in severe COVID-19 patients compared to
controls (156, 157); however, when followed up for a short
period of time, an increase of sHLA-G was associated with a
better outcome, most likely reducing the neutrophils adhesion
(156). Moreover, in a study following the dynamic of HLA-G
expression on various immune cells in a COVID-19 patient up to
the convalescence phase, a high-low-high pattern of HLA-G was
observed, most likely reflecting the SARS-CoV-2 infection
dynamics (158).

3.2 Host Factors
3.2.1 Smoke
Interestingly, a pre-existing pulmonary damage may play a role
in COVID-19 severity. One of the most common habits that can
underly pulmonary damage is smoke. Indeed, a worse outcome
has been observed in smoking individuals (159). Smoke may also
contribute to disease severity by impairing local immune
responses and epithelial regenerative capacity. It has been
shown in vitro that acute exposure of airway epithelium to
cigarette smoke allows for more severe proximal SARS-CoV-2
induced airway epithelial damage by reducing the mucosal
innate immune responses and the proliferation of airways basal
stem cells (160).

3.2.2 Sex and Age
Finally, soon after the pandemic started, sex and age were the
first risk factors to be identified, i.e. worse outcomes in males and
in elderly (161–163). These factors could be partially ascribed to
intrinsic immune features. First of all, it is known that, overall,
the immune responses elicited by females are somewhat
enhanced than those elicited by males (164). Interestingly, in a
murine model of SARS-CoV infection, estrogens were identified
as a receptor signalling key for protection in females (165).
Additionally, there might be genetic factors more frequently
observed in males. For example, 90% of severe COVID-19
patients with type I IFN autoantibodies were reported to be
male (166). Furthermore, COVID-19 has been inversely
correlated with the frequency of naïve T cells (96, 107), and
the pool of naïve T cells remarkably declines over time (167). The
decline of naïve T cells observed with age is more pronounced in
males compared to females and is associated to a male-specific
decline in B-cell specific loci (168).

3.2.3 Host Genetic Factors
A number of host genetic factors may differentially shape the
initial viral binding, recognition, and immune activation. In
particular, various polymorphisms of the ACE2 gene have been
Frontiers in Immunology | www.frontiersin.org 10
associated with disease severity as these may change the binding
affinity to the Spike protein of SARS-CoV-2 (169). Furthermore,
individuals with autoantibodies against IFN-I (166, 170), or
inborn mutations resulting in defective genes related to IFN-I,
e.g. TLR3, TLR7, and IRF7 (171–173), presented a worse
outcome. The importance of an early immune activation
is supported by the counter-productive action of early
corticosteroid treatment, as it reduces the viral-induced danger
signals necessary to activate the immune system (174).

After the initial viral recognition, viral antigens need to be
processed and presented to immune cells via the Major
Histocompatibility (MHC) molecules, coded by the human
leukocyte antigens (HLAs) genes. An in-silico analysis of viral
peptide-MCH class I binding affinity highlighted two HLA alleles
with potential implications for COVID-19 severity (175). In
particular, HLA-B*46:01 presented the fewest predicted
binding peptides for SARS-CoV-2, suggesting that individuals
carrying such allele may be more likely to develop severity, as
shown for SARS-CoV infection (176). Conversely, HLA-B*15:03
showed a high capacity to present conserved peptides, i.e. shared
among other coronaviruses, suggesting a potential cross-
protection. In an Italian cohort, the HLA-DRB1*15:01, HLA-
DQB1*06:02, and HLA-B*27:07 alleles were associated with
severe disease (177). Furthermore, NK cells express a variety of
killer cell immunoglobulin-like receptors (KIR), which are highly
polymorphic glycoproteins that induce inhibitory or activating
downstream signals. Usually, upon recognition of the self-HLA
molecules, inhibitory KIRs are involved in suppressing NK cells,
whereas the down-regulation of the self-HLA, upon viral
infections, induces activation of NK cells. In the context of
SARS-CoV-2, the KIR AA genotype was associated to a severe
COVID-19 disease, in particular, the KIR2DS4 was the most
significantly associated with severity, followed by KIR3DL1.
Interestingly, the AA genotype encodes for various inhibitory
KIRs and only one activating KIR (178).

As mentioned earlier, IL-6 is a key cytokine involved in
the cytokine storm, i.e. a hallmark of severe COVID-19.
Polymorphisms of IL-6 gene account for differences in
plasmatic cytokine levels: the GG genotype (-174G/C) has been
previously associated with higher circulating IL-6 (179).
Interestingly, IL-6 polymorphisms have been described to
affect disease course and response to therapy in several viral
infections: the low IL-6-producing CC genotype has been
associated with more severe symptoms during respiratory
syncytial virus (RSV) infection (180), whereas the high IL-6-
producing genotypes, GG or GC, were associated with sustained
virologic response in patients with HIV/HCV co-infection
treated with pegylated interferon-a (181).

In the context of COVID-19, contrasting data exist on the
topic: some studies did not show an association between the
abovementioned IL-6 polymorphism with COVID-19 severity,
whereas others did find an association (182–184). Interestingly,
polymorphisms in other cytokines have been associated to
COVID-19 severity. In particular, the AA TNF-a genotype is
associated with a more severe COVID-19 disease (185).
Furthermore, polymorphisms in other cytokines and cytokine
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receptors such as IL-17 and IL10RB have been suggested as
having a potential influence on COVID-19 progression (186,
187). While the whole genetic background and the immune
signature of different populations are likely to influence the role
these polymorphisms have on COVID-19 outcome, it appears
that carriers of cytokine/cytokine receptors high-producing
genotypes may negatively impact COVID-19 severity most
likely through the enhancement of the pro-inflammatory
milieu. Whether the simultaneous presence of high-producing
polymorphisms of different cytokines may have a synergistic
effect on the cytokine storm in severe COVID-19 still remains to
be determined.

3.2.4 Vitamin D
To date, the role of Vitamin D on COVID-19 severity is still
controversial. Indeed, some studies found an association between
Vitamin D and COVID-19 severity, whereas others did not find it
(188–191). However, there is no doubt that vitamin D exerts
important functions in antiviral immunity, as shown in various
viral models. For instance, in a murine model of influenza virus
infection, the daily supplementation of a high dose of 25-
hydroxyvitamin D3 reduced the production of pro-inflammatory
cytokines and improved the outcome (192).Whereas in humans, a
meta-analysis study showed that the daily or weekly
administration of Vitamin D reduced the incidence of acute
respiratory tract infections, and that the protective effect was
stronger in those individuals with a baseline level of Vitamin D
below 25nmol/L (193). For these reasons, despite the controversial
data, the role of Vitamin D in COVID-19 severity and outcome is
still under evaluation, mostly for its potential therapeutic effect.
Overall, it appeared that Vitamin D supplementation started
during SARS-CoV-2 infection has limited to no effect on the
disease course, whereas when administered regularly for a longer
period of time before infection it may have a positive effect (188,
194–196), most likely reflecting the kinetic of vitamin D, that
requires some time to reach a functional concentration (197). New
insights into the mechanisms underlying the abovementioned
associations are necessary to finally understand the actual role of
Vitamin D in the pathogenesis of COVID-19.

3.2.5 Exosomes
During viral infections, extracellular vesicles of 30-100 nm are
normally produced from a broad array of cells and, in certain
cases, can present viral antigens to the host immune system. A
study evaluating exosomes isolated from plasma of COVID-19
patients has shown that exosomes of mild patients (which were
of B cell, DC, and monocyte/macrophages origin) contained a
higher number of SARS-CoV-2 antigens and were able to induce
CD4 T cell activation compared to exosomes isolated from severe
COVID-19 patients, suggesting that exosomes can contribute to
prime adaptive immune responses, thus reducing the severity of
disease (198).

3.2.6 Previous Infection With Seasonal
Coronaviruses
Seasonal coronaviruses share a certain degree of homology with
SARS-CoV-2 and are frequently found in the population.
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Therefore, one of the aspects long debated is whether past
seasonal coronavirus infection may confer any degree of cross-
protection during SARS-CoV-2 infection, thus leading to less
severe disease. The etiologic agents of the seasonal common cold
are either alphacoronaviruses, i.e. HCoV-229E and HCoV-NL63,
or betacoronaviruses, i.e. HCoVHKU1 and HCoV-OC43; SARS-
CoV, MERS-CoV, and SARS-CoV-2 belong to the betacoronavirus
genera (199).

Interestingly, several SARS-CoV-2-specific T cell studies
reported that 20-50% of individuals never exposed to SARS-
CoV-2 had significant T cell reactivity, mainly CD4 T cells (106,
200, 201), and all authors speculated that this phenomenon may
have been due to preexisting memory responses against human
“common cold” coronaviruses (HCoVs). Subsequently, this
phenomenon was experimentally confirmed in a study
evaluating the antigen-specific CD4 T cells response after
stimulation with HCoV epitopes homologous to SARS-CoV-2 in
unexposed donors and SARS-CoV-2 convalescent (202). The
same trend was observed for memory B cells and humoral
response. In particular, in a study comparing serum antibodies
and memory B cell responses to coronavirus spike proteins in pre-
pandemic and convalescent SARS-CoV-2 donors, cross-reactive
memory B cells were present in pre-pandemic samples, whereas
cross-reactive antibodies were barely detectable (203). Another
study comparing the humoral response of children and adults in
pre-pandemic era and SARS-CoV-2 convalescent sera showed that
up to 40% of children had cross-reactive Abs, and their levels
correlated with anti-HCoVs (204). Additionally, a notable increase
of anti-HCoVs antibodies in convalescent sera was observed,
suggesting a potential activation of cross-reactive memory B
cells (204). The big proportion of children bearing anti-HCoVs
antibodies underlies the higher proportion of infections with
HCoVs compared to adults and may be a partial explanation
behind the lower likelihood of children to develop severe COVID-
19 (205).

However, there are conflicting reports on whether such cross-
reactivity gets translated into a protective immunity, thus leading
to less severe disease. Indeed, it has been shown that cross-
reactive anti-HCoVs antibodies do not confer protection against
SARS-CoV-2 infection nor to hospitalizations, though they are
boosted upon SARS-CoV-2 infection (206, 207). On the
contrary, another study showed that recent HCoVs infections
are associated with less severe COVID-19 (208).
4 THE ROLE OF MICROBIOTA

4.1 Upper Respiratory Tract Microbiota
The respiratory tract is the site of initial SARS-CoV-2 infection,
which occurs in the context of a local microbiota that has been
described to have a role in infection susceptibility and disease
severity. Distinct alterations of the upper respiratory tract (URT)
microbiota have been reported in SARS-CoV-2 infection: reduced
microbial diversity (135, 209–215); depletion of commensal
bacteria capable of controlling the constitutive production of type
I and type III interferons (e.g. Corynebacterium, Streptococcus,
Dolosigranulum, Fusobacterium periodonticum (135, 211,
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214, 216)); increase of potential pathogen microbes (e.g.
Pseudomonaceae, Salmonella, Serratia, Haemophilus influenzae,
Moraxella catarrhalis, Prevotella, Veillonella, Staphylococcus,
Peptostreptococcus, Clostridium) (135, 209–212). Such
perturbations have been shown to be more pronounced in
severely ill patients (135, 209, 211–213, 215, 216). As previous
studies reported a role of Fusobacterium periodonticum in the
metabolism of sialic acids (217), which can facilitate binding and
viral entry (218, 219), depletion of Fusobacterium periodonticum in
the upper respiratory tract microbiota may increase susceptibility
to SARS-CoV-2 infection (216). Furthermore, reduction of
microbial diversity, as well as depletion of Corynebacterium in
nasopharyngeal microbiota, have been associated with lower levels
of mucosal cytokines (IL-33, IFN-l3, and IFN-g) that may be
important for viral control, and heightened levels of the chemokine
CCL2, which has a role in recruiting pro-inflammatory monocytes
into infected tissues (135). Similarly, enrichment of Staphylococcus
in URT microbiota is positively correlated with nasopharyngeal
viral load and levels of systemic inflammatory cytokines (IL-6 and
TNF-a) (135).

Taken together, these observations suggest that disruption of
the upper airway’s microbial homeostasis features COVID-19 in
a severity-dependent fashion and is associated with
dysregulation of local and systemic immune responses.
4.2 Lung Dysbiosis
Although classically assumed to be sterile, lungs harbor their own
microbiota, albeit consisting of less abundant microbial populations
as compared to gutmicrobiota (220). Due to the technical difficulties
in low airways sampling, only a few studies have examined the lower
respiratory tract microbiota in SARS-CoV-2 infection, hindering the
possibility to draw firm conclusions. An observational study
evaluating the lung microbiota in post-mortem lung biopsies from
20 fatal cases of COVID-19 showed that lung microbiota in
these deceased patients was dominated by Acinetobacter,
Chryseobacterium, Burkholderia, Brevundimonas, Sphingobium,
and Enterobacteriaceae; besides, the lung fungal microbiota was
dominated by Criptococcus (221). Another study displayed that
lung microbiota of mechanically ventilated COVID-19 patients is
enriched with oral commensals, such as Mycoplasma salivarium,
Prevotella oris, and Candida albicans; further, deceased patients had
higher total bacterial loads in their bronchoalveolar lavage (BAL) and
astrikingenrichmentwithMycoplasmasalivarium thanpatientswho
survived (222). As it has been previously shown that enrichment of
the lower airway microbiota with oral commensals associate with a
pro-inflammatory state in several diseases (223, 224), it is plausible
that enrichment of lung microbiota withMycoplasma salivarium in
COVID-19 patients contributes to fueling lung and systemic
inflammation, thus entailing a worse clinical outcome. A further
study reported that lung microbiome of intubated COVID-19
patients is characterized by a low diversity of microbial
communities and enriched with common respiratory pathogens
(Staphylococcus, Stenotrophomonas), oral commensals
(Corynebacterium, Prevotella) or gut-derived microbes
(Enterococcus and Enterobacteriaceae such as Escherichia and
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Klebsiella) (215). Finally, a study based on BAL single-cell
transcriptomic of COVID-19 patients in an intensive care unit
(ICU) showed lung microbiota to be enriched with oral bacterial
commensals, includingMycoplasma salivarium and Prevotella spp.,
in physical association with immune cells (i.e. following infection or
internalization), which show high levels of inflammatory markers,
suggesting a role of such bacteria in directly contributing to lung
inflammatory response in severe COVID-19 (225). Thus, the
enrichment of the lung microbiota with oral commensals in
critically ill COVID-19 patients, which could be mainly explained
bymechanical ventilation-associated aspiration, may also exacerbate
inflammation in SARS-CoV-2 infection, as reported in other
infectious and non-infectious diseases (223, 224).
4.3 Gut Barrier Dysfunction and
Microbial Translocation
Disruption of the gut mucosal integrity with subsequent
microbial translocation, i.e. leakage of intestinal microbes
(bacteria and fungi) as well as their products from the gut to
the systemic circulation, has been described in diverse infectious
and non-infectious diseases as a factor fuelling systemic
inflammation (226–228).

Severe COVID-19 patients presented high plasma levels of
zonulin (229, 230), a mediator of tight junctions permeability
that regulate the intestinal epithelial paracellular pathway
inducing the disassembly of the protein ZO-1 from the tight
junctional complex (227, 231, 232), and occludin (229), a tight
junction structural protein. However, levels of intestinal fatty-
acid binding protein (I-FABP), a marker of enterocyte apoptosis,
are not heightened (229, 233, 234), suggesting that the alteration
of the gut barrier in severe COVID-19 is due to an increased tight
junctions’ permeability rather than to enterocyte death.
Disruption in several intestinal metabolic pathways has also
been displayed: plasma citrulline levels, an established marker
of gut function (235), are lower in severe COVID-19 patients as
compared to mild ones and controls (229), pointing to
enterocyte dysfunction as an additional mechanism of gut
leakage in these subjects.

Individuals with severe SARS-CoV-2 infection also show high
circulating levels of lipopolysaccharide (LPS) (230), LPS binding
protein (LBP) (229, 233, 234, 236), and b-glucan (229),as well as
lower levels of EndoCAb-IgM (neutralizing antibodies against
LPS endotoxin core antigen) (233), suggesting bacterial and
fungal translocation in the systemic circulation. Bacterial
proteins belonging to pro-inflammatory bacteria enriched in
the gut microbiome of COVID-19 patients, such as
Burkholderia spp., Pseudomonas spp., Bifidobacterium longum,
have also been detected in blood samples of these subjects (236).
Likewise, markers of microbial-mediated myeloid inflammation,
i.e. sCD14, sCD163 (monocyte inflammation markers), and
MPO (myeloperoxidase; neutrophil inflammation marker) are
heightened in severe COVID-19 (229). Furthermore, plasma LPS
positively correlates with zonulin (230), advocating that
microbial translocation in COVID-19 is a direct consequence
of gut barrier disruption.
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The abovementioned markers of intestinal barrier
permeability and microbial translocation have also been shown
to correlate with high levels of several systemic inflammation and
immune activation markers, pointing to a role of gut mucosal
integrity disruption and microbial translocation in exacerbating
systemic inflammation and thus contributing to disease severity
(229, 236).

Interestingly, detectable plasma LPS, i.e. endotoxemia, has
also been demonstrated to be associated with intra-hospital
thrombotic complications in COVID-19 patients (230),
suggesting that LPS may promote a prothrombotic state,
further supported by the observation of higher levels of TIRAP
phosphorylation in platelets (230), pointing to a TLR4-mediated
activation by LPS (237). Additionally, plasma levels of LBP have
been found heightened throughout the hospital stay in COVID-
19 patients with elevated markers of cardiac involvement (N-
terminal pro-B-type natriuretic peptide, troponin T, troponin I)
and positively correlated to levels of inflammasome activity
markers, which are associated with cardiac involvement too,
suggesting that gut leakage with subsequent LPS-driven priming
of the NLRP3 inflammasome may have a role in the pathogenesis
of cardiac involvement during COVID-19 (234).

Intestinal barrier disruption during SARS-CoV-2 infection
might be explained by several mechanisms: a direct viral
infection of intestinal epithelial cells (238); down-regulation of
ACE2 after viral infection of enterocytes (239); systemic
inflammation sustained by cytokine storm (226); IL-6-
mediated vascular damage (240); intestinal inflammation
sustained by gut homing of T cells, as suggested by high
plasma levels of CCL25, a gut homing marker, ligand for the
chemokine receptor CCR9 (234, 241), and gut dysbiosis with
subsequent mucosal inflammation (226, 242). The resulting
increase in gut barrier permeability facilitates the passage of
microbes and microbial products from the gut to the
bloodstream, thus boosting systemic inflammation, which in
turn promotes further gut leakiness, fostering a pro-
inflammatory vicious cycle that can ultimately contribute to
COVID-19 severity. Interestingly, well-established risk factors
for severe COVID-19, like obesity and diabetes, are known to be
associated with impairment of the gut barrier function and
disturbances of the intestinal microbiota (243–245); hence,
such alterations might contribute, at least in part, to the
severity of disease in these subjects.

4.4 Gut Dysbiosis
As mentioned above, alteration of the gut microbiota, i.e. gut
dysbiosis, is one of the mechanisms that can contribute to the
intestinal barrier dysfunction observed in severe COVID-19 (242).
Several alterations of the gut microbiota have been reported in
SARS-CoV-2 infection: decreased microbial diversity (242, 246–
248); decreased Firmicutes/Bacteroidetes ratio (242); depletion of
beneficial butyrate-producing bacteria with anti-inflammatory
and immunomodulatory potential (e.g. Ruminococcaceae,
Lachnospiraceae, Fusicatenibacter, Anaerostipes, Agathobacter,
Eubacterium hallii, Clostridium butyricum, Clostridium
leptum, Eubacterium rectale, Bifidobacterium bifidum,
Bifidobacterium adolescentis, Bifidobacterium pseudocatenulatum,
Frontiers in Immunology | www.frontiersin.org 13
Alistipes onderdonkii) (242, 246, 248–251); enrichment of
potential pathogen microbes (e.g. Streptococcus, Rothia,
Veillonella, Erysipelatoclostridium, Actinomyces, Enterococcus,
Enterobacteriaceae , Clostridium ramosum, Clostridium
hathewayi, Clostridium innocuum, Coprobacilllus, Bacteroides
nordii, Burkholderia contaminans, Bifidobacterium longum,
Blautia) (236, 242, 246, 248–251); overgrowth of opportunistic
fungal pathogens (e.g.Candida albicans, Candida auris, Aspergillus
flavus, Aspergillus niger) (252); skewing of microbial metabolic
pathways (i.e. enhancement of glycolysis, fermentation,methionine
biosynthesis, vitamin B12 biosynthesis, teichoic acid biosynthesis,
and tryptophane catabolism) (229, 236).

It has been hypothesized that down-regulation of ACE2 on
SARS-CoV-2-infected enterocytes could be the link between
COVID-19 and gut dysbiosis (239). Indeed, it is known that
ACE2 down-regulation in small intestine epithelial cells reduces
the expression of the sodium-dependent neutral amino acid
transporter B (0)AT1 (253), which in turn disturbs tryptophan
absorption. As a result, the deficiency of tryptophan and its
metabolite nicotinamide decreases the activity of the mTOR
pathway, which regulates the expression of antimicrobial
peptides in the intestinal mucosa, with subsequent alteration of
the gut microbiota ecology (254).

Of note, most of these gut microbiota perturbations were
found to be associated with higher levels of inflammatory and
pro-thrombotic markers as well as more pronounced in severe
and critical COVID-19 patients, suggesting that gut dysbiosis is
involved in the magnitude of COVID-19 severity possibly via
modulation of gut barrier permeability as well as host
inflammatory and immune responses (229, 236, 242, 247–251).

4.5 Gut-Lung Axis
Although gut and lungs are anatomically distinct, complex
pathways involving their microbial communities, i.e.
microbiota, and immune cells, configure bidirectional
interactions between intestinal and respiratory mucosa, known
as gut-lung axis (255), which are believed to be involved in
several physiologic and pathologic conditions (256, 257). Gut-
lung axis perturbations involving gut barrier dysfunction with
microbial translocation, gut dysbiosis, and lung dysbiosis, have
also been implicated in COVID-19 immunopathogenesis and
severity of disease (258).

The observation that the lung microbiota of SARS-CoV-2-
infected patients can be enriched with bacteria that are typical of
the gut microbiota, along with the evidence of gut barrier
dysfunction and microbial translocation, suggests that
translocation of microbes from the gut to the lungs via the
bloodstream may occur in COVID-19, as previously described in
mouse models of sepsis and in humans with ARDS (259),
pointing to a role of the gut-lung axis in fueling lung/systemic
inflammation and, in turn, disease severity.
5 CONCLUSIONS

In COVID-19 the majority of individuals do not have significant
complications suggesting that there is a series of favorable events
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that successfully clear the virus. The factors that dictate whether
a patient will develop the severe/critical form are still a matter of
scientific debate. The comparison of pauci-symptomatic/
asymptomatic individuals with symptomatic patients would be
extremely helpful to define these factors. However, few studies
managed to include a group of pauci-symptomatic/
asymptomatic patients, thus limiting comparative assessments
versus symptomatic and severe phenotypes. Additionally,
heterogeneity in the definition of disease severity as well as in
measurements of immune response further increase variability
among studies. What is more, whereas at the beginning of the
pandemic, the entire population was naïve to SARS-CoV-2
infection, i.e. no underlying immunity, two years after the
beginning of the pandemic, the majority of subjects are now
experienced to SARS-CoV-2 through either natural infection,
vaccination or both, hence further hindering the identification of
correlates of protection. Undoubtfully, while the activation and
recruitment of the immune cells mentioned in the present article
are initially part of the defensive response against SARS-CoV-2
infection, there seems to be a specific turning point in the natural
course of the infection, in which the same immune pathways take
a pathogenetic flavor, which overrides any later immune attempt
to control the infection. The common thread towards a
deleterious response appears to be the excessive activation, the
skewing towards “non-useful” immune phenotypes, as well as
exhaustion, altogether contributing to the pathological
inflammatory and fibrotic process in severe COVID-19,
eventually leading to ARDS and post-COVID fibrotic
pulmonary sequelae. In the backdrop of a broad knowledge of
the immune features associated with COVID-19 severity, very
few underlying mechanisms have been identified so far. The
identification of the factors underlying immune dysregulation in
severe COVID-19 is crucial to understanding COVID-19
Frontiers in Immunology | www.frontiersin.org 14
pathogenesis, defining early correlates of protection, and
informing strategies of targeted therapeutic interventions.
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