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During the past decade, the ability of surface-enhanced Raman spectroscopy (SERS)

to measure extremely low concentrations, such as mg/L and below, and the availability

of hand-held Raman spectrometers, has led to a significant growth in the number and

variety of applications of SERS to real-world problems. Most of these applications involve

the measurement of drugs, such as quantifying medication in patients, identifying illicit

drugs in impaired drivers, and more recently, identifying drugs used as weapons. Similar

to Raman spectroscopy, most of the point-of-care and field applications involve the

identification of the drug to determine the course of action. However, unlike Raman

spectroscopy, spectral libraries are not readily available to perform the necessary

identification. In a large part, this is due to the uniqueness of the commercially available

SERS substrates, each of which can produce different spectra for the same drug. In

an effort to overcome this limitation, we have measured numerous drugs using the

most common, and readily available SERS material and hand-held Raman analyzers,

specifically gold colloids and analyzers using 785 nm laser excitation. Here we present

the spectra of some 39 drugs of current interest, such as buprenorphine, delta-9

tetrahydrocannabinol, and fentanyl, which we hope will aid in the development of current

and future SERS drug analysis applications.

Keywords: opioids, buprenorphine, cannabis, fentanyl, SERS, drug analysis, trace analysis, spectral library

INTRODUCTION

One of the most important applications of analytical chemistry is the analysis of drugs. Raman
spectroscopy became an important tool for this application in its ability to quantify active and
inactive pharmaceutical ingredients in manufactured products beginning in the 1990s (Tensmeyer
and Heathman, 1989; Tudor et al., 1990; Cutmore and Skett, 1993; Petty et al., 1996; McCreery
et al., 1998; Fini, 2004), and its ability to identify illicit and counterfeit products sold over the
internet in the past two decades (Ryder et al., 1999; Carter et al., 2000; Bell et al., 2004; de Veij et al.,
2008; Sacré et al., 2010; Lanzarotta et al., 2017). However, three significant events have occurred in
the past 5 years that require the analysis of trace amounts of drugs. First, the over prescription of
opioids contributed to 63,000 overdose fatalities in 2016 (Media Relations, 2018). Second, fentanyl
is illegally entering the USA (U.S. Customs and Border Protection, 2019), where it is added to
cocaine and heroin, contributing to approximately one third of the 2016 drug-related fatalities
(Jones et al., 2018), and as of 2019 it is considered a form of terrorism by the USA Department of
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Homeland Security (DHS) (Hoffman et al., 2019). Third, the
legalization of marijuana for medical, as well as recreational use
in many states (Sanders, 2018) and cannabidiol for purported
health benefits (Kelman and Sharp, 2018), has led to their ever
increasing legal and illegal use in everyday products, such as food,
beverages, and oils (Sanders, 2019). In the first case, ambulance
and hospital physicians need methods to rapidly identify and
quantify opioids in overdose patients. In the second case the DHS
needs simple and fast methods to detect fentanyl in merchandise
entering the country. In the third case the Food and Drug
Administration needs methods to verify the identity and quantity
of cannabinoids in medical, recreational, as well as new food
and beverage products. The ability of surface-enhanced Raman
spectroscopy (SERS) to measure extremely low concentrations,
such as mg/L and below, could soon be the method of choice for
these trace drug analysis needs.

The potential of SERS to perform such analyses began with
the measurement of nitrogen- and sulfur-containing drugs in
the late 1980s and early 1990s (Torres and Winefordner, 1987;
Sutherland et al., 1990). The first forensic samples were measured
at the turn of the century (Perez et al., 1998; Angel et al., 1999;
Sägmüller et al., 2001; Faulds et al., 2002; Pînzaru et al., 2004;
Ryder, 2005), followed quickly by measurement of drugs in body
fluids (Perez et al., 1998; Farquharson and Lee, 2000; Trachta
et al., 2004a). We began measuring chemotherapy and illicit
drugs in saliva a few years later (Farquharson et al., 2005, 2011;
Shende et al., 2005; Inscore et al., 2011; Dana et al., 2015), and
more recently, measuring opioid treatment drugs in the saliva of
USA military veterans (Farquharson et al., 2017, 2019), as well as
fentanyl in saliva and blood (Shende et al., 2019).

During the development of these applications we noticed a
lack of SERS publications for these and other drugs of interest.
Furthermore, most of the available spectra were obtained using
author-unique substrates and various excitation wavelengths
that resulted in spectra that are incomparable. Therefore,
we measured 39 drugs of interest using the most common
and readily available SERS-active material, gold colloids, and
using the most common excitation wavelength of portable
Raman spectrometers, 785 nm. Here we present a spectral
library of numerous opioids, illicit and treatment drugs, as
well as some important metabolites, which would be suitable
for identification of samples using either field or point-of-care
Raman spectrometers.

MATERIALS AND METHODS

All solvents and chemicals used to prepare samples and colloids
were obtained from Sigma-Aldrich (St. Louis, MO). The drugs
used to prepare the spectral library were purchased as 1 mg/mL
acetonitrile or methanol certified forensic samples obtained from
Cerilliant Corp (Round Rock, TX). Drug samples were prepared
by diluting the forensic samples by a factor of 5 in HPLC grade
water and then added to an equal volume of colloid to make 0.1
mg/mL (100 ppm) initial concentrations, which were in some
cases further diluted with water (see figure captions). The gold
colloids used for SERS were synthesized following a modified

Lee-Meisel method (Lee and Meisel, 1982). Briefly, a solution of
0.005MHAuCl4 (100mL), was slowly added to 300mL of 0.02M
NaBH4 in an ice bath. A solution of 1% polyvinyl alcohol (50mL)
was added and refluxed for 1 h. 0.5M NaCl was used as an
aggregating agent. The solutions were placed in 2mL glass vials
from Glass Vials Company (Hanover, MD) and then measured
using ∼30 mW of 785 nm laser excitation with an in-house
Raman spectrometer and collection software (RTA LabRaman
and Vista). Each presented spectrum is the average of five 1-
s integrations. In some cases a glass sample vial spectrum was
subtracted to flatten the baseline between 1,100 and 1,700 cm−1.
All spectral peaks are given to the nearest 5 cm−1.

RESULTS AND DISCUSSION

The spectra are, in general, presented in the following order:
opioids, synthetic opioids, stimulants, sedatives, cannabinoids,
and common drugs. A basic background is provided for
each drug to provide a framework for why its analysis at
low concentrations is important. Each figure, as best possible,
contains three drugs that share the same basic chemical structure
so that their spectra can be compared.

Opioids
In simplest terms opioids influence the release and uptake of
neurotransmitters at one or more of the delta-, mu-, kappa-,
and zeta-opioid receptors (Corbett et al., 2006), involved in the
reward (pleasure) pathway in the brain and the pain pathway
in both the brain and spinal cord. The opioids have structures
similar to the neurotransmitter dopamine associated with the
reward pathway and the neuropeptide endorphins associated
with the pain pathway, allowing them to bind to sites on
the end of neurons. The effectiveness of the various opioids
is also a function of their lipophilicity, the ability to pass
through the blood-brain barrier, and their reactivity with the
neuron sites associated with the release and uptake of these and
other neurotransmitters and neuropeptides. These abilities make
opioids ideal for treating depression and pain. Unfortunately,
the activity level of these neural chemical and biochemical
interactions diminish with repeated opioid use, such that greater
amounts are needed to achieve previous levels of pleasure and/or
pain relief, which can lead to addiction and dependence.

While the pain relieving powers of opium have been known
for thousands of years, the primary active drugs, morphine and
codeine, were not isolated until the early 1800s (Courtwright,
2009; Newton, 2015). Today these two natural drugs are used to
produce a wide range of semi-synthetic opioid medicines, such as
hydrocodone, hydromorphone, oxycodone, and oxymorphone,
treatment medicines, such as buprenorphine and naloxone, and
the illicit drug heroin. More recently, much more powerful
opioids have been synthesized, such as fentanyl and carfentanil.

Heroin is a Schedule I drug, as it does not have any accepted
medical use and it has a high potential for abuse (Brandán,
2018). Heroin use resulted in nearly 16,000 deaths in the USA in
2017 (NIH, 2019). It is synthesized by acetylation of morphine,
and the product usually contains some 6-acetylcodeine, due to
the presence of codeine in the starting solution, as an impurity
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(O’Neal et al., 2001). 6-acetylcodeine measured in urine is often
used to distinguish between heroin use and prescription opioid
use (Staub et al., 2001).

The SERS of heroin, morphine, and 6-acetylecodeine are
dominated by peaks at 530, 625–630, 1,215–1,225, 1,270–1,275,
1,440–1,445, and 1,600–1,610 cm−1 (Figure 1). Based on their
similar Raman spectra (Rana et al., 2010; Gardner et al., 2013),
these peaks are assigned to c-ring out-of-plane bending plus a-
and c-ring CH bending, a-ring C = CH out-of-plane bending,
c-ring CCC out-of-plane bending, c-ring CC stretching, d-ring
CH2 scissoring, and c-ring CC stretching. These drugs can be
differentiated primarily by their peak intensities between 1,200
and 1,400 cm−1. It is worth noting that the SERS of morphine
presented here on gold has many of the same peaks as that
reported for silver (Rana et al., 2010). However, the relative
intensities are substantially different, likely due to the fact that
morphine is protonated at pH 7 at very low concentrations
in water [pKa1 is 8.21 (Lide, 1997)] and attracted more to
electronegative gold than electropositive silver, affecting the
orientation on the metal surface and interaction with the
plasmon field. Furthermore, these orientation-induced spectral
differences would challenge the ability of library search-and-
match software.

Codeine, hydrocodone, and oxycodone are Schedule II
drugs usually prescribed in combination with nonsteroidal
anti-inflammatory drugs, such as acetaminophen, aspirin, and
ibuprofen, to treat varying degrees of pain. Oxycodone, sold as
OxyContin, is currently the most abused opioid, and resulted
in ∼6,000 deaths in 2017 (Hedegaard et al., 2018; Pergolizzi
et al., 2018). The SERS of codeine, hydrocodone, and oxycodone
are also dominated by similar peaks at 510–530, 620–640,
1,275, 1,435, and 1,595–1,605 cm−1, and assigned to the same
vibrational modes (Figure 2) (Rana et al., 2010). Substitution at
the juncture of the c, b, and d rings influences the intensity of
the CC and CCC bending modes. The drugs also have unique
spectral features in the low frequency region between 500 and
850 cm−1, such as the c-ring CH out-of-plane bending mode at
535, 510, and 530 cm−1 for the three drugs, respectively. Again,
spectral differences were obtained on silver (Rana et al., 2010).

Hydromorphone and oxymorphone are two additional
Schedule II opioids used to treat pain, and often prescribed to
alleviate pain due to cancer (Sloan, 2008; Pigni et al., 2011).
The latter drug has proven highly addictive, and was removed
from the market in 2017 at the request of the Food and Drug
Administration (Peddicord, 2017).

Not all opioids are used to treat pain and depression, some
are used to treat opioid addiction. For example, the chemical
structures of naltrexone, naloxone and buprenorphine, are very
similar to the above described drugs, and can compete for or
block the opioid receptor sites (Figures 3, 4). Naltrexone also
has a much greater affinity for opioid sites than morphine, while
not generating the euphoria of addicting opioids (Melichar et al.,
2003), and is used to treat opioid addiction and overdose patients
(Comer et al., 2006; Lynn and Galinkin, 2018). Hydromorphone,
oxymorphone, and naltrexone, like codeine and morphine,
contain SERS peaks at 625–635, 1,205–1,210, 1,270, 1,445–
1,450, and 1,610–1,615 cm−1, and can be assigned to the same

vibrational modes. They also have peaks at 485–490, 750, a single
or double at 820, 1,030, a shoulder at 1,570, and a weak peak
at 1,675–1,695 cm−1, assigned to a-/c-CH bending, out-of-plane
C = O bending (Rana et al., 2010), c-ring CH bending, CH2

rocking, e-ring CN stretch (Socrates, 2001), and a c-ring C =

C stretch (Rana et al., 2010). It is worth noting that the spectra
of oxymorphone and naltrexone are nearly identical, suggesting
that the methylcyclopropane functional group is either non-
SERS-active, or directed away from the gold surface due to the
attraction of the OH groups. The primary difference between the
spectra of these two drugs is the relative peak intensities.

Naloxone is a prescription opioid treatment drug that has
opioid site-blocking ability and minimal side-affects similar
to naltrexone. However, its high lipophilicity allows it to
rapidly pass through the blood-brain barrier, and when taken
intravenously can arrest the effects of opioids in 2–5min (Milne
and Jhamandas, 1984). Consequently, it has become the drug of
choice for emergency rooms and first responders to treat people
who have overdosed, especially those taking fentanyl (Walsh,
2014). As of this year, a nasal spray has been approved for use
(Meyer, 2019).

Buprenorphine, a Schedule III drug with a modest potential
for abuse, is one of the most successful opioid treatment
medications, approved for use in 1981 (Sadock et al., 2012).
It has a substantially higher affinity to the mu-opioid receptor,
involved in both the reward and pain pathways, but only partially
activates the receptor, while it suppresses the kappa-opioid
receptor and the associated psychological depression (Khroyan
et al., 2015). It is 20–30 times as strong as morphine in relieving
pain (DEA, 2013). Furthermore, its low lipophilicity allows it
to stay in the cerebrospinal fluid, and coupled with its mean
metabolic half-life of 36 h, it provides long-lasting effects that
have made it the drug treatment of choice for substance use
disorders (Arias and Kranzler, 2008; Urbano et al., 2014). For
long term treatment of patients, buprenorphine is combined
with naloxone, sold as Suboxone, to prevent the patient from
transferring their addiction to buprenorphine (Yassen et al.,
2007). One of the challenges in treating patients is compliance.
Patients may give into withdrawal symptoms, and re-initiate
opioid use. Recently, it has been shown that buprenorphine
and its metabolite, norbuprenorphine, can be detected by SERS
in saliva (Farquharson et al., 2017, 2019), while other studies
indicate that their relative concentrations could be used to
determine the time of dosing (Kronstrand et al., 2008).

Naloxone, buprenorphine, and norbuprenorphine, like
morphine, contain SERS peaks at 630–640, 810–839, 1,205–
1,220, and 1,595–1,620 cm−1, and can be assigned to the same
vibrational modes. The spectra of these drugs are unique in
the 475–900 cm−1 and 1,550–1,650 cm−1 regions. While the
structures and hence SERS share a lot of similarity for all of
these natural and semi-synthetic opioids, spectral search and
match software should easily distinguish which one might be in a
sample (Farquharson et al., 2011), especially if the search focuses
on the 475 to 850 cm−1 and the 1,175–1,375 cm−1 regions.
However, quantifying mixtures would be difficult at best.

Methadone and meperidine, Schedule II drugs, were two
of the first fully synthetic opioids, developed in the 1930s
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FIGURE 1 | Structures and 10 ppm SERS of (A) heroin, (B) morphine, and (C) 6-acetylcodeine.

FIGURE 2 | Structures and 100 ppm SERS of (A) codeine, (B) hydrocodone, and (C) oxycodone.

to overcome shortages of codeine, morphine and their semi-
synthetic products. While methadone interacts with opioid
receptors to alleviate pain, it is primarily used today for opioid
maintenance therapy, as it is slow acting with a mean elimination
half-life of 22 h (Eap et al., 1999). Meperidine, also known
as pethidine and sold as Demerol, was the drug of choice
to treat pain during the middle of the last century. However,
it was discovered that its metabolite, norpethidine, was toxic
(Stone et al., 1993), and it has been replaced by safer drugs.

Methylphenidate has a structure nearly identical to meperidine,
but has a significantly different pharmacology. It blocks the
reuptake of dopamine and norepinephrine by neuron receptors
(Kimko et al., 1999), and consequently acts as a stimulant. It
is sold as Ritalin to treat attention deficit hyperactivity disorder
(ADHD), and has been highly prescribed in the USA during the
first part of this century (Pharmaceutical Society, 2015).

Methadone, meperidine, and methylphenadate are all
dominated by the symmetric and asymmetric phenyl ring
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FIGURE 3 | Structures and 100 ppm SERS of (A) hydromorphone, (B) oxymorphone, and (C) naltrexone.

FIGURE 4 | Structures and 100 ppm SERS of (A) naloxone, (B) buprenorphine, and (C) norbuprenorphine.

breathing modes at 1,000 and 1,025–1,035 cm−1, and to some
extent the trigonal phenyl ring breathing mode at 1,595–1,600
cm−1 (Figure 5) (Dollish et al., 1974; Carter et al., 2000). All
three drugs have a peak at 910–915 cm−1 due to CNC stretching
(Stanley, 2014). The same assignments have been given for
SERS of methadone, except for the 1,660 cm−1 peak, which is
assigned to a tertiary amine mode (Stanley, 2014), as opposed to
a carbonyl mode that was very intense on silver (Trachta et al.,
2004a). While meperidine and methylphenidate have nearly

identical structures, the former appears to interact with the gold
more strongly having more intense peaks, with many of the same
peaks as the normal Raman spectrum (Angel et al., 1999).

In 1960, fentanyl, a Schedule II drug, was synthesized by Paul
Janssen by modifying the structure of meperidine to make it
more lipophilic so it would rapidly cross the blood-brain barrier,
and consequently make its ability to ease pain more powerful
(Stanley, 2014). He succeeded in making a drug ∼100 times
more potent than morphine. Today fentanyl is widely used as an
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FIGURE 5 | Structures and 100 ppm SERS of (A) methadone, (B) meperidine, and (C) methylphenidate.

anesthetic during surgery, which may include a benzodiazepine
sedative, and naloxone after surgery to arrest fentanyl’s effects
(Comer et al., 2006). Unfortunately, it has become a recreational
drug typically mixed with heroin, 250 pounds of which were
seized at the Mexican border earlier this year (U.S. Customs and
Border Protection, 2019). In 2016 it was responsible for ∼20,000
overdose deaths in the USA (Jones et al., 2018). Furthermore,
it and its analogs carfentanil and remifentanil, are considered
weapons of war, as the latter two were used by the Russian
military to incapacitate rebels in a Moscow theater (Wax et al.,
2003; Riches et al., 2012). In 2016 Canadian authorities seized
1 kg of carfentanil sent from China, equivalent to 50 million
lethal doses (Kinetz and Butler, 2016). Fortunately, the Chinese
government has since banned its sale. While carfentanil’s use is
limited to tranquilizing animals, remifentanil is used in surgery
similar to fentanyl.

SERS for all of these drugs are dominated by the symmetric
and asymmetric phenyl ring breathingmodes at 1,000 and 1,025–
1,035 cm−1, and a modest trigonal phenyl ring breathing mode
at 1,595–1,600 cm−1 (Figure 6) (Stanley, 2014; Leonard et al.,
2017). All three drugs also have peaks at 590–620, 830 to 870,
and 1,310–1,320 cm−1, which are assigned to a CCC phenyl
bending mode (Hummel and Unterwald, 2002), a piperidine C-
C mode or out-of-plane phenyl CH stretch, and a piperidine CH
mode (Stanley, 2014). While the spectra are very similar, each has
several unique features for identification.

Stimulants
This class of drugs also acts upon the central nervous
system, primarily by preventing the uptake of the dopamine,
serotonin, and norepinephrine (adrenaline) neurotransmitters.

This causes their accumulation in the synaptic gap, and
thereby continuously stimulates the reward and cognitive
(alertness) pathways (Hummel and Unterwald, 2002), and
increases blood pressure and heart rate (Zimmerman,
2012). Consequently, these drugs can be highly addictive
and dangerous.

Cocaine is a natural product isolated from the coca plant,
and has chemical functional groups similar to natural and
synthetic opioids, and as such affects the central nervous
system as described above. It is the second most used illegal
drug in the world behind cannabis (Karila et al., 2014).
Approximately 15 million people in the USA use cocaine yearly
(Pomara et al., 2012), which resulted in ∼14,000 fatalities in
2017. The primary metabolite of cocaine is benzoylecgonine,
which is used to test for cocaine use, as it is present
in urine for as long as a week (Schindler and Goldberg,
2012). In contrast, cocaethylene is often tested for in autopsy,
since it is produced when cocaine and alcohol are used
together, a combination that increases the chance of death
by “18 to 25 fold” compared to cocaine taken by itself
(Andrews, 1997; Pennings et al., 2002).

Cocaine, benzoylecgonine, and cocaethylene are also
dominated by the symmetric and asymmetric phenyl ring
breathing modes at 995–1,000 and 1,015–1,020 cm−1, and
to some extent the trigonal phenyl ring breathing mode at
1,595–1,600 cm−1 (Figure 7). Another intense mode appears
at 885–890 cm−1 due to the tropine ring stretch (Carter et al.,
2000; D’Elia et al., 2016). The primary difference in their spectra
occur in the 800 to 900 cm−1 region due to the changes in the
ester group, which also appears to influence the intensity of the
weaker tropine modes between 1,300 and 1,400 cm−1. It is also
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FIGURE 6 | Structures and 10 ppm SERS of (A) fentanyl, (B) carfentanil, and (C) remifentanil.

FIGURE 7 | Structures and 100 ppm SERS of (A) cocaine, (B) benzoylecgonine, and (C) cocaethylene.

worth noting that the 1,600 cm−1 trigonal phenyl ring breathing
mode and ester carbonyl stretch at 1,720 cm−1 are more intense
when measured with silver (Dana et al., 2015).

Amphetamine and methamphetamine are Schedule II
synthetic drugs, while mephedrone is a Schedule I synthetic
drug. All three have chemical structures similar to dopamine,
serotonin and epinephrine, and much like cocaine, cause
accumulation of these neurotransmitters in the synaptic gap
stimulating the reward and cognitive pathways (Arnold,

2000). A 25/75% mixture of the amphetamine enantiomers,
prescribed as Adderall, is used to treat ADHD (Bidwell
et al., 2011). Amphetamine is also used to enhance athletic
performance. While methamphetamine can also be used for
these applications with deminished effect, it is primarily used
as a recreational aphrodisiac. Mephedrone, also known as
“bath salts” and “meow meow” (Glennon, 2014), is used as
a recreational drug with effects similar to the amphetamines
and cocaine.
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FIGURE 8 | Structures and 100 ppm SERS of (A) amphetamine, (B) methamphetamine, and (C) mephedrone.

FIGURE 9 | Structures and 100 ppm SERS of (A) MDA, (B) MDMA, and (C) MDEA.

As with fentanyl and cocaine and their analogs, amphetamine
and methamphetamine are dominated by the symmetric
and asymmetric phenyl ring breathing modes at 995–1,000
and 1,020 cm−1, and to some extent the trigonal phenyl
ring breathing mode at 1,595–1,600 cm−1 (Figure 8) (Carter
et al., 2000; Hargreaves, 2013). The peaks at 815–820 and
1,200 cm−1 are C-ring modes for the amphetamines, which
are enhanced as the para-substituted C-ring-C modes for
mephedrone (Carter et al., 2000). In contrast, the para-
substituted benzene ring of mephedrone results in intense
peaks at 805 and 1,215 cm−1, and an asymmetric C-
N-C stretch at 1,185 cm−1 and amide mode at 1,672

cm−1 (Milne and Jhamandas, 1984). Similar SERS has been
reported for methamphetamine (Sägmüller et al., 2003) and
mephedrone (Mabbott et al., 2013).

3,4-Methylenedioxyamphetamine (MDA) 3,4-
Methylenedioxymethamphetamine (MDMA) and 3,4-
Methylenedioxy-N-ethylamphetamine (MDEA) are all Schedule
I drugs because they are used recreationally and have no
medical value. All three drugs have structures similar to the
amphetamines and dopamine, with the addition of a dioxole
ring. They not only inhibit reuptake, but also enhance release of
dopamine, serotonin and epinephrine, stimulating the reward
and cognitive pathways. The result is enhanced euphoria and

Frontiers in Chemistry | www.frontiersin.org 8 October 2019 | Volume 7 | Article 706

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Farquharson et al. SERS Spectral Library

psychedelic effects for these drugs, also known as “the love drug,”
“ecstasy,” and “Eve,” respectively.

The SERS of MDA, MDMA and MDEA are very similar to
each other with 7 intense peaks occurring at 530–535, 715–720,
1,250, 1,365–1,370, 1,430–1,435, 1,470–1,480, and 1,620 cm−1,
largely due to the dioxole ring alone or coupled with the phenyl
ring (Figure 9). The first 3 peaks dominate the normal Raman
and SER spectra on silver (Bell et al., 2000; Lombardi et al.,
2013), but the remaining peaks, while present, are of much lower
relative intensity.

Sedatives
Most sedatives are benzodiazepines, which increase the effect
of the neurotransmitter gamma-aminobutyric acid, which in
turn increases the flow of chloride ions into the neuronal
cell (Derry et al., 2004). This increases the neuron’s chemical
potential, such that it is less likely to fire, reducing both
brain and spinal cord function (Date et al., 1984), making the
user tired.

Diazepam, temazepam, and oxazepam are Schedule IV drugs
primarily used to treat anxiety and sleeplessness. Diazepam easily

FIGURE 10 | Structures and 100 ppm SERS of (A) diazepam, (B) temazepam, and (C) oxazepam.

FIGURE 11 | Structures and 10 ppm SERS of (A) tetrahydrocannabinol, (B) cannabidiol, and (C) cannabinol.
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crosses the blood-brain barrier, and has a long half-life of 30 to
56 h (Oelschläger, 1989). It was first marketed in 1963 as Valium,
and rapidly became the highest prescribed drug in the USA
(Calcaterra and Barrow, 2014). Temazepam is largley prescribed
for people having trouble sleeping, while oxazepam is more for
people who have trouble staying asleep. Both drugs are less
powerful with shorter half-lives than diazepam. Since the reward
pathway is not engaged by these drugs, they are not addicting,
but dependence can occur, particularly when combined with
alcohol (Poulos and Zack, 2004). In 2017 there were 11,500

deaths due to overdose, many involving automobile accidents
(Smink et al., 2010).

The benzodiazepines are dominated by the 7-membered
diazapine and phenyl ring modes. The former modes at 935–
945, 1,170, and 1,590–1,600 cm−1 are due to ring stretching,
C-H deformation, and ring stretching, respectively (Figure 10)
(Neville et al., 1995). Diazepam and Oxazepam have phenyl
modes at ∼1,000, 1,030, 1,325–1,335, and 1,555 cm−1, whereas
temazepam is missing the 1,330 and 1,555 cm−1 due to
the chlorine substitution that reduces the symmetryof these

FIGURE 12 | Structures and 100 ppm SERS of (A) nicotine, (B) caffeine, and (C) theophylline.

FIGURE 13 | Structures and 100 ppm SERS of (A) acetaminophen, (B) aspirin, and (C) ibuprofen.
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TABLE 1 | Similar characteristic and unique SERS peaks for the 39 drugs measured using gold colloids and 785 nm excitation (see text for assignments).

Drug, References Similar characteristic peaks, cm−1 (see text for assignments) Unique

peaks
Spectral regions 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,600 1,700

Heroin (Gardner et al., 2013) 530 625 1,220 1,450 1,610 1,240

Morphine (Rana et al., 2010) 530 630 1,215 1,445 1,605 1,300

6-Acetylcodiene* 530 630 1,225 1,445 1,600 1,270

Codeine (Rana et al., 2010) 1,275 1,435 1,595 535

Hydrocodone (Rana et al.,

2010)

1,275 1,435 1,605 510

Oxycodone* 1,275 1,435 1,595 975

Hydromorphone* (Milne and

Jhamandas, 1984)

625 755 1,320 1,615 835

Oxymorphone* (Milne and

Jhamandas, 1984)

630 750 1,320 1,610 1,685

Naltrexone* (Milne and

Jhamandas, 1984)

635 750 1,325 1,610 1,110

Naloxone* (Milne and

Jhamandas, 1984)

630 810 1,275 1,725

Buprenorphine 640 830 1,445 1,595 1,680

Norbuprenorphine* (Milne

and Jhamandas, 1984)

635 800 1,605 1,020

Methadone (Stanley, 2014) 915 1,000 1,190 1,595 675

Meperidine (Stanley, 2014) 910 1,000 1,195 1,600 585

Methylphenidate (Stanley,

2014)

910 1,000 1,185 1,600 495

Fentanyl (Hummel and

Unterwald, 2002)

1,000,

1,030

465, 830

Carfentanil (Hummel and

Unterwald, 2002)

1,000,

1,025

765

Remifentanil* 1,000,

1,025

600, 1,700

Cocaine (Carter et al., 2000) 890 1,000,

1,015

1,450

Benzoylecgonine* 885 995,

1,020

1,375

Cocaethylene* 890 1,000,

1,020

1,310

Amphetamine (Sägmüller

et al., 2003)

815 1,000,

1,020

1,200 1,595

Methamphetamine

(Sägmüller et al., 2003)

820 995,

1,020

1,200 1,570

Mephedrone* * 805, 1,185

MDA (Derry et al., 2004) 530 720 1,250 1,370 1,435 1,620 1,195

MDMA (Derry et al., 2004) 530 720 1,250 1,365 1,435 1,615 1,025

MDME (Derry et al., 2004) 535 715 1,250 1,365 1,435 1,615 1,120

Diazepam (Cinta et al.,

1999)

945 1,000 1,170 1,595 690

Temazepam (Cinta et al.,

1999)

940 1,000 1,180 1,590 490

Oxazepam (Cinta et al.,

1999)

935 1,000 1,175 1,600 1,475

Tetrahydrocannabinol

(Sivashanmugan et al.,

2019)

1,170 1,532

Cannabidiol* 1,170 1,290 1,345, 1,665

(Continued)
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TABLE 1 | Continued

Drug, References Similar characteristic peaks, cm−1 (see text for assignments) Unique

peaks
Spectral regions 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,600 1,700

Cannabinol* 1,290 1,190

Nicotine (Pavel et al., 2003) * 1,030, 1,660

Caffeine (Ricciotti and

FitzGerald, 2011)

925 1,235 1,325 1,605 1,710 510, 1,290

Theophylline* 925 1,235 1,320 1,605 1,710 1,290

Acetaminophen (Vueba

et al., 2008)

1,320 505, 1,535

Aspirin (Gemperline, 2006) 1,325 580, 1,400

Ibuprofen* (Vueba et al.,

2008)

1,325 1,660

*Assignments based on similar drugs in this study.

**The structure and spectra for this drug was different from any other.

vibrations. The SERS are similar to the normal Raman spectra of
these drugs (Shende et al., 2014), as well as the SERS using silver
(Cinta et al., 1999; Trachta et al., 2004b).

Other Drugs
Delta-9 Tetrahydrocannabinol (THC), first isolated in 1964
(Pertwee, 2006), is the main psychoactive component of
cannabis. Its C22 structure, similar to the C22 fatty acid
neurotransmitter anandamide, allows it to bind and partially
activate both the cannabinoid receptors located in the central
nervous system and those in cells of the immune system. THC
also indirectly influences the mu- and gamma-opioid receptors
(Mechoulam and Fride, 1995). These actions result in modest
euphoria, relaxation, and for some users, anxiety. Cannabidiol
(CBD) represents 40% of the oil extracted from cannabis, making
it economical for use in products (Hazekamp, 2018). However,
it is not psychoactive (Iseger and Bossong, 2015), and the only
verified medical use is the treatment of severe forms of epilepsy
(FDA, 2018). Cannabinol (CBN) provides the same effects as
THC, but to a lesser extent. It is also the primary metabolite of
THC, and often tested in body fluids to determine use of either.
Currently, 47 states allow medical use to varying degrees, and
10 states allow recreational use (Media Relations, 2018; State
Medical Marijuana Laws, 2018).

The phenyl ring peak intensities, despite being weak, appear
for THC, CBD and CBN at 1,000, 1,030, and 1,610–1,615
cm−1, although the former two relative peak intensities for
CBN are reversed (Figure 11). Peaks at 855 and 864 cm−1

for THC and CBN are assigned to stretching of the middle
tetrahydropyran ring (Milne and Jhamandas, 1984; Stanley,
2014). Weak intensity peaks at 1,095–1,110 and 1,165–1,190
cm−1 are assigned to C-C stretching of the alkane chain for
CBN, and C-C stretching of the rings, respectively, while a
peak at 1,530–1,565 cm−1 is assigned to C = C stretching. The
1,250 to 1,350 cm−1 is the most interesting spectral region with
two peaks at ∼1,290 and 1,330 cm−1, both assigned to CH
deformation modes. The latter peak appears to have significant
contribution from the two CHs at the junction of the cyclohexene
and tetrahydropyran rings. The same intensity difference has

been observed for THC and CBN for their Raman spectra
(Fedchak, 2014).While SERS of these drugs on gold are similar to
Raman spectra, their SERS using silver are considerably different
(Yüksel et al., 2016; Sivashanmugan et al., 2019).

Nicotine and caffeine are two of the oldest drugs, used
as stimulants, and are largely unregulated. They are primarily
produced by extraction from tobacco plants and coffee beans,
respectively. Nicotine binds to acetylcholine receptors in the
brain releasing several neurotransmitters, in particular dopamine
(Malenka et al., 2009), and appears to also cause the release
of natural opioids (Kishioka et al., 2014). It thus activates
the reward pathway in the brain, making it highly addictive
(Stolerman and Jarvis, 1995). The availability of traditional
cigarettes and now e-cigarettes makes nicotine one of the most
abused drugs (Sajja et al., 2016). Traditional cigarettes have been
the dominant cause of lung cancer, and a major contributor
to heart disease for the past 50 years (Nicotine, 2014). The
intent of e-cigarettes, or vaping, was to reduce these horrendous
side-effects. Unfortunately, vaping has grown rapidly among
high school students to 21% in 2016 (Surgeon General, 2016),
potentially leading to an even greater number of nicotine addicts.

Caffeine is legal inmost of the world and is themost consumed
psychoactive drug. Its mechanism is somewhat different than
other stimulants, in that its molecular structure is similar to
adenosine, and it binds to the adenosine receptors, but does not
slow the release of neurotransmitters that regulate breathing,
heart rate and blood pressure in the medulla oblongata (Fisone
et al., 2004). Theophylline, which is also extracted from coffee
beans, is structurally similar to caffeine, and it also binds to the
adenosine receptors (Daly et al., 1987). It is mostly used to treat
asthma and other respiratory conditions.

The SERS of nicotine is dominated by the symmetric pyridine

ring breathing mode at 1,030 cm−1, which also produces peaks

at 645, 1,055, and 1,595 cm−1, assigned to in-plane ring, trigonal

ring breathing modes (Figure 12) (Milne and Jhamandas, 1984).

These peaks are all the same in both Raman and SERS (Barber
et al., 1994). However, the relative intensities more closely match
Raman than SERS using silver (Itoh and Bell, 2017). The SERS
of caffeine and theophylline are dominated by two peaks, one at
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555–570 cm−1, the other at 1,290 and 1,320 cm−1, assigned to
pyrimidine ring breathing and imidazole ring trigonal stretching,
for theophylline and caffeine, respectively (Pavel et al., 2003). The
shift in frequency is due to the methyl group on the imidazole
ring for caffeine. The following peaks occur for both drugs, 490–
510, 925, 1,235, 1,605, and 1,710 cm−1 assigned to an in-plane
ring-ring deformation, deformation of both rings, HCN bending,
C-C stretching, and in-phase C = O stretching. The SERS for
theophylline is very similar to that reported for caffeine (Ricciotti
and FitzGerald, 2011).

Acetaminophen, aspirin and ibuprofen inhibit cyclooxygenase
from producing the prostaglandin hormones that are local
messengers of pain, fever and inflammation (Day and Graham,
2004; Ricciotti and FitzGerald, 2011). However, acetaminophen
only inhibits cyclooxygenase in the brain, and consequently,
is not an anti-inflammatory. Aspirin also inhibits clotting by
keeping blood platelets from sticking together. Each of the three
drugs are often combined with other drugs, such as prescription
opioids to aid in reducing pain. These three drugs are the most
common medication used to treat pain in the world (WHO,
2015). Unfortunately, the high use of acetaminophen led to
∼1,200 overdose deaths in the USA in 2016 (Hedegaard et al.,
2018). Acetaminophen, aspirin, and ibuprofen were the 38th,
35th, and 17th most prescribed drugs in the USA in 2016,
respectively (ClinCalc, 2019).

The SERS of acetaminophen has peaks at 810, 855, 1,235,
1,320, 1,535, and 1,610 cm−1, which are assigned to CNC
ring stretching, ring breathing, C-C ring stretching, amide III,
and amide II modes, respectively (Figure 13) (Diniz et al.,
2004). Aspirin and ibuprofen have the typical phenyl peaks
at 1,000–1,015, 1,325, and 1,580–1,595 cm−1. In addition to
the 1,325 cm−1 peaks, they have intense peaks at 1,400 and
1,375 cm−1, respectively, possibly due to COO stretching (El-
Shahawy, 1988; Vueba et al., 2008). Ibuprofen also has a
carboxylic acid C = O peak at 1,660 cm−1, notably absent for
aspirin. While the acetaminophen spectrum matches the Raman
spectrum, the SERS of aspirin and ibuprofen are significantly
different, especially their relative peak intensities. This is likely
due to their different chemical interactions with gold and the
resultant orientation.

The SERS peaks, according to wavenumber, for the 39 drugs
are summarized in Table 1 in terms of vibrations common
to each drug type, as well as 1 or 2 unique vibrations that
could be used to identify and differentiate the drugs within
each group. The peaks are arranged in columns such that
vibrations can be compared across the entire set of 39 spectra.
The references used to make the vibrational assignments are
also included. However, for many drugs, the assignments were
based on functional groups common to a referenced drug, as
well as the measured peak wavenumber and intensity. It is
worth noting that many spectral analysis algorithms can be used

to both identify an unknown substance and quantify simple

mixtures (Gemperline, 2006). These algorithms have been used
to identify unknown drugs (Farquharson et al., 2011), and
in some cases determine relative concentrations in mixtures
(Farquharson et al., 2017).

CONCLUSIONS

The SER spectra presented here are intended to aid researchers
develop substrates, and companies develop products useful to
first responders, police officers, medical point-of-care personnel,
and military personnel. While a simple set of spectra have been
presented, there are several important variables that can influence
the actual measured spectra. We have attempted to eliminate two
variables; laser wavelength and plasmonic metal type. However,
sample concentration and pH can also significantly change the
spectra. Inmost cases, the peaks will be at the samewavenumbers,
but with different intensities. Buffers can be used to control the
latter. The most challenging variable is the medium that the
sample might be found. This includes numerous surface types,
ranging from soil to clothing to illicit lab benches, numerous
sample types, powders or liquids with other chemicals, and
numerous body fluids from saliva to urine. Care must be taken
in assessing the final analysis.
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