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Abstract: Metasurfaces have shown promising potential to miniaturize existing bulk optical
components thanks to their extraordinary optical properties and ultra-thin, small, and lightweight
footprints. However, the absence of proper manufacturing methods has been one of the main
obstacles preventing the practical application of metasurfaces and commercialization. Although a
variety of fabrication techniques have been used to produce optical metasurfaces, there are still no
universal scalable and high-throughput manufacturing methods that meet the criteria for large-scale
metasurfaces for device/product-level applications. The fundamentals and recent progress of the large
area and high-throughput manufacturing methods are discussed with practical device applications.
We systematically classify various top-down scalable patterning techniques for optical metasurfaces:
firstly, optical and printing methods are categorized and then their conventional and unconventional
(emerging/new) techniques are discussed in detail, respectively. In the end of each section, we also
introduce the recent developments of metasurfaces realized by the corresponding fabrication methods.

Keywords: nanofabrication; metasurfaces; scalable; high-throughput; large-scale; metadevices;
lithography; nanopatterning; top-down fabrication

1. Introduction

Metasurfaces are planar arrays of subwavelength nanostructures. Thanks to their ultra-thin, small,
and lightweight features, they are one of the most promising candidates for replacing bulk optical
components and devices. Metasurfaces not only enable the miniaturization of existing bulk optical
devices, but also show enhanced performance. Conventional optical components such as glass lenses
basically employ the refraction of light, which limits their optical performance. Metasurfaces, on the
other hand, have been considered as a promising candidate for the replacement of conventional lenses.
They have been applied as high-resolution ultrathin lenses [1,2], as well as superlenses and hyperlenses
that overcome diffraction limits [3–5]. Metasurfaces can also play the role of color filters, selectively
transmitting or reflecting the specific wavelengths of incident light to produce the desired colors [6–13].
Using a tunable polarization-dependent structural coloration, cryptography has been demonstrated to
hide multiple pieces of information in one metasurface [6,9]. In addition to color filters, holography is
another coloration application of metasurfaces. In metaholograms, each meta-atom on the metasurface
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is designed to resonate the incident light at a certain visible frequency, so the desired image can be
displayed [14–20]. K. Kim and G. Yoon have also shown that metaholograms can be realized at a
large scale using nanoimprint lithography (NIL) [16]. Through the miniaturization and performance
enhancement of bulk optical components, metasurfaces have been used in imaging applications
such as resolution-enhanced fluorescence microscopy [21,22] and laser scanning microscopy [23].
Furthermore, the extraordinary optical properties of metasurfaces enable the perfect absorption
of light [24–30], and light manipulating applications such as beam splitting [31–33], verification
and enhancement of the spin Hall effect [34–36], asymmetric transmission [37], multifunctional
waveguides [38], and other light-manipulation applications [39–49]. In addition, the researches on
various materials of the metasurfaces have been actively reported: a metasurface-based solar reflector
using vanadium dioxide (VO2) [43,50–53], a study on the manufacturing of graphene oxide film for
anisotropic photoresponse [54], and the scalable nanostructures of molybdenum disulfide (MoS2) [55].
However, in order for existing bulk optical devices or components to be completely replaced with
metasurfaces, those metasurfaces must be fabricated consistently with a large area and high throughput.
In other words, mass-production technology should be developed further for commercialization and
the application of metasurfaces into our daily lives.

Focus needs to be on the manufacturing methods that allow the large scale and high-throughput
fabrication of metasurfaces for mass-production. Although various nanofabrication techniques exist,
ones that meet the demands of both large-area and high-throughput patterning simultaneously
are limited. In this review, we classify the various methods into two parts: optical and printing
methods. The optical methods are further divided into conventional photolithography and interference
lithography, with each being discussed in more detail. Photolithography is the most commonly
used optical method for metasurface manufacturing. It is done by transferring a light through a
photomask onto a photo-sensitive material. The laser interference lithography (LIL) technique is a
mask-less manufacturing method and uses the interference pattern between different beams instead of
a photomask. In order to resolve the diffraction limit of two methods, which deteriorates the resolution,
we also introduce and review plasmonic-based interference lithography that is free from the diffraction
limit. Each optical method has mutually complementary features in terms of the resolution, tunability,
scalability, and compatibility.

The nanoimprint method has become an alternative to conventional photolithography for
various applications for nanoscale devices. NIL transfers the pattern from the mask using direct
contacting and resin curing. Therefore, it doesn’t require the expensive optical equipment including
a shorter-wavelength light-source. In the case of NIL, we classify it into two smaller categories:
conventional methods based on curing source, contact type and mold, and unconventional methods
based on functional resin or resin-free processing. NIL that manufactures large-area metasurfaces
with a fast speed is one of the practical fabrication methods. It has the capability to not only reuse
the stamp but also realize high-resolution feature with the sophisticatedly carved mold. NIL can
meet the requirements of fabrication of optical metasurfaces such as being high-resolution, low-cost,
high-throughput, and achieving complexity for the three-dimensional (3D) structure. In the end
of each section we review recent developments of different metadevices using the corresponding
manufacturing methods.

2. Optical Methods

2.1. Conventional Photolithography

Photolithography has been extensively utilized as a versatile micro/nano-fabrication technique that
can be employed to fabricate large-scale metamaterials and devices in a short time [56–60]. The ability
to make high-resolution and subwavelength structures has played a crucial role in the production of
novel metamaterials that operate at various frequencies. Photolithography is defined as a process
where light passes through a patterned photomask and is transferred to a photoresist (photo-sensitive
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chemical) below. The pattern is recorded in the photoresist on a substrate, and then the exposed or
unexposed parts (depending on the kinds of photoresist, i.e. positive or negative) are selectively
removed to make the desired polymeric structures. In this process, the photomask can be put in direct
contact with or in close proximity to the photoresist layer (Figure 1a). The contact method puts the
photomask in direct contact with the photoresist layer, while the proximity method uses a small gap
between the photomask and the photoresist layer. The resolution of these photolithography systems is
proportional to the wavelength and gap distance. Therefore, the contact method provides a higher
resolution than the proximity method, since the gap is zero. However, damage and contamination of
the sample and photomask can occur. This makes the contact method difficult to be applied to mass
production. The proximity method can resolve such drawbacks as there is a non-zero gap providing
the appropriate resolution, but the existence of a gap deteriorates the maximum achievable resolution
due to near-field diffraction.

As mentioned above, optical metasurfaces that operate at visible frequencies require very
high resolution down to hundreds of nanometers. Thanks to the continuous development of
photolithography-related techniques, significant improvements in resolution have been achieved.
The resolution, R, is defined as the minimal line width, which inherently suffers from the diffraction of
light, and is expressed as follows:

R =
k1λ
NA

(1)

where k1 is an empiric coefficient with a limit of 0.25 depending on the photoresist, the pattern of
the mask, and the optical system [61], λ is the wavelength of the exposed light, NA is the numerical
aperture of the illumination system (expressed as n sinθ, where n is the refractive index of the medium
and θ is incident angle of light). Contact and proximity printing can produce patterns down to
a few micrometers [62], therefore cannot fulfill the sub-micrometer resolution required for optical
metasurfaces that operate at visible frequencies. A number of techniques have been employed to
achieve an increased resolution by manipulating the parameters in Equation (1). Projection printing
has drawn great attention due to the ability to create high-resolution and large-scale arrays despite
having a relatively small photomask, by using additional projection optics [62,63]. By projecting light
through the same photomask repeatedly, large scale and high-throughput metasurfaces can be realized.
By increasing the numerical aperture of the additional optical system, it can also achieve significant
improvements in resolution. Moreover, the immersion method of using water as the background
medium rather than air can also realize higher resolutions due to the increase of the refractive index,
n [56,64,65]. Projection printing can be divided into two subsystems: steppers and scanners. Steppers
only control the substrate, while scanners control both the photomask and the substrate simultaneously.
Currently, the state-of-art projection printing primarily uses deep ultraviolet (DUV) and extreme
ultraviolet (EUV) light with a wavelength of 193 nm and 13.5 nm, enabling to get sub-40 nm and sub-10
nm node resolution, respectively [66]. The introduction of DUV and EUV light satisfies the continuous
demands of the semiconductor industry on high resolution features. For the reason mentioned above,
projection printing using DUV and EUV has been actively utilized in the semiconductor industry.
For example, Intel has established the 22 nm-chip manufacturing technology using the unique and
advanced projection printing. This successful outcome of projection printing in the semiconductor
industry is expected to lead to the practical metadevices.
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Figure 1. (a) Schematic of three typical methods of photolithography. (i) Contact, (ii) proximity,
(iii) projection printing [64]. (b) (i) A schematic of the photo roll lithography (PRL) process. Scanning
electron microscopy (SEM) images and infrared reflection spectra of (ii) round and (iii) oval Al dot
arrays by the PRL using a same photomask at normal and fast mask rotating speeds [67]. Reproduced
with permission from (a) [64]; Chulalongkorn University, 2012, and (b) [67]; WILEY-VCH Verlag GmbH
and Co. KGaA, Weinheim, 2013.

Another attractive approach towards scalable fabrication is to integrate the rolling principle with
the lithography-based methods. Photo roll lithography (PRL) utilizes controlled rolling of a hollow
photomask-bearing quartz roller, inside which an ultraviolet (UV) source is mounted for continuous
UV exposure of the photoresist-coated substrate fed underneath (Figure 1b). The flat photomask used
in conventional photolithography is replaced by a flexible photomask that can be created on a common
transparent film with improved scalability. As the rolling proceeds with the downward-collimated
UV illumination through the slit (typically made on the UV source housing), the photoresist-coated
substrate is continuously exposed to define the pattern. Notably, the resulting pattern shape can be
modulated by relative motion control between the mask rolling speed and substrate feeding speed,
which can be either elongated or shrunk compared to the original photomask pattern for optimizing
the optical characteristics [67]. Likewise, phase shift lithography (PSL) can also be combined with
the rolling principle. PSL is an optical patterning process that uses diffraction that occurs when light
passes through a regular small pattern and uses a transparent mask of a specific shape to utilize optical
diffraction in the near field [68]. Similar to PRL, a flexible roll-type phase-shift mask can be adopted to
perform PSL in a continuous and scalable fashion.

In structural color filters, UV mask-based photolithography has been utilized to create large-scale
color filter arrays. Many industries related with diagnostic medical imaging and remote sensing have
been interested in structural color printing technology, but the absence of a scalable and inexpensive
fabrication process has always been an obstacle that prevents commercialization. Mask-based
photolithography can selectively control the size of each array using a spatially variant photomask.
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Spatially different 3D metal-insulator-metal cavity arrays could be realized by employing two grayscale
lithography techniques (Figure 2a,b) [69]. Transmissive multispectral filter arrays (MSFAs) with
low volumes generated through grayscale electron beam lithography (EBL) have been realized as
proof-of-concept, and finally grayscale UV mask-based photolithography can be used to fabricate
large-volume MSFAs on a 3 inch wafer scale in a single step. By utilizing the special photomask
with the grayscale dose matrix, the resist thickness after development depends on the exposed dose
determined by each grayscale pixel of the photomask. A resist with different thicknesses produces
multispectral colored arrays. Therefore, tunable and selective multi-ranged spectra through grayscale
photolithography can be realized on a single wafer.

Metalenses consist of subwavelength nanostructure arrays that induce a phase shift and are a
highly promising alternative for traditional optics due to their ultrathin, lightweight, and tunable
characteristics. Scaling nano-scale arrays up to the centimeter-scale has not been realized due to the
absence of the corresponding manufacturing techniques. Recently, several groups have tried to make
large-scale metalenses using photolithography. Among them, a centimeter-scale all-glass metalens was
realized using DUV projection stepper lithography (Figure 2c–e) [70]. It can focus visible light and
show diffraction-limited and polarization-insensitive focusing behavior. In addition, the ability for
mass-production is proven by making 45 metalenses of 1 cm in diameter on a 4 inch wafer. The imaging
capability of the 1 cm metalens is verified by using a direct imaging of an active-matrix organic
light-emitting diode (AMOLED) display and reflective scanning microscopy. A collected image on an
AMOLED screen by a relay lens is formed on a scientific complementary metal–oxide–semiconductor
(sCMOS) camera after passing though the 1 cm metalens. Both measurement methods show consistent
imaging results which agree with the focusing behavior results of the metalenses, and promising
prospects of practical applications of metalenses made by photolithography.

Large-scale metasurfaces and metadevices realized through photolithography have also often
played the role as a solution to the limitations of traditional optical devices. Waveplates are one of
the most commonly used optical components and have broad applications in optical systems for
polarization control. Existing optical waveplates require a large volume to accumulate the required
phase differences for various polarizations. A metasurface-based half-wave plate (HWP) was fabricated
with a 12 inch feature size by DUV photolithography (Figure 2f) [71]. The polarization conversion
efficiency, which indicates the primary figure of merit for a HWP, is defined as Ec =

Tcross
Tcross+Tco

, where Tcross

and Tco are cross- and co-polarized transmittances, respectively. The Ec of the HWP was around 95% at
the wavelength of 1.726 µm. Compared to other previous studies, the advanced fabrication process
opens new way for mass production of metasurface-based waveplates and CMOS-compatible flat
optics. Metasurface-based perfect absorbers are also required to be realized over large areas for practical
applications such as photovoltaic devices, energy-harvesting devices, and stealth technology [72,73].
The dual-band perfect absorber showed absorption efficiencies of 45% and 75% at 18.1 and 26.8 THz,
respectively (Figure 2g) [74]. Most importantly, the perfect absorber covered the whole 2 inch wafer
using photolithography.
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Figure 2. (a) Grayscale photolithography process of a multispectral filter array (MSFA) [69].
(i) Calculated profile of grayscale exposure dose, (ii) profile of a resist after exposure, (iii) the spatially
variant three-dimensional (3D) resist profile after development and metal deposition, (iv) calculated
transmittance spectra, and (v) spatially variant grayscale exposure dose matrix. (b) (i) Photographs of a
3 in MSFA, (ii) magnified (i) in a certain region, (iii) tilted SEM micrograph, (iv) optical micrograph of
the different regions with each labeled identical exposure pattern (inset), and (v) the corresponding
transmission spectra. (c) A tilted photograph of total 45 metalenses of 1 cm diameter on a 4 in a wafer [70].
(d) (i) Schematic of an active-matrix organic light-emitting diode (AMOLED) screen imaging, (ii) an
image of Havard logo on the AMOLED screen, (iii) the measured image by a scientific complementary
metal–oxide–semiconductor (sCMOS) camera using the fabricated metalens. (e) (i) Schematic of a
reflective scanning microscopy using the metalens, (ii) the measured image of the United States Air Force
resolution chart and (iii) a Siemens star using this reflective scanning microscopy. (f) (i) Photograph
of a 12 in Si metasurface, (ii) schematic of a measurement system of Fourier-transform infrared
(FT-IR) spectroscopy using the metasurface-based half-wave plate (HWP) [71]. (g) (i) Photograph of
a centimeter-scale perfect absorber fabricated by photolithography, (ii) simulated and experimental
spectra of the perfect absorber [74]. Reproduced with permission from (a,b) [69]; ACS Publications,
2019, (c–e) [70]; Copyright 2019 American Chemical Society, (f) [71]; De Gruyter, 2012, and (g) [74];
Royal Society of Chemistry, 2015.

2.2. Interference Lithography (IL)

2.2.1. Optics-Based IL

Laser-based manufacturing techniques have provided the required technological and cost-effective
aspects to produce micro- and nanostructures using top-down approaches [75–77]. One technique
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of fabricating periodic structures is LIL [78–81]. In LIL, the interference pattern generated by the
superposition of multiple laser beams is employed to expose a photoresist layer. When using a
negative resist, the light-exposed portion is photo-polymerized. Consequently, periodic and polymeric
structures can be generated after development. LIL has significant advantages compared with other
existing techniques such as EBL and focused ion beam milling (FIB) in terms of large-area patterning,
high- throughput, no contamination, low cost, and tunability. In addition, LIL does not require a
photomask unlike photolithography.

Interference occurs when multiple electromagnetic waves overlap in the same space [82].
When such superposition of two or more waves occurs, the total electric field at a given position in
space, r, can be expressed as the sum of all electric fields at that time, t:

E(r, t) = E1(r, t) + E2(r, t) + · · ·+ En(r, t) (2)

where Ei is the electric field of ith electromagnetic wave. The intensity distribution in the superposed
region differs from point to point. The interference pattern depends on the phase difference between
the electric fields. This means that the interference beams should be coherent, namely, they should
be kept at a constant relative phase difference during exposure. For the experiment, the distribution
of the intensity is recorded on a photoresist layer, and then after development the structures can be
transferred onto a certain substrate through a sequent process.

The dimensionality of the generated periodic structures depends on the number of beams [83].
When the number of interfering beams, N, is below 4 and the difference of each wave vector is
non-coplanar, the interference shows an (N − 1) dimensional intensity grating. The electric field vector
of each beam can be expressed with:

E j = E jê j exp
[
i
(
k j·r−ωt + ϕi

)]
(3)

where E j, ê j, and ϕi are the amplitude of jth wave, unit polarization vector and phase, respectively.
The intensity distribution on the photoresist layer, I, is expressed as:

I =
∑

i

Ei
2 + 2

N∑
i< j

Ei j
2êi j

2 cos
[
Ki j·r + ϕi j

]
(4)

where Ei j
2 =

∣∣∣EiE j
∣∣∣, Ki j = ki − k j, ϕi j = ϕi −ϕ j, and êi j =

∣∣∣êi·ê j∗
∣∣∣. The differences of each wave vector,

Ki j, determine the period of the interference fringe, and the contrast of that is adjusted by the amplitude
of electric field, polarization, and phase of each beam [84]. If N is 2 that means only two beams
are interfered, and a grating-like one-dimensional (1D) periodic intensity distribution is generated.
Its period, d, also regarded as the resolution of the interference pattern, is determined by the wavelength
of the incident light λ, the refractive index of photoresist n, and the incident angle of two beams θ.
The pitch or resolution cannot surpass the value of d/2 due to the optical diffraction limit. d can be
defined as:

d =
λ

2n· sinθ
(5)

For the last few years, this laser-assisted interferometric method has proven not only the ability
to fabricate different metasurfaces that requires subwavelength features but also the feasibility to
realize practical applications based on its capability of mass-production. LIL can be separated into
different methods according to the required optical modules. Lloyd’s mirror interferometer is the most
commonly used method, and has a simple optical design consisting of a laser based on a coherent
Gaussian beam, spatial filter (pinhole and objective lens), and a deflection mirror (Figure 3a) [85–88].
The mirror is located perpendicular to the sample holder that is an intersecting the position of two
beams. Generally, the mirror and sample holder are fixed at 90 degrees and are placed on a rotation
stage so that the period of the grating can be readily manipulated by varying incident angle θ in
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Equation (5). A beam from the laser is expanded by passing the spatial filter, and then the expanded
or collimated beam reaches the photoresist layer on the substrate in two paths: one goes straight the
substrate directly, and the other travels into the substrate after being reflected by the mirror. This optical
path difference of the two beams causes the interference. At the same time, the coherence length should
be long enough to surpass such an optical path difference. The Lloyd’s mirror interference lithographic
tool has high tunability and easy manipulation for pitch control and a simple optical configuration,
but the possible exposure area is limited by the size of the mirror. This limitation is minimized through
another representative LIL system which uses two beams divided by a beam splitter (Figure 3b).
Instead of a Lloyd’s mirror, the additional components of a beam splitter and a spatial filter generate
two beam paths, thereby the exposure area is not limited. In this configuration, it is possible to increase
the complexity of the target structures by utilizing more than two beams in order to generate a more
complex interference pattern [89–92]. If the laser has sufficiently high energy like a pulsed laser,
the materials can be directly patterned with direct irradiation. This advanced method has been called
direct laser interference patterning (DLIP) [93–95]. Similar to the original LIL method, the radiation of
the laser enables different metallurgical processes such as melting, crystallization, or recrystallization
of amorphous materials. This area was actively studied with silicon in the 1990s [96–98].

A perfect absorber operating at visible to near-infrared wavelengths was produced by Lloyd’s
mirror interference lithography in order for spectrally selective perfect absorption to be realized with
simple control of the structural pitch (Figure 3c) [99]. The absorption frequencies of the palladium-based
perfect absorber depend on the shape and size of the structures. The 1D grating-based device shows
nearly perfect absorption at the resonance wavelength of 740 nm, while a two-dimensional (2D)
square-based device also shows nearly perfect absorption at the resonance wavelength of 950 nm.

In an optical edge detection device, femtosecond DLIP was used to fabricate metasurface patterns
inside glass (Figure 3d) [100]. Optical edge detection is a fundamental method in image processing,
and significantly reduces the amount of data to be processed because it extracts important information
and preserves meaningful geometric features. The device showed optical efficiency around 90%.
For strong laser irradiation, a plasma of high free electron density occurs by a multiphonon ionization
process. The interference of such plasma and the incident light creates the rectangular nanostructures.
The desired direction of the nanostructure perpendicular to the polarization was achieved by
manipulating the polarization of the incident light.
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exposure time/period, respectively [85]. (b) (i) Illustration of a LIL system using the beam splitter,
(ii) photograph of a fabricated sample based on the LIL using beam splitter, (iii) different simulation
results of interference using (left) two beams, (middle) three beams, and (right) four beams [90]. (c) (i)
Photograph and (ii) SEM image of a spectrally selective perfect absorber using the LIL, (iii) measured
reflectance spectra at 5 random positions [99]. (d) (i) Schematic of the edge detection concept based
on a pre-designed phase gradient metasurface, (ii) measured images of two left- and right-circularly
polarized (LCP and RCP) lights without the analyzer, playing a role as a reference, (iii) edge images
corresponding to (ii). The resolution of pattern is 500, 750, 1000, and 8000 µm in both (ii) and (iii) from
left to right, respectively [100]. Reproduced with permission from (a) [85]; IOP Publishing Ltd., 2010,
(b) [90];© 2013 IEEE, (c) [99]; Copyright 2016 American Chemical Society, and (d) [100]; United States
National Academy of Sciences, 2019.

2.2.2. Plasmonic-Based Interference Lithography

As mentioned earlier, the resolution of LIL using existing optics cannot theoretically surpass
d/2 due to the optical diffraction limit. A possible way to improve its resolution is to use light with
significantly shorter wavelengths such as DUV, EUV, and soft x-rays, but the cost of setup will become
extremely high. Plasmonic lithography is a promising candidate as a future nanofabrication tool.
This is a photon-based technology which can resolve space-charge and serial writing limitations and
can overcome the optical diffraction limit of Equation (5). When electromagnetic waves interact with
free electrons on the surface of a thin-film metal or subwavelength structure, oscillation of the electrons
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is induced by the incident wave. The collective oscillation of electrons is known as surface plasmons
(SPs) which exhibit unique optical behaviors [101,102]. The propagating waves due to SPs along the
metal-dielectric interface are known as surface plasmon polaritons (SPPs). The wave vector of SPPs
can be defined as:

ksp =
2π
λ0

√
εd·εm

εd + εm
(6)

where λ0 is the wavelength of light in vacuum, and εm and εd are the permittivities of the metal and
dielectric, respectively. The dispersion relation of Equation (6) can also be expressed as λsp = 2π/ksp

where λsp is the wavelength of SPs. The λsp is much shorter than λ0, especially near the resonance
condition where Re(εd) = −Re(εm), indicating the real parts of εd and εm, respectively. The opposite
values infer subdiffractional resolution imaging capabilities. Most importantly, thanks to the extremely
short wavelengths of SPPs, deep-subwavelength nanofabrication beyond the optical diffraction limit
up to the resolution of λ/8 can be actualized.

In 2004, a 1D aluminum (Al) grating of 300 nm pitch and 50 nm width was used to successfully
excite SPPs with 436 nm incident light. A interference pattern of 100 nm pitch was transferred
onto a resist [103]. Since this first report, numerous studies of plasmonic lithography using SPPs
have conducted, and the technique has been termed surface plasmon interference lithography
(SPIL) (Figure 4a) [104–108]. Recently, in order to enhance and improve the capabilities of SPIL,
an advanced design was presented, so-called bulk plasmon polariton (BPPs) interference lithography
(Figure 4b) [109–111]. BPPs with large wave vectors propagate into pre-designed bulk hyperbolic
metamaterials (HMMs) [111]. HMMs composed of alternatively deposited metal/dielectric multilayers
exhibit a hyperbolic dispersion instead of elliptical dispersion, allowing for a larger-area and uniform
deep subwavelength pattern to be generated inside a photoresist [34,112]. So far, 45 nm and 25 nm
resolutions of half-pitch ( λ/8 and λ/16) have been fabricated and simulated with different interference
patterns, respectively [113]. Furthermore, a 35 nm resolution of half-pitch ( λ/10) was fabricated [114].

For metalenses, a novel high-throughput nanofabrication method was realized by employing
plasmonic imaging lithography (Figure 4c) [115]. The metasurface with anisotropically arranged
nano-slots was made with further single-layer and multi-layer transfer etching steps. The metalens
exhibited great focusing performance in optical measurements. This plasmonic lithography provides
many benefits such as high-resolution patterning and low cost owing to the commercially available
photoresist and light source. For these reasons, it is a promising candidate to make numerous
metasurfaces and metadevices such as structural color filters [11,116–118], perfect absorbers [119–121],
beam modulators [122–124], metaholograms [18,125–127], and so on.

Plasmonic lithography was used to realize a large scale plasmonic coloring device (Figure 4d) [128].
The device exhibited high efficiency up to 75% at different wavelengths, and highly decreased efficiency
at off-resonance wavelengths. The results show spin-restored colors generated by sharp resonances.
In the fabricated plasmonic grating, the electric field is strongly enhanced at the silver-air interface at
wavelengths of 426 and 474 nm. Such strong electric field enhancement is resulted from the collective
oscillation of the free electrons, i.e., SPPs, at the silver-air interface. On the other hand, the electric
field is locally enhanced at the sidewalls and corners of the metal groove. This result occurs because
both SPPs and localized SPs are functioned to induce the phase difference of 180◦ between each
perpendicularly linear polarization components. This fact is proven in Figure 4d(ii) and Figure 4d(iii)
where all colors disappear when the incident and reflective lights exhibit the same polarization state.
This intriguing phenomenon presents the promising possibility for security and encryption displays.
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Figure 4. (a) (i) Schematic of a structure of the surface plasmon interference lithography (SPIL), (ii) SEM
images of the patterned grating results with 22 and 32 nm half-pitches [129], (iii) schematic of surface
plasmon polaritons (SPPs) on dielectric-metal interface [130]. (b) (i) Schematic of a structure of surface
plasmon polaritons (BPPs) interference lithography with hyperbolic metamaterials (HMMs), (ii) SEM
images of the patterned grating results of (left) titanium dioxide, (right) gold and (bottom) cross section
of the BPPs structure, respectively [114], (iii) the dispersion relations of (left) natural materials and
(right) HMMs. The group velocity is indicated by the arrows [130]. (c) (i) Schematic of a structure of
the surface plasmon imaging lithography, (ii) SEM image of the fabricated metalens (scale bar, 200 nm),
(iii and iv) the cross section intensity distribution for circularly polarized light with 532 nm wavelength,
(iii) the simulated and (iv) experimental results [115]. (d) (i) Schematic of a structural coloring device
using the plasmonic lithography structure, (ii and iii) microscopic images of a metasurface indicating
the letters “IOE” with (ii) 45◦/−45◦ and (iii) 45◦/45◦, respectively, (iv) the maps of electric field intensity
distribution with a period of the wavelength of 400 nm at 426, 474, and 500 nm from left to right,
respectively [128]. Reproduced with permission from (a–i, ii) [129]; Copyright 2019 American Chemical
Society, (b–i, ii) [114]; OSA Publishing, 2018, (a–iii, b–iii) [130]; MDPI, 2016, (c) [115]; Royal Society of
Chemistry, 2015, and (d) [128]; De Gruyter, 2017.

3. Printing Methods

Early NIL methods used thermal heating and a UV light source as resin curing sources. It is used
in industry and has been studied actively. We called those methods conventional nanoimprinting.
However, there are several emerging methods including functional resin-based printing (e.g., sol-gel
process and nanoparticle resin) and resin-free imprinting (e.g., laser process and direct inscribing),
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here referred to as non-conventional nanoimprinting. Particularly, conventional printing methods
have various variant criteria such as curing sources, contact methods, and mold types as shown
in Figure 5. We introduce the basic principle and metasurface applications for each method in the
following sections.
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are hard to classify using the conventional criteria.

3.1. Conventional Printing Methods

3.1.1. Curing Source

Thermal NIL In 1995, Choi et al. invented the NIL method, which can be used to fabricate
nanoscale patterns to a sub 25 nm resolution with a 100 nm depth [131,132]. Mold-based methods
need filling and solidification. This method, which based on heating and cooling, is used for filling
and curing and was named thermal NIL. In 1966, Haisma et al. introduced UV based NIL which uses
UV the curing source [133]. This method can maximize productivity by eliminating the heating and
cooling processes. A comparison between thermal and UV NIL is shown in Table 1.
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Table 1. Comparison of the thermal NIL and ultraviolet (UV) NIL.

Comparing Features Thermal NIL UV NIL

Material viscosity High viscosity in low temperature
Low viscosity in high temperature

1 to 100 cP
(general material)

Pattern size Hundred nanometers <10 nm is possible
Resist coating Spin-on Spin-on or drop on demand
Processing time Slow due to heating and cooling Fast
Filling driven force Pressure Pressure and capillary
Type of materials More material are possible Material options are limited

A schematic of thermal NIL is shown in Figure 6a. Thermal NIL uses the resist with low viscosity
at high temperature (i.e., above the glass transition temperature, Tg). Most resists require spin coating
due to their high viscosity at low temperatures. After heating above the Tg, which depends on the
resist material (usually 100–200 ◦C), pressure (usually 300–1900 psi) is applied to fill the nanoscale
patterns in the mask [134]. However, air bubbles can lead to under filling. This is solved by using
a vacuum. The appropriate process temperature is generally 50–70 ◦C higher and 20 ◦C lower than
transition temperature [135].Sensors 2020, 20, x FOR PEER REVIEW 14 of 33 
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Figure 6. Schematics of various NIL processes: (a) Thermal NIL, (b) UV NIL. (c) Soft lithography.
(d) Dynamic nanoinscribing (DNI): (1) initial contacting point, (2) gradual imprinting region, (3) edge
point responsible for plastic deformation, and (4) elastic recovery region [136]. (e) Laser-assisted direct
imprint (LADI). (f) Nanoelectrode lithography (NEL) [137]. Reproduced with permission from (d) [136];
American Chemical Society, 2009, and (f) [137]; American Vaccum Society, 2003.
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Thermal NIL has several challenging issues such as determining the proper resist and demolding.
The processing procedures, including the pressure time and mold temperature, are dependent on
the material of resist. The resist also experiences conformal bending over a wide area which causes
flexion of the mask and substrate [138]. Another main block of thermal NIL is the stress from the
demolding step due to heat expansion. Recent research has used piezo-driven vibrations to reduce the
contact stress [139]. Novel thermoplastic (modified mr-I700R) has also been used to alleviate the pull
off force [140].

At the laboratory scale, thermal NIL is widely used to fabricate the metamaterials because the
equipment is much simpler and cheaper than UV NIL. Two-step thermal NIL was developed to fabricate
large-area plasmonic metamaterials with giant chiroptical responses [141]. The first NIL process was
used to make a negative Al mold for the second NIL process which can make more than 3 cm2 area
plasmonic resonance structure. Jay et al. used thermal NIL to fabricate a 3D structure with a 100 nm
linewidth and 350 nm periodicity over a 1.5 × 1.5 cm2 area (Figure 7a) [104]. Multilayer structures
can be used for metamaterials, suggesting a cost-effective and less laborious technique for large-area
nanopatterning. Kim et al. demonstrated a vertical HMMs to enhance optical spin Hall effects
fabricated by thermal NIL (Figure 7b) [34]. The enhanced Hall effect of the hyperbolic metasurface
enables helicity-dependent control for optical devices such as sensors, switches, and filters. A novel
3D nanofabrication method that combines several pre-developed methods called thermally activated
selective topography equilibration (TASTE) was developed more recently [142]. It includes thermal
NIL, EBL, and laser light (Figure 7c).

UV NIL. To overcome the time and temperature limitations of thermal NIL, UV NIL was
introduced. It is a direct contact molding process that can replicate the pattern from a mask using a
photocurable resist and UV exposure at room temperature (Figure 6b). After the first development of
UV NIL [133], several influential technical improvements in terms of the resolution, tools, and resist
design were established [143,144]. Low-viscosity resists were arranged by the inkjet printer head
depending on the density of the pattern. The mask, which is aligned to the substrate, moves down
to the resist, and resist flows into the mask due to the capillary force. Next, UV light expose to the
resist through transparent mask. After removing the mask, the solidified resist pattern is printed onto
the substrate.

There are several building blocks for UV NIL in respect of imprint materials, and masks [145].
The various properties of the imprint material need to be considered, such as the fluid (dispensability,
viscosity, evaporation, wettability), and mechanical properties (yield strength, adhesion force with
substrate, release stress) [146]. Low-viscosity materials are generally preferred to achieve high filling
speed. However, low-viscosity can lead to the evaporation, which can increase the process cost [147].
Therefore, the balanced selection of proper viscosity and evaporation is necessary. For the mask or mold
of NIL, silica or quartz are mainly used because mask should be transparent for UV curing. However,
those materials are non-conductive so a charging effect is caused. It distorts the electron beam and
affects the fidelity and resolution. To preventing such effects, a thin metal layer (e.g., chromium 15 nm)
or conductive oxide layer (e.g., indium tin oxide) are used. The high-resolution mask fabrication is
also essential for nanoscale patterns. Michel et al. build the 6 nm half pitch pattern with the specially
prepared mold [148]. It uses the silicon dioxide based on the electron beam with polystyrene. For the
complex 3D profile, FIB directly carves out the mask for NIL [149–151]

There have been several attempts to use NIL to create metamaterials over a large-area quickly [152,153].
Wu et al. firstly developed a metasurface that worked at near-infrared wavelengths with L shaped
components made using NIL. After that, highly nonlinear optical spectroscopy metasurfaces were also
developed using UV NIL [154]. Moreover, 3D structures were designed using NIL. Through the fast,
room temperature process, several single layers were easily built to create the 3D structure to work at
the wavelength of 1.8 µm (Figure 7d) [155]. Furthermore, Gao et al. created a large-area (>75 cm2) 3D
metamaterial (fishnet base) that works in the visible band as shown in Figure 7e [156].
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Figure 7. Thermal UV NIL (a) (i) SEM image of periodic photoresist pattern by the bare AI grating
mask, (ii) pattern by HMMs multilayer, (iii) a photograph of the produced photoresist grating on
the polyethylene terephthalate sheet [104]. (b) Vertical HMMs fabrication and its optical spin Hall
effect. (i) Schematics of optical spin Hall effect in real space, (ii) a measured result of the distribution of
transmitted beam. The red and blue colors indicate the LCP and RCP lights, respectively, (iii) schematics
of vertical HMMs, the SEM image of (iv) top view and (v) perspective view [34]. (c) (i) Schematic
flow sequence of the general taste method for the generation of asymmetric 3D grating pattern, (ii–vii)
the SEM micrographs of the refined poly methyl methacrylate (PMMA) topographies after exposure
of pre-patterned PMMA with high-energy electrons and subsequent thermal annealing (scale bars:
1 µm) [142]. (d) (i) Photograph of a single-layered metasurface sample, (ii) transfer-printed gold grating
on a flexible foil (iii) SEM image of top view, (iv) SEM image of Swiss-cross metamaterials [155]. (e) A 3D
negative index metamaterial which has telecom band with the large-area. (i) Top-viewed SEM image
before the deposition of NIL with the 850 nm period, (ii) after deposition of 11 Ag/MgF2 layers, (iii)
after removal of polymer posts (inset image shows the tilted view), the photographs of the fabricated
results on (iv) the flexible and (v) the rigid substrate [156]. Reproduced with permission from (a) [104];
Japan Society of Applied Physics, 2015, (b) [34]; American Chemical Society, 2019, (c) [142]; CC BY 4.0,
(d) [155]; IOP Publishing Ltd., 2011, and (e) [156]; American Chemical Society, 2014.
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3.1.2. Contact Type

NIL can be divided into three contact methods: plate-to-plate (P2P), roll-to-plate (R2P),
and roll-to-roll (R2R). It is a challenge for P2P NIL to produce large-area structures up to the wafer-level
(~300 mm). Overall conformal contact occurs that causes a non-uniform pressure distribution. Moreover,
surface to surface contact needs higher pressure than line to surface contact. Those higher pressures not
only require complex equipment, but also reduce the resolution of the pattern (Table 2). The first attempt
of roller based NIL directly applied the force using the roller as in Figure 8a. This method has similar
throughput to the P2P method, however, it can reduce the total required force by changing the surface
contact to a line contact. P2P based 8 inch wafers can take 20,000 N of imprint force [157], however,
the R2P method only needs 200 N for a 300 mm width imprint. Flexible polymer film based R2P
methods were also introduced as shown in Figure 8b [158,159]. They used the thermal NIL mechanism
with a heated mold and roller. Another R2P application used a flexible mold which wrapped by the
heated roller, not a flat mold (Figure 8c) [160]. Park et al. combined the UV NIL units and R2P methods
and also used a flexible mold but with UV as the curing source (Figure 8d) [161]. This system can
fabricate 70 nm line width patterns and 30 nm dot array patterns at room temperature. Uniform and
scalable resin coating tactics are essential for large-area NIL. For instance, simple spin-coating or drop
dispensing is not suitable for high-speed continuous process based on R2R system. Airbrushing can
provide one promising solution for continuous and uniform resin coating over a large-area substrate,
prior to feeding it to the mold-contacting zone in UV NIL. Koo et al. demonstrated the uniform
airbrushing of UV-curable resin on a substrate that was continuously fed to the R2R UV NIL [162].
Controlling the resin concentration and airbrushing conditions can enable residual layer-controlled
R2R NIL in a continuous manner without resorting to spin-coating or other non-continuous resin
coating methods [163].

Table 2. Comparison of the various types of roller-based NIL.

Plate-to-Plate Type NIL
Roller-Based NIL

Roll-to-Plate NIL Roll-to-Roll NIL

Mask and substrate Flat molds (rigid or flexible)
with rigid substrate

Roller mold (flexible)
with rigid substrate

Roller (rigid or flexible)
mold with

Printing area 450 mm × 500 mm 1 m × 0.3 m 300 mm(width)
Resolution Sub-20 nm 40 nm Sub-30 nm

Throughput Moderate High Very high
Contact mechanism Surface contact Line contact Line contact

Limitation High pressure, large-area
demolding Conformal contact Roller mold fabrication,

coating method

Continuous processes are impossible for R2P based methods because roller lifting and returning
steps are essential. Therefore, several research groups have applied R2R methods. R2R NIL uses
flexible substrates and a supporting roller. It can realize industry level throughput. As shown in
Figure 8e, a new extrusion thermal R2R imprinting with a variotherm belt mold was introduced [164].
The components of this system include an R2R setup, a variotherm belt, and an extruder with a heating
unit. As a result, 30 µm sawtooth patterns at a speed of 10 m/min have been produced. Mäkelä et al.
built the thermal based R2R NIL [165]. It combines the gravure unit and a nanoimprinting unit with the
conducting polymer. For advanced nanodevices such as metasurfaces, 3D and multi-layered structures
are essential. Nagato et al. suggested iterative roller imprint for multi-layered nanostructures using
both bonding and thermal R2R NIL [166]. As shown in Figure 8f, the first layer is imprinted by
heated rollers. Next, the thin film is attached to the backside of the imprinted layer with other rollers.
They fabricated a 300 nm deep 800 nm pitch nanograting. Figure 8g shows the UV R2R NIL system.
It consists of a dispensing unit, a doctor blade, a roller mold, pressure rollers, a demolding roller,
and a UV source unit [167]. First the dispensing unit deposits a UV curable resin onto the continuous
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film. The doctor blade controls the thickness of the liquid resin. After that, the multi roller system
applies pressure to the roller mold with UV exposure. In the last step, the demolding roller peels off the
curved pattern from the roller mold. UV R2R NIL is complex but enables the continuous fabrication
for mass production. Ahn et al. developed an R2R system which operates through UV based NIL
(Figure 8h) [168]. It can produce 80 nm line structures with a 1400 mm/min throughput. As an
alternative technique to realize scalable UV NIL without rollers, Ok et al. used both the liquid and solid
state of the UV resin to continuously inscribe the substrate through the edges of a grating-patterned
mold and cure the resin at the same time [169]. They also applied the process to various flexible
substrates, and easily produced patterns with a resolution of about 100 nm.
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press. (b) Thermal R2P NIL systems using a flexible polymer film. (c) Thermal R2P concept with
pattern stamper. (d) UV R2P NIL using a flexible mold. (e) Thermal R2R process with a variotherm
belt mold [164]. (f) Thermal R2R NIL system for multilayered structures [166]. (g) Typical UV R2R NIL
system [167]. (h) A schematic of the fabrication flow of the metal wire grid polarizer using UV R2R
NIL [168]. Reproduced with permission from (e) [164]; CC by 4.0, (f) [166]; Elsevier B.V, 2009, (g) [167];
AIP Publishing, 2012, and (h) [168]; WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim, 2008.

The research and development phase of metamaterials is still mostly at the laboratory level.
However, several research teams have attempted roller based NIL to create metamaterials [170].
Ok et al. developed the first metamaterial films through the R2R method [171], a dual-band infrared
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(IR) filter for the 6–8 and 10–12 µm wavelengths (Figure 9a). Rai et al. suggested the schematic for an
R2R NIL based fishnet that was already developed by EBL [172]. Plasmonic color metasurfaces have
also been fabricated using high-speed (10 m/min) UV R2R NIL (Figure 9b) [173]. This high-throughput
manufacturing method paves the way for the extension of metasurface applications such as printing,
memory, and biosensors. However, until now, roller-based methods still have imitations such as thermal
expansion (thermal roller NIL), mold sticking, and mold lifespan that prevent stable mass production.
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Figure 9. (a) (i) Illustration of the overall fabrication of R2R imprint based on the flexible
polydimethylsiloxane (PDMS) mold, (ii) rolling over a substrate under conformal contact, (iii) imprinting
sot pattern with a very thin residual [171]. (b) A large-area plasmonic coloring metasurface using
high-speed R2R method, (i) a polymer foil structure with 100 nm Al including the university logo
fabricated by plasmonic color printing (1 × 1.5 cm), (ii) the magnified image of a plasmonic color patch,
(iii) the SEM image of the patch with 100 nm metallization [173]. (c) (i) Photograph of a fabricated
hyperlens product on a 4 inch wafer size. The SEM images of (ii) top view, (iii–v) The transmission
electron microscopy (TEM) images of the single hyperlens with various magnification at (iv) center
area and (v) side-wall indicate 15 nm thick layers [4]. Reproduced with permission from (a) [171];
AIP Publishing, 2012, (b) [173]; Royal Society of Chemistry, 2017, and (c) [4]; American Chemical
Society, 2018.
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3.1.3. Mold Type

The first NIL only used hard masks, but flexible masks were introduced to apply R2R NIL methods.
This can improve the durability, chemical resistance, biocompatibility, and price competitiveness.
Lithography with soft (flexible) molds (Figure 8c), also called as soft NIL, involves soft embossing,
imprinting, pattern transfer molding, and capillary molding [174]. It can be conducted outside of the
clean room at a low cost and with a facile process. Si et al. made a large area (25 cm2) device in the
ambient atmosphere using polydimethylsiloxane (PDMS) molds [175]. This overcomes the challenges
caused by the oxygen-containing atmosphere. This research demonstrated that soft NIL methods can
be used to reduce the cost of fabrication and can easily be adapted to large, curved surface structures.
Bhingardive et al. overcame the soft NIL resolution limitation by making a sub-100 nm feature size
nanopattern based on soft thermal NIL [176]. Despite its many advantages, however, soft NIL still has
the fundamental limitation of resolution [177].

Byun et al. demonstrated the possibility of hyperlens fabrication beyond the diffraction limit using
a flexible PDMS mask and UV NIL [5]. As a follow-up study, Lee et al. realized a wafer-scale hyperlens
(Figure 9c) which can observe biomolecular images in real-time (>151 nm) [4]. NIL was also applied to
make various types of light emitting diodes (LED). A biosensor based on localized surface plasmon
resonance (LSPR) was also developed using soft UV nanoimprint over a large surface [178]. It showed
perfect omnidirectional broadband absorption in the IR region with high refractive index sensitivity,
more than 10 times higher than conventional LSPR. Wi et al. proposed a continuous production method
of LSPR-based sensors on a transparent flexible substrate by integrating a soft R2R NIL process and an
angled evaporation process. They also measured the beta amyloid to the femtogram-level (10−15 g)
using the fabricated sensor, and verified the excellent LSPR sensor performance [179]. As a follow-up
study, they used the LSPR sensor to measure the concentration of polystyrene beads by size, showing
the versatility of the complex 3D plasmonic nanostructure [180].

3.2. Unconventional Printing Methods

Conventional imprinting methods only use the typical resins based on thermal and UV NIL.
However, to improve the functional ability and price competitiveness, various resin and coating
methods have been explored. We called it as unconventional printing methods. It includes not only
functional resin based NIL, but also covers the resin-free imprint. Checcucci et al. applied a functional
resin which consist of titanium sol-gel coating to fabricate dielectric resonators [181]. By applying the
titania coating, they can make the three orders of magnitude patterned size, and three times smaller
squared pillars respect to their previous report [182]. The porous titania resonators have multiple
applications including tuning the sharp bandpass filter (up to 40 dB rejection ratio), gas or liquid
sensor, and dynamic color changing structure. To achieve both the low cost and high refractive index
nanopattern, Yoon and Kim et al. suggest the facile metamaterial manufacturing process based on the
resin with the titania nanoparticles [2,171]. Combining the UV-curable resin and nanoparticles can
increase the refractive index without secondary operation (Figure 10a).

In addition to imprinting the resin with a light source such as UV, direct imprinting processes with
various energy sources (heat, laser, voltage) without a resin are actively being studied. Among them,
heat energy is the most readily available. Scanning probe lithography (SPL) processes can fabricate
very precise nanopatterns from 1 to 100 nm by imprinting a sub 10 nm tip directly on the substrate [183].
Among many SPL processes, high-speed thermal scanning probe lithography (t-SPL) process is capable
of sub 10 nm nanopatterning over an area of 880 × 880 pixels in 12.8 s [184]. This process induces a
depolymerization reaction on the surface of the polymer substrates by raising the temperature of the
tip to about 700 ◦C to produce sophisticated nanopatterns. However, the biggest limitation of this
process is difficulty of initial setup and the durability of the tip.

To supplement the limitations of SPL, Ahn et al. introduced the process of directly inscribing
nanograting patterns on flexible substrates using the sharp edge of a patterned mold, called dynamic
nanoinscribing (DNI), as shown in Figures 6d and 10b [136]. DNI is a continuous process in the
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existing hot embossing process and is drastically simplified by replacing the face-to-face process with a
line-to-face mechanism. In addition, the t-SPL process shows the depolymerization on the surface of
substrates at the process temperature of about 700 ◦C, whereas the DNI process engraves the pattern
at the polymer’s Tg (about 100 ◦C), thus it only physically fabricates nanopatterns without chemical
reaction. It can be applied to a variety of metals and polymers to create patterns with a sub-50 nm size
at very high-speed (10 cm/sec). As a follow-up study, Oh et al. advanced the DNI process by revealing
the correlation between the pressure and temperature of the process and controlling the shape, depth,
and dimensions of a nanopattern as shown in Figure 10b [185]. Vibrational indentation patterning (VIP)
has a similar mechanism and characteristics to DNI but it does not require thermal energy [186]. It uses
the vertical vibration of a flat and sharp edge, which can make periodic indentations on the substrate.
Moreover, Ok et al. combined the DNI and VIP process to make 2D nanostructures with two sequential
1D processes with a very simple mechanism [187]. With the advantages of both DNI and VIP methods
such as the compact and vacuum-free system, it is competitive imprint method for precise machining
for optical applications [145,188]. For example, Oh et al. developed flexible reattachable ionomer
nonpatterns (RAINs) with DNI and low-temperature roll imprinting [189]. They can be fabricated
under reasonable temperatures as low as 60–70 ◦C, so can therefore be used for thermosensitive
products such as organic light emitting diodes (OLED).

As shown in Figure 6e, Chou et al. developed laser-assisted direct imprint (LADI) [190].
This method has the advantages of high-resolution (sub-10 nm) and speed (250 ns for embossing time).
A single excimer laser pulse (308 nm wavelength and 20 ns pulse duration) passes through a quartz
without absorbing the laser energy because quartz has larger bandgap than the photon energy. Then,
solid-state silicon will be in liquid phase when absorbing the laser energy. After laser irradiation,
silicon embossing with the quartz mold is done quickly. LADI can achieve not only short process
time, but also extend the resist materials such as germanium, polysilicon, and other dielectrics [190].
Cui et al. used a nanosecond pulse laser to fabricate sharp and high aspect ratio metal tips [191].
This method can skip the lift-off, cooling, and etching steps, to improve the throughput. Nagato et al.
added diamond-like carbon (DLC) thin films onto the quartz substrate as a layer for light-absorption
which is directly heated by the laser irradiation [192]. LADI is a promising imprinting method in
various aspects: (1) sub-10 nm resolution; (2) no need for etching; cheaper equipment (no need for
focusing optics); and (3) applicable to metal substrates (Figure 10c).

Yokoo et al. developed nanoelectrode lithography (NEL) which combines EBL and imprinting
(Figure 6f) [137]. NEL uses a patterned nanoelectrode for the electrochemical reaction on the substrate
surface. For this, a nanopatterned conductive mold is essential. The mold contacts the substrate
and a voltage is applied through the electrode to the substrate. After that, the contact area reacts,
and the pattern is transferred from the conductive mold. Finally, the target is etched or developed.
In their following research, they demonstrate that NEL can establish multiple patterning on a gallium
arsenide substrate over the large area (6 mm × 8 mm). Multiple patterning is possible to fabricate 3D
metamaterial structures. Scaffaro et al. suggested that NEL can be used for mold fabrication too [193].
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Figure 10. (a) Schematic of the plum pudding metasurfaces. Titanium dioxide nanoparticle composite
resin is cured by PDMS and hard PDMS molds. The SEM images of (i) master mold, (ii) soft mold,
and (iii) final metalens. All scale bars are 100 µm [2]. (b) (i) Mechanism of the DNI process, (ii) a
rigid nanograting mold, (iii) a inscribed nanopattern on a flexible substrate, (iv) the SEM image of
a nanopattern using the DNI. Inset indicates the enlarged perspective view [185]. (c) Laser-assisted
large-area nanoimprint method and its results. (i) Schematics of laser-scanning replication, (ii) the SEM
image and (iii) the atomic force microscope profile of the mold [192]. Reproduced with permission
from (a) [2]; CC by 4.0, (b) [185]; American Chemical Society, 2019, and (c) [192]; Elsevier B.V., 2014.

4. Conclusions and Outlook

This review introduced and proposed scalable and high-throughput manufacturing methods of
metasurfaces towards practical metadevices that can be used to replace existing bulk optics. The most
commonly used optical method of photolithography has the ability to produce subwavelength
structures. Its capability depends on the photomask used which produces various and complex
nanopatterns. However, each pattern requires the corresponding photomask that is costly and
time-consuming to produce. The maskless LIL technique can resolve these concerns. It requires a
simple optical system with only several optical components. The limited exposure area in Lloyd’s
mirror LIL may be overcome by beam splitting LIL that uses multiple beams. Plasmonic-based
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interference lithography realizes deep-subwavelength resolution beyond the optical diffraction limit
that occurs in LIL and photolithography, thanks to SPPs and BPPs. We also presented imprint methods
for large area fabrication. Conventional imprinting methods, sorted by curing sources, contact types,
and mold types, were investigated and applied to fabricate metamaterials. Finally, the emerging
methods including functional resin and resin-free techniques were introduced and reviewed. At the
end of each section, we reviewed the most recent developments of different metadevices using each
manufacturing method.

Metasurfaces have been proven to exhibit extraordinary optical properties through various
research. In addition, they have the potential to dramatically reduce the physical dimensions of
optical devices due to their ultra-thin, small, and light weight features. However, the absence
of proper manufacturing methods for the mass production of metasurfaces has been one of the
primary obstacles preventing realization of this potential in real world applications. Indeed, there is
no obvious method to make practical metasurfaces with both large effective areas and efficient
manufacturing speeds as yet, despite the significant efforts of numerous experts [48,194]. However,
these efforts have always resulted in steady advances in different fields such as physics, chemistry,
optics, and material science. As a result, many nanofabrication methods have been developed,
and we selected and reviewed the significantly promising methods here. The typical methods such as
conventional photolithography, interference lithography, and plasmonic lithography have their own
respective limitations which need to be overcome before they can realize the perfect mass production
of metasurfaces. However, the synergy between different fields will continue to improve upon the
limitations such as PRL, functional resin-based NIL, and LADI (resin-free imprinting). We believe
that these advanced technologies will realize both the extraordinary optical properties of metasurfaces
and miniaturization of bulk optical devices, further combined by recent deep learning assisted
nanophotonics design methodolology [195–202]. These developments will also enable the replacement
of bulk optics with metadevices such as wave-modulation metadevices, metalenses, plasmonic color
filters, metaholograms, and so on.
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