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ABSTRACT

Background. Chronic kidney disease (CKD) is common among people with type 2 diabetes (T2D), and increases the risk of
kidney failure and cardiovascular diseases. Shorter leukocyte telomere length (LTL) is associated with CKD in patients
with T2D. We previously reported single-nucleotide polymorphisms (SNPs) associated with LTL in an Asian population.
In this study, we elucidated the association of these SNPs with CKD in patients with T2D using the Mendelian
randomization (MR) approach.

Methods. The cross-sectional association of 16 LTL SNPs with CKD, defined as an estimated glomerular filtration rate
of <60 mL/min/1.73 m2, was assessed among 4768 (1628 cases and 3140 controls) participants in the Singapore Study of
Macro-angiopathy and Micro-vascular Reactivity in T2D and Diabetic Nephropathy cohorts. MR analysis was performed
using the random-effect inverse-variance weighted (IVW) method, the weighted median, MR-Egger and Radial MR
adjusted for age and sex-stratified by cohorts and ethnicity (Chinese and Malays), then meta-analyzed.

Results. Genetically determined shorter LTL was associated with increased risk of CKD in patients with T2D (meta-IVW
adjusted odds ratio¼ 1.51, 95% confidence interval 1.12–2.12, P¼0.007, Phet¼0.547). Similar results were obtained
following sensitivity analysis. MR-Egger analysis (intercept) suggested no evidence of horizontal pleiotropy
(b¼0.010, P¼0.751).
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Conclusions. Our findings suggest that genetically determined LTL is associated with CKD in patients with T2D. Further
studies are warranted to elucidate the causal role of telomere length in CKD progression.
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INTRODUCTION

Telomeres are DNA–protein structures at the ends of chromo-
somes that protect the genome from damage [1]. In most so-
matic tissues, telomeres shorten progressively with cell division
[2]. When telomere lengths are critically short, it triggers
apoptosis or replicative senescence [3, 4]. Therefore, telomere
length is recognized as a biomarker for cellular aging [5].
Leukocyte telomere length (LTL), predominantly measured in
epidemiological studies, is correlated with telomere length in
multiple tissues in humans, including kidney tissues [6–8], and
is inversely associated with risk of aging-related diseases in-
cluding cardiovascular disease and all-cause mortality [9–11].

Diabetic kidney disease (DKD) is a leading cause of renal
failure, cardiovascular disease and mortality in patients with
type 2 diabetes (T2D) [12–15]. Observational studies have
demonstrated inverse associations between LTL and risk of
chronic kidney disease (CKD) in patients with T2D [16–19].
However, observational studies are prone to reverse causation
and confounding factors. Moreover, LTL is modulated by
oxidative stress as well as inflammation, obesity, and genetic
and environmental factors [20, 21]. Therefore, it is uncertain
whether shorter LTL is causally associated with DKD.

The Mendelian randomization (MR) approach uses single-
nucleotide polymorphisms (SNPs) that are robustly associated
with a risk factor to estimate the causal relationship between a
risk factor and a disease [22]. Given that germline genetic var-
iants are randomly assorted at meiosis, the MR approach is less
prone to residual biases, confounding and reverse causation.
For inferencing causality, it is essential that the assumptions of
MR are satisfied. These are: (i) the selected SNPs are associated
with exposure (telomere length); (ii) the selected SNPs are not

associated with confounders; and (iii) the selected SNPs are as-
sociated with outcome exclusively through their effect on expo-
sure (telomere length). To our knowledge, the causal effect of
shorter leukocyte telomeres in CKD in patients with T2D has
not been evaluated in East Asians.

A recent large-scale genome-wide association study (GWAS)
in the Singapore Chinese Health Study (SCHS) cohort identified
16 SNPs associated with LTL [23]. In this study, we performed
two-sample MR with summary statistics of SNP–LTL associa-
tions from the SCHS cohort and SNP–DKD association deter-
mined in this study to investigate the causal relationship
between LTL and CKD in patients with T2D.

MATERIALS AND METHODS
SNP selection

Ten SNPs robustly associated (P< 5� 10�8) with LTL in the
Singapore Chinese population (N¼ 25 273; mean age¼ 55 years)
and an additional six independent SNPs identified after meta-
analysis with European cohorts (n¼ 37 505) [23] were selected as
instrumental variables (IVs). These 16 SNPs are located in differ-
ent regions and close to genes coding for proteins involved in
telomere homeostasis, such as shelterin complex, DNA repair
pathways and telomerase enzyme. The list of 16 SNPs selected
as IV for LTL, and the coefficient estimate for LTL (bLTL), are
shown in Table 1. Together, these 16 SNPs explained �4% of the
variation in LTL in the Singaporean Chinese population [23].
The beta estimate reflects changes in standard deviation (SD) of
the standardized levels of LTL adjusted for age, sex and princi-
pal components.

Table 1. SNPs selected as IV and its association with LTL and CKD

SNP Chr Position (hg19) Gene Test allele

SNP–LTL SNP–CKD

b SE (b) loge (OR) SE P-value

rs3219104 1 226562621 PARP1 A �0.074 0.009 �0.013 0.048 0.780
rs11890390 2 54485682 ACYP2 C �0.040 0.012 0.125 0.065 0.055
rs2293607 3 169482335 TERC C �0.120 0.009 0.030 0.058 0.406
rs10857352 4 164101482 NAF1 A �0.064 0.011 �0.004 0.079 0.544
rs7705526 5 1285974 TERT C �0.118 0.009 0.044 0.050 0.386
rs7776744 7 124599749 POT1 G �0.058 0.009 0.076 0.049 0.126
rs28365964 8 73920883 TERF1 T �0.270 0.035 0.249 0.219 0.256
rs12415148 10 105680586 OBFC1 T �0.204 0.020 0.005 0.074 0.947
rs7095953 10 101274425 NKX2-3 C �0.047 0.009 0.059 0.048 0.222
rs227080 11 108247888 ATM G �0.060 0.009 0.068 0.066 0.102
rs2302588 14 73404752 DCAF4 G �0.042 0.011 0.115 0.076 0.035
rs41293836 14 24721327 TINF2 C �0.233 0.017 0.126 0.058 0.029
rs2967374 16 82209861 MPHOSPH6 G �0.056 0.012 �0.041 0.083 0.704
rs1001761 18 662103 TYMS A �0.042 0.010 �0.101 0.090 0.256
rs7253490 19 22293706 ZNF208, ZNF257, ZNF676 C �0.036 0.010 �0.051 0.051 0.317
rs41309367 20 62309554 RTEL1 T �0.058 0.010 0.064 0.101 0.529

Chr, chromosome number; CKD, chronic kidney disease; LTL, leukocyte telomere length; OR odds ratio; SE, standard error.
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Study design and cohorts

This is a cross-sectional study. We utilized a two-sample MR
framework using two non-overlapping cohorts. We used sum-
mary statistic of a GWAS of LTL in the SCHS [23]. The associa-
tion of SNPs with CKD was estimated in two independent T2D
cohorts in Khoo Teck Puat Hospital: The Diabetes Nephropathy
(DN) [24] and the Singapore Study of Macro-angiopathy and
Micro-vascular Reactivity in T2D (SMART2D) [25] cohorts.
Briefly, the DN is an on-going study including 4590 participants
(age 21 years and above) recruited between March 2004 and
December 2017, and the SMART2D dataset is a prospective co-
hort with baseline recruitment of 2052 T2D participants (age
21 years and above) between August 2011 and February 2014.
Genotyping for the SMART2D and DN cohorts were carried us-
ing Illumina Humanomniexpress-24 Bead Chip and Illumina
HumanOmniZhonghua Bead Chip, respectively, and quality
control procedures have been described previously [26, 27].
An additional 253 Chinese and 245 Malay samples from the
DN studies were genotyped using the Illumina GSA array,
and quality control procedures are indicated in Supplementary
data, Table S1. The estimated glomerular filtration rate (eGFR)
in the DN and SMART2D datasets was calculated using CKD
Epidemiology Collaboration equation and CKD was defined
as eGFR <60 mL/min/1.73 m2. In this study, only participants
with information on renal condition and genotype data
were included (DN: Chinese ¼ 2459, Malay¼ 837; SMART2D:
Chinese¼ 1033, Malay¼ 439) (Supplementary data, Figure S1).
Written informed consent was obtained from each participant,
and the study has been approved by the National Healthcare
Group Domain Specific Review Board in Singapore.

Statistical analysis

Association of LTL shortening SNPs with CKD. The association
of each IV with CKD in the Khoo Teck Puat Hospital (KTPH) co-
hort was determined by logistic regression adjusted for age and
sex. Analysis was first performed separately in the DN and
SMART2D, stratified by ethnic group and pooled using a random
effect meta-analysis (bSNP–CKD). Heterogeneity in meta-ana-
lyzed data was determined using I2 statistic and Cochran’s Q P-
value (Phet) <0.05 was determined to be significantly
heterogeneous.

MR analysis. The SNP–LTL (bSNP–LTL) and SNP–CKD (bSNP–
CKD) coefficients were combined using an inverse-variance
weighted (IVW) method to give an overall estimate of the causal
effect. This method assumes that all the SNPs included are valid
instruments, and the effect size represents a weighted average
of Wald ratio estimates derived from all the IVs [28]. The odds
ratio (OR) from the weighted regression represents the in-
creased risk of CKD per SD shortening in LTL. Heterogeneity in
meta-analysed data was determined using I2 statistic and Phet

< 0.05 was determined to be significantly heterogeneous.

Sensitivity analysis. The weighted median method and MR-
Egger regression were performed to assess if the MR IVW esti-
mates are biased and affected by violation of MR assumptions
(i.e. horizontal pleiotropy) [29]. The weighted median method
employs the weighted empirical distribution function of each
SNP ratio estimate and provides a median value. This approach
yields a consistent estimate of a true causal effect as long as
>50% of SNPs are valid [29]. The MR-Egger regression was uti-
lized to formally test for potential violations of MR assumptions.
Intercept with P> 0.05 indicates no horizontal pleiotropy exists.

We also performed leave-one-out analysis, where each SNP was
removed systematically, and IVW analysis was performed in
the remaining 15 SNPs, to identify potentially influential SNP
driving the association. All analysis was performed using R, ver-
sion 3.1.2., and Stata released version 14.0 (StatCorp LP). The
MendelianRandomization and RadialMR R package were used
to perform MR and sensitivity analysis. P-values were two-
sided, and evidence of association was declared at P< 0.05.

RESULTS

Among the 4768 T2D participants, the mean age [standard error
(SE)] was 58.4 (11.7) years, 57.7% were male and 34.1% had CKD
at baseline (Supplementary data, Table S2). The list of IVs for
LTL and their pooled association with CKD from the DN and
SMART2D cohorts using random-effect IVW is shown in Table 1
and Supplementary data, Table S3. Of the 16 SNPs, rs41293836
(b¼ 0.126, SE¼ 0.058, P¼ 0.029) and rs2302588 (b¼ 0.115,
SE¼ 0.076, P¼ 0.035) were associated with increased risk of CKD.

Primary MR analysis using IVW method demonstrated that
shorter genetically predicted LTL was associated with increased
risk of CKD [OR¼ 1.51, 95% confidence interval (CI) 1.12–2.12,
P¼ 0.007, Phet¼ 0.547] (Table 2 and Figure 1). Similar observation
was obtained using the weighted median analysis (OR¼ 1.52,
95% CI 1.03–2.24, P¼ 0.035). The MR-Egger regression showed no
evidence of directional pleiotropy (intercept b¼ 0.010,
SE¼ 0.028, P¼ 0.715). Radial MR approach also did not reveal

Table 2. MR for LTL on CKD

N SNPs OR (95% CI)a P-value Phet

Inverse-variance
weighted

16 1.51 (1.12–2.12) 0.007 0.547

Weighted
median

16 1.52 (1.03–2.24) 0.035 –

MR-Egger 16 1.38 (0.82–2.35) 0.220 0.481
Interceptb – 0.010 (0.028) 0.715 –

aOR per 1-SD shortening in LTL. bIntercept is presented as b coefficients with

SEs. Model adjusted for age and sex. Phet represents Cochran’s Q P-value after

meta-analysis. N SNPs, number of SNPs.
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FIGURE 1: Scatter plot to visualize the causal effect of LTL on CKD.
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evidence of outlying genetic variants, in agreement with the
MR-Egger regression analysis (Figure 2).

We further performed leave-one-out analysis to explore
whether the associations between genetically determined LTL
and CKD were driven by particular SNPs. Compared with the ob-
served results (OR¼ 1.51) from 16 SNPs, the ORs fluctuated from
1.39 to 1.63, and the largest decrease and increase in OR was ob-
served after removing rs41293836 and rs12415148, respectively.
However, only removal of rs41293836 [near TERF1-interacting
nuclear factor 2 (TINF2)] attenuated the association of LTL and
CKD (P¼ 0.080), suggesting TINF2 may drive the IVW point esti-
mate (Supplementary data, Figure S2). Among the 16 SNPs, data
on association for eight of these SNPs with HbA1c levels in the
East Asian population were available in the MAGIC (Meta-
Analysis of Glucose and Insulin-related traits Consortium)
study. MR analysis found no causal relation between LTL and
HbA1c levels (b¼ 0.022, SE¼ 0.035, P¼ 0.534). We calculated the
power for this study with the assumption that the proportion of
LTL variance explained by all 16 SNPs is R2¼ 4% and with type 1
error of 0.05. Using mRnd (https://shiny.cnsgenomics.com/
mRnd/), this study had 82% power to detect per allele effect of
LTL on CKD with corresponding OR of 1.50, at a significant level
of 0.05.

DISCUSSION

In this study, we used a two-sample MR framework to demon-
strate that shorter genetically predicted LTL was also associated
with increased risk of CKD in patients with T2D. This finding
was robust and consistent in the sensitivity analysis. Leave-
one-out analysis suggests rs41293836 near TINF2 may drive the
observed association between genetically determined LTL and
CKD.

Our findings are consistent with observational studies where
shorter LTL was associated with renal dysfunction cross-sec-
tionally [16, 18] and prospectively [17, 30]. Specifically, in the

meta-analysis of MMKD (Mild to Moderate Kidney Disease;
n¼ 166) and CRISIS (Chronic Renal Insufficiency Standards
Implementation; n¼ 889) cohorts, shorter LTL was significantly
associated with increased risk for CKD progression in diabetic
patients but not in non-diabetic patients [17]. These results are
in contrast to a study demonstrating that the association be-
tween LTL and CKD was entirely explained by age [31]. These in-
consistent findings may be due to residual confounding or
biased by reverse causation in conventional observational stud-
ies. To the best of our knowledge, this is the first MR analysis in-
vestigating the potential causal relationship between LTL and
CKD in East Asians with T2D. A previous MR study performed in
non-diabetic Europeans reported a lack of causal relationship
between LTL and kidney function defined using continuous
traits (creatinine, albuminin and cystatin) in the general popula-
tion [32]. Moreover, the analysis with CKD was not reported.
This difference might reflect different pathophysiologic mecha-
nisms behind CKD in T2D and the general population, or could
be due to different selection and strength of the IVs used in this
study. We also found that the association observed in our study
seems to be driven by rs41293836 near TINF2/TGM1 loci in chro-
mosome 14, which is monomorphic or rare in the European
population but polymorphic and common in the Chinese popu-
lation. Additionally, given that the diabetic condition is associ-
ated with an elevated level of oxidative stress and
inflammation, factors that also accelerate telomere shortening
and aging [33], it is possible that impact of telomere shortening
on renal function is exacerbated in the diabetic condition when
compared with non-diabetics. Further studies are warranted to
elucidate the exact role of telomere length in CKD in diabetic
population.

Examination of the associations between individual LTL ge-
netic risk loci and CKD highlighted TINF2 as the main driver of
the association. Several studies have identified deleterious
mutations in TINF2 in patients with short telomere syndrome
diseases such as dyskeratosis congenita and idiopathic pulmo-
nary fibrosis [34–36]. TINF2 is a component of the telomere shel-
terin protein complex and regulates telomerase activity [37]. In
germline and stem cells, telomerase activity is essential for the
maintenance of telomere length and therefore, cell renewal ca-
pacity. However, the role of TINF2 in CKD in patients with T2D
has not yet been clearly demonstrated. In human kidney, telo-
mere length decreases more rapidly in the renal cortex than in
the medulla during aging [2], contributing to the cortical scar-
ring and glomerular senescence observed in aging kidneys.
Using mice model, Westhoff et al. [38] showed that shorter telo-
mere contributed to increased renal injury and decreased recov-
ery after insult. Therefore, it is likely that shorter leukocyte
telomere, as a result of increased oxidative stress and chronic
inflammation, may reflect a state of compromised immune re-
sponse and increased susceptibility to renal injury.
Alternatively, as LTL is correlated with intrarenal telomere
length (r¼ 0.4, P¼ 0.001) [39], it is also likely that shorter telo-
meres increase the likelihood of chromosomal damage, leading
to cellular senescence or apoptosis and renal damage.

The strengths of this study are the robust genetic instrument
identified in the same population explaining �4% of the vari-
ance in LTL (double the phenotypic variance identified in
Europeans previously) and the use of multiple MR methods
with different assumptions. Moreover, we used two-sample MR
where IV and the estimation of the IV with CKD in patients with
T2D were derived from two independent populations, reducing
bias in the causal estimate [40]. However, this study also has
some limitations. First, the IV was derived for blood telomere
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length and not telomere length in renal tissues. However,
studies have shown that LTL correlates with telomere length
in other tissues, including renal tissues (r¼ 0.4, P¼ 0.001) [6, 39,
41]. Second, pooled data using random-effect meta-analysis
from the Chinese and Malay T2D participants were included in
MR analysis to increase the sample size and hence statistical
power. Third, the SNPs selected as IVs were derived mainly
from the non-diabetic population, which may potentially re-
duce the validity of the measure in our study. However, we have
shown that in a subset of KTPH Chinese T2D subjects (n¼ 1602),
12 SNPs were directionally consistent in T2D population (bino-
mial P¼ 0.028) and the top hit at chromosome 14 (rs41293836)
showed a statistically significant association with LTL [23].
Lastly, given that individual-level telomere length data were
not available for all the participants in our study population, we
were not able to assess if the IV is associated with CKD indepen-
dent of its effect on telomere length. Although we performed
sensitivity analysis and demonstrated the absence of direc-
tional pleiotropic effects, we cannot completely exclude the
possibility.

In summary, we demonstrated a potential role of LTL in the
development of CKD in East Asians with T2D. However, further
studies in larger-scale East Asian T2D populations are war-
ranted to validate our findings and elucidate the causal role of
telomere length in CKD progression. With potential therapies to
minimize premature leukocyte telomere shortening available
[42, 43], preventing premature telomere shortening may provide
a strategy to prevent CKD and reduce the public burden of dia-
betes-related complications.
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