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ABSTRACT

A method is proposed to measure global bending in
DNA and RNA structures. It relies on a properly
defined averaging of base-fixed coordinate frames,
computes mean frames of suitably chosen groups
of bases and uses these mean frames to evaluate
bending. The method is applied to DNA A-tracts,
known to induce considerable bend to the double
helix. We performed atomistic molecular dynamics
simulations of sequences containing the A4T4 and
T4A4 tracts, in a single copy and in two copies
phased with the helical repeat. Various temperature
and salt conditions were investigated. Our simula-
tions indicate bending by roughly 10� per A4T4 tract
into the minor groove, and an essentially straight
structure containing T4A4, in agreement with
electrophoretic mobility data. In contrast, we show
that the published NMR structures of analogous
sequences containing A4T4 and T4A4 tracts are
significantly bent into the minor groove for both
sequences, although bending is less pronounced
for the T4A4 containing sequence. The bending mag-
nitudes obtained by frame averaging are confirmed
by the analysis of superhelices composed of
repeated tract monomers.

INTRODUCTION

Since the first single-crystal structure of a DNA oligomer
was resolved 30 years ago (1), it has become clear that the
conformation of double-stranded DNA departs from a
straight, uniform double helix characteristic for idealized
B or A forms. DNA conformation is commonly
characterized by intra-base pair local conformational
parameters (buckle, propeller, opening, shear, stretch
and stagger) a by inter-base pair, or step parameters

(tilt, roll, twist, shift, slide and rise) (2). One of the most
important structural irregularities is DNA bending. At
the level of base pair steps, bending has two components,
roll and tilt. Of considerable interest, however, is also
global bending, that is, the bending magnitude and
direction of a longer DNA fragment as a whole.

Many authors define global bending magnitude as the
angle between normal vectors of base pairs at the two ends
of the DNA fragment. Dickerson and co-workers (3)
proposed to plot the projections of base pair normals
onto a reference plane perpendicular to a suitably
chosen helical axis, yielding the normal vector plot.
Bending magnitude and direction are deduced from
vectors connecting the projected normals. While the
method provides a quick and easy-to-understand picture
of the oligomer bending, its precise quantitative evalua-
tion is made more difficult by various approximations
involved in the scheme.

If the base pair normals are not available directly, they
can be inferred from the local conformational parameters.
The 3DNA code by Lu and Olson (4) includes a rebuilding
functionality which enables one to reconstruct the whole
oligomer from the values of inter- and intra-base pair
parameters. The subsequent analysis by 3DNA of such a
rebuilt structure then yields, among other things, all the
base pair normals.

A related approach has been adopted in the Madbend
code by Strahs and Schlick (5). Here, local roll, tilt and
twist are used to compute quantities called global roll and
global tilt, which describe both the bending magnitude
and direction. The precise meaning of these quantities
depends on the definition of local roll, tilt and twist used
to calculate them.

While the use of base pair normals provides a rather
straightforward relationship between local and global
bending, it also has disadvantages. In particular, it empha-
sizes the influence of local bends, especially at the ends of
the oligomer. Thus, methods to smooth out local bending
variations have been proposed.
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The program Curves developed by Lavery and Sklenar
(6) yields a global curvilinear helical axis computed by a
least squares optimization scheme. In the recently released
Curves+ (7), the global curvilinear axis is obtained from
the average local screw axes by polynomial smoothing.
The curvilinear axis as computed by Curves has been
widely used, not only to evaluate shape but also to
estimate global elastic properties of DNA (8,9). The dis-
advantage of such approaches is a rather complicated rela-
tionship between the local structure and global bending
defined in this way.

Other approaches have been published. Goodsell and
Dickerson (10) proposed a simple smoothing method
based on computing arithmetic mean of base pair
normals over a window of varying length. Lankas et al.
(11) used two segments of a straight helical axis, each
associated with a short fragment of the DNA double
helix, to characterize the magnitude and direction of
kinks in simulated minicircles. Curuksu et al. (12)
calculated arithmetic mean of a set of screw axes, each
connecting intra-strand neighbouring bases.

The most prominent base sequences that cause the
DNA double helix to bend globally are A-tracts, stretches
of at least four A�T base pairs without a TpA step (13–15).
The bend occurs when A-tracts are inserted into a non-
A-tract sequence. If more A-tracts are phased with DNA
helical repeat, the individual bends add constructively.
The precise magnitude of bending and details of how it
is achieved at the local level differ somehow from one
structure to another (16,17).

Gel electrophoretic mobility experiments performed by
Hagerman (18) and Crothers and co-workers (19,20)
showed that sequences containing A5–6 (19) and A4T4

(20) tracts are bent towards the minor groove at the
tract centre; in contrast, T4A4 sequences were found to
induce no appreciable bending (18). Koo et al. (21)
found that an A6 tract bends the DNA helix by 17–21�.
The value was deduced by fitting Monte Carlo simulations
of a DNA model to cyclization data. Lutter and
co-workers (22) proposed a topological method to
measure A-tract bending. The A6 tract bend angle they
found is in agreement with the previous estimate (21).

Several studies investigated the dependence of the
A-tract induced bending on temperature and ionic envi-
ronment. Koo et al. (23) found a decrease in bending mag-
nitude when passing from 4�C to room temperature, and
Diekmann (24) revealed that the decrease with tempera-
ture is monotonic (exceptional cases could be explained by
a loss of planarity of the construct). The decrease of
bending at elevated temperatures has been attributed to
a premelting transition of the A-tract, well described by a
two-state model (25). Diekmann (24) also found that
bending decreases with increasing concentration of NaCl.

At the atomic resolution level, A-tract DNA has been
extensively studied by X-ray crystallography (14,17). The
observed global bending direction of A-tract sequences
differs from the direction suggested by solution experi-
ments, which may be due to crystal packing effects (26).
The analysis of crystal packing effects, on the other hand,
can provide valuable information on DNA structure and
deformability (27).

NMR spectroscopy including residual dipolar couplings
(RDC) represents a unique tool to study atomistic struc-
ture of DNA oligomers in solution. In particular, the use
of RDC is essential to capture global bending (28,29).
Several groups used the NMR technique with RDC to
study A-tracts (16,28–30). The structure of a DNA
dodecamer containing the A6 tract obtained by
MacDonald et al. (28) shows a global bend of 19� in a
geometry consistent with earlier experiments. Barbic et al.
(16) investigated a decamer containing an A4 tract and
found agreement with electrophoretic data and with a
cyclization assay. Stefl et al. (30) obtained NMR struc-
tures of sequences containing the A4T4 or T4A4 tracts.
They are discussed in detail below.
A-tract sequences have also been investigated by atomic

resolution computer modelling. An early study based on
energy minimization (31) was followed by extensive inves-
tigation using explicit-solvent molecular dynamics (MD)
simulations. Beveridge and co-workers (32–36) conducted
a series of pioneering studies aimed at investigating
various A-tract properties. Their results on A-tract
induced bending, as well as those by Strahs and Schlick
(5) suggest general agreement with solution experiments.
The work of Lankas et al. (37) indicated that the N2
amino group in the minor groove has a decisive effect
on structure and mechanical properties of polypurine
tracts. Other studies focused on revealing the origins of
A-tract induced bending by investigating the effect of
single nucleotide substitutions within an A-tract (38) and
the role of ions (39).
These studies reflect the state of the art in DNA mod-

elling of their time. The length of the simulated trajectories
was in the nanosecond range, which in some cases limited
the statistical quality of the collected data. The force fields
used in these studies [parm94 (40) or parm99 (41)] were
later shown to exhibit serious defects in longer B-DNA
simulations, which were largely eliminated in the newly
developed parmbsc0 force field (42).
Recently, Curuksu et al. investigated restrained bending

of A-tract containing sequences by energy minimization
and by MD with umbrella sampling, using the parm94
(12) and parmbsc0 (43) force fields. They computed
energy profiles as a function of the bending angle and
found a minimum corresponding roughly to the experi-
mental bending magnitude.
The present study develops the subject in two directions.

First, we propose a new method for global bending mea-
surement, which uses a properly defined averaging of two
or more base-fixed coordinate frames. Second, we use the
method to study sequences containing either A4T4 or T4A4

tracts. For this purpose, we carried out an extended set
of new reference MD simulations. The length of the
simulated trajectories is increased by almost two orders
of magnitude compared with the early studies. We use
the parmbsc0 force field and a range of simulation con-
ditions. We also analyse published experimental data, in
particular the NMR and electrophoretic mobility data of
closely related sequences obtained by Stefl et al. (30), and
compare the structural information provided by the dif-
ferent methods.

Nucleic Acids Research, 2010, Vol. 38, No. 10 3415



METHODS

We performed explicit solvent, atomic resolution MD sim-
ulations of a set of DNA oligomers containing either A4T4

or T4A4 tracts using various temperature and ionic condi-
tions. The simulations are summarized in Table 1. Our
oligomers contain the sequences GCA4T4GC and
CGT4A4CG studied by NMR by Stefl et al. (30) (PDB
codes 1rvh and 1rvi, respectively).
The simulations were carried out using the AMBER 9

program package with the parmbsc0 force field (42). The
ions were parametrized according to Dang (44) and the
SPC/E water model was used. A truncated octahedral
periodic box, particle mesh Ewald technique, a 2 fs time
step and the Berendsen thermostat and barostat with time
constants of 5 ps were applied. The system preparation
and equilibration protocol closely follows the one used
in a recent extensive DNA simulation study (45), where
more details can be found.
Each MD snapshot was analysed by the 3DNA program

(4). The snapshots were then filtered using two criteria.
First, we checked the hydrogen bonds (H-bonds)
defining a Watson–Crick base pair. We considered an
H-bond broken if the donor–acceptor distance was
>4 Å. Notice that any cutoff distance is artificial, since
the free energy profile is in fact continuous. We found
that the 4 Å cutoff allows for enough H-bond length fluc-
tuations while capturing all the important breaking events.
Second, we monitored the torsion angle g in the backbone
fragments connecting adjacent bases and considered a
backbone fragment non-canonical if the value of g was
>110�. We found that excluding non-canonical g also
eliminates non-canonical torsion angles a and b. From
each trajectory, only snapshots with no broken H-bond
and no non-canonical base-connecting backbone fragment
anywhere in the oligomer (including terminal base pairs
and steps) were further analysed. Additionally, the first
nanosecond of each trajectory was removed. We refer to
the resulting data sets as filtered trajectories.
For each filtered trajectory, arithmetic means of the

intra- and inter-base pair conformational parameters
were computed. Based on these mean parameters, the
average structure was rebuilt using 3DNA. We also
analysed the NMR structures of AT and TA tracts
reported by Stefl et al. (30) (see above), denoted,

respectively, by AT_nmr and TA_nmr. The average struc-
tures were obtained analogously to those from MD, using
the ensemble of NMR models. All the NMR models
exhibit intact H-bonds and canonical g torsions, so that
no filtering was performed.

The average structures were re-analysed by 3DNA to
obtain base-fixed frames (46), which were then used to
measure global bending. We propose the following
method for global bending measurement. We choose
three groups of bases (called initial, middle and final
group) and compute the average of the base-fixed frames
in each group. To properly define the average frame, we
employ the theory of averaging in the group of rotations
developed by Moakher (47). The bending magnitude and
direction are defined using these average frames. The
method can be applied to a broad range of DNA and
RNA structures. It is described in more detail in Section
S1 of the Supplementary Data, and illustrated in Figure 1.

The reported minor groove widths are averages of the
widths from the snapshots of the filtered trajectories or

Table 1. Overview of the simulations

Sequence Code tsim (ns) T (K) Ions

GGCA4T4GCC AT_short 150 300 150mM KCl
AT_short_neut 50 300 K+

AT_short_lowT 50 283 K+

AT_short_Na 50 300 150mM NaCl
CCGT4A4CGG TA_short 150 300 150mM KCl

TA_short_neut 50 300 K+

TA_short_lowT 50 283 K+

TA_short_Na 50 300 150mM NaCl
G2CA4T4GCA4T4GC2 AT_long 150 300 150mM KCl
C2GT4A4CGT4A4CG2 TA_long 150 300 150mM KCl

Trajectory length is denoted by tsim, T stands for simulation temperature. Simulations were performed either with net-neutralizing K+ or Na+ ions
and 150mM of the corresponding added salt (KCl or NaCl), or with net-neutralizing K+ ions only.
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Figure 1. Illustration of the proposed bending measurement method.
A hypothetical nucleic acid structure is considered, involving 10 bases.
First, a coordinate frame is attached to each base, using a standard
procedure (black frames). Three groups of bases are then chosen: the
initial (bases 1–3 and 10, red), middle (bases 4 and 9, green) and final
(bases 6 and 7, blue) group. Bases 5 and 8 do not belong to any group.
For each group, the average frame is computed. The global bending
magnitude is defined as the angle between the average frame vector i3
of the initial group and the average frame vector f3 of the final group.
The bending direction is evaluated with respect to the average frame of
the middle group. A detailed description of the method is given in
Section S1 of the Supplementary Data.
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NMR models as measured by 3DNA (refined values). To
assess convergence of the MD results, the filtering and
analysis were repeated on the two halves of each trajectory
separately.

To further validate the results on global bending, we
also used another, independent method. For each of the
average structures, we took the central 10-bp fragment
and built a 15-mer by chaining the individual fragment
copies one after another in space, using 3DNA. For the
junction steps between monomers, we took the
conformational parameters averaged over the two steps
flanking the 10-bp fragment in the average structure.
The shape of the 15-mer is close to a superhelix in all
cases. Chaining identical DNA fragments was already
used by Stefl et al. (30). Here, we refine the procedure as
follows. We fit an optimal superhelix to the DNA
centerline with the program Helfit (48) which, in
contrast with previously published algorithms, optimizes
all the helix parameters simultaneously. For each 15-mer
we have 14 junction points between successive monomers,
which we project onto the superhelix axis. The averaged
distance between the projected points defines a fragment
of the optimal superhelix. The angle between the tangent
vectors at its two ends provides another estimate of the
global bending magnitude of the monomer unit.

Finally, we measured the bending magnitude by
the bending angle of the global, curvilinear axis assigned
to the average structures by the programs Curves (6) and
Curves+ (7). Terminal base pairs of AT_short and
TA_short structures were discarded to keep the
oligomer length consistent with the other bending
measurements.

RESULTS AND DISCUSSION

Global bending

Table 2 compares bending magnitudes and directions for
the simulated and NMR structures. Underscore marks the
bases whose frames, together with those of the paired

bases in the complementary strand, were used to
measure bending. They correspond from left to right to
the initial, middle and final group of frames (see Section 2,
Figure 1, and Section S1 of the Supplementary Data).
Thus, each group includes four base-fixed frames to
average. The middle group represents the oligomer
centre. It follows from the definition of the base-fixed
frames, and from the frame averaging procedure, that
the x-axis of the middle average frame (m1 in Figure 1)
points towards the major groove.
The bending direction close to 0� (or 360�) then implies

bending into the major groove in the oligomer centre,
whereas the direction �180� indicates bending into the
minor groove.
All the simulated AT oligomers are bent into the minor

groove in the oligomer centre, in line with experiments on
A-tracts in solution. The magnitude of bending is roughly
10� The values of bending magnitude and direction
computed from the two halves of each trajectory agree
with the values for the whole trajectory, which indicates
good convergence of the results. The values are only
weakly dependent on the simulated temperature and salt
conditions, with a slight reduction of bending in the
neutral solution (no added salt) and in NaCl compared
with KCl solution. The TA oligomers are essentially
straight, as indicated by very small bending magnitude
and poorly defined bending direction.
Experiments on A-tracts show a premelting transition

which changes bent structures at lower temperatures to
nearly straight structures at elevated temperatures, with
the transition curve centred around 30–40�C (14). Since
our standard simulation temperature (300K, or 27�C) is at
the edge of this interval, we performed additional simula-
tions at 283K (or 10�C) to make sure that the 300K sim-
ulations are not influenced by premelting. Moreover,
283K is close to the temperatures at which the NMR
and electrophoretic mobility experiments of Stefl et al.
(30) were done. We observe essentially no change in
bending when comparing the 283K and 300K simulations

Table 2. Global bending magnitude and direction

Sequence Code Bending magnitude (�) Direction (�)

GGCAAAATTTTGCC AT_short 9.9 (10.3, 10.1) 178 (190, 162)
AT_short_neut 8.4 (8.0, 8.7) 174 (164, 182)
AT_short_lowT 10.1 (10.6, 9.9) 182 (177, 188)
AT_short_Na 8.7 (8.2, 9.3) 173 (180, 162)

GCAAAATTTTGC AT_nmr 32.0 (24.5, 35.5) 180 (167, 194)
CCGTTTTAAAACGG TA_short 1.9 (0.7, 4.0) 202 (129, 211)

TA_short_neut 2.6 63
TA_short_lowT 0.9 (0.9, 1.2) 27 (337, 67)
TA_short_Na 1.4 (2.8, 4.5) 222 (324, 180)

CGTTTTAAAACG TA_nmr 23.5 (20.2, 27.2) 176 (164, 182)
GGCA4T4GCA4T4GCC AT_long 17.4 (18.6, 16.6) 357 (351, 4)
CCGT4A4CGT4A4CGG TA_long 4.4 (4.3, 5.6) 30 (36, 16)

The first values are for the entire filtered MD trajectories, or for the ensemble of NMR models, values in parentheses are for the two halves of each
trajectory (MD data) or the maximum and minimum value for the NMR models. Base frames at underlined locations, in the reference and the
complementary strands, are used to measure bending as described in Section 2, Figure 1, and Section S1 of the Supplementary Data. Directions
around 0� or 360� correspond to bending into the major groove in the oligomer centre, directions around 180� imply bending towards the minor
groove. For TA_short_neut, only the first 18 ns have been analysed since the rest of the trajectory is contaminated by a flip of the backbone torsion
angle g.
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(Table 2), suggesting that our results are not influenced by
the premelting transition.
The results for simulated AT or TA tandem-tract struc-

tures (AT_long and TA_long) are entirely consistent with
the results for the single-tract structures. In fact, the first
AT tract in the AT tandem is bent by 9.1�, the second by
8.9�, both into the minor groove in their respective centres,
so that the tandem as a whole is bent by roughly twice that
amount but into the major groove in its centre. The TA
single tracts are nearly straight, and so is the TA tandem.
Thus, we observe no cooperativity in bending when
passing from a single tract to a tandem.
The simulation results can be compared with the

electrophoretic mobility data of Stefl et al. (30). In agree-
ment with the findings of Koo and Crothers (20), we
assume that the bending magnitude is proportional to
the square root of the quantity RL�1, where RL=Lapp/
Lreal and Lapp, Lreal are, respectively, the apparent length
of the bent sequence and its real, contour length. We take
N=15 in Figure 5 of Stefl et al. (i.e. we consider their
measured sequence of 15-tract monomers). We assume a
20� bend for the A6 tract, in agreement with cyclization
experiments (21), topological measurements (22) and
NMR data (28). From this value and from the quadratic
relationship between RL�1 and the bending magnitude,
we obtain a 13� bend for an AT tract and 5� for a TA
tract, both in NH4Cl and KCl, and 10� for AT and 3�

for TA in NaCl. The bending magnitudes of our
simulated structures (Table 2) are consistent with these
electrophoresis data.
In contrast, the NMR data of Stefl et al. (30) differ from

the simulation and the electrophoretic mobility results.
Data in Table 2 show that the NMR structures of both
the AT and the TA tracts are significantly bent into the
minor groove, although the bending is weaker for the TA
tract. The range of values for the individual NMR models
confirms this finding.
In order to check that our measured bending magni-

tudes are not unduly influenced by the bending measure-
ment method used, we also employed the helix fitting
procedure described in Section 2, which is independent
of the frame averaging method. The results are shown in
Table 3. We see that the simulated structures yield slim,
elongated superhelices with monomer units bent by 12.5�

for AT tract and 3.3� for TA tract. The bending angle is
consistent with the one computed for single tracts using
the frame averaging method, as reported in Table 2.
Moreover, the bending angle is very close to the one we
deduced from the electrophoretic mobility experiments.

Finally, we measured the bending magnitude of the
average structures using the global curvilinear axis
computed by Curves and Curves+. The results are
shown in Table 4, together with the bending magnitudes
by frame averaging and helix fitting reproduced from
Tables 2 and 3, respectively. Although the Curves and
Curves+ values somehow differ from one another and
from the values obtained by frame averaging and helix
fitting, they confirm the overall trend, namely moderately
bent AT tract and nearly straight TA tract from simula-
tions, and a significant bend for AT tract and to a lesser
extent also for TA tract from NMR.

Thus, the various bending measurement methods yield
consistent results both for the simulated and NMR data,
and confirm the contrast between the simulated structures
and electrophoretic mobility data on one side and the
NMR structures on the other side.

Local structure

The global bending magnitude and direction result from
the local structure of the DNA oligomers. Besides that, the
local structure of A-tracts is also biologically important in
itself (15,49).

The profiles of average roll and tilt are shown in
Figure 2. The simulated values, despite the fact that they
were obtained in a range of simulation conditions, are very
close to each other. The only visible anomaly appears in
the last two steps at the 30-end in the TA_short_lowT
structure (blue line in the right part of the figure). It is
probably related to the permanently broken 30-end pair in
that structure that we allowed to pass through the filtering
(see Section S2 of the Supplementary Data). The NMR
and the simulated values are quite similar, but with two
notable exceptions: roll in the central AT step of the AT
tract (–12� from NMR and –2� from MD) and roll in the
two innermost TT/AA steps in the TA tract (roughly –4�

from NMR and close to 0 from MD). A detailed exami-
nation of the available X-ray and other NMR structures
(29,50–54) found no conclusive evidence supporting such
an extreme negative roll in the AT step within AT tracts,

Table 4. Summary of bending magnitudes computed using different

methods

Code Bending magnitude (�)

Frame averaging Helix fitting Curves (UU) Curves+

AT_short 9.9 12.5 7.1 8.8
TA_short 1.9 3.3 4.2 1.0
AT_nmr 32.0 30.8 33.4 26.1
TA_nmr 23.5 25.3 16.0 14.4

The values from frame averaging and helix fitting discussed above (see
Tables 2 and 3) are supplemented with the bending angles of the global
curvilinear axis provided by Curves (the angle of the axis vectors, or
UU) and Curves+. The values are to be compared with those inferred
from electrophoretic mobility experiments, i.e. 13� for an AT sequence
and 5� for a TA sequence (see text). The bending of the simulated
oligomers (AT_short and TA_short) is consistent with the
electrophoresis data. In contrast, bending of the NMR structures is
much more pronounced, both for AT and for TA sequences.

Table 3. Parameters of superhelices fitted to 15-mers of the average

structure fragments and bending magnitudes of a monomer fragment

inferred from the fitted helices

Code Superhelix radius (Å) Pitch (Å) Bending angle (�)

AT_short 22.7 333.9 12.5
TA_short 7.1 396.5 3.3
AT_nmr 55.8 117.6 30.8
TA_nmr 53.7 212.4 25.3
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nor the moderately negative roll in the AA/TT steps
within TA tracts.

Figures analogous to Figure 2 for twist and slide are in
the Supplementary Data. There the agreement is quite
good for AT tract but qualitative differences are seen for
TA tract. The complete sets of intra- and inter-base pair
parameters for the AT_short and TA_short simulated
structures are also provided in the Supplementary Data.

Other characteristic features of A-tracts include a pro-
gressive narrowing of the minor groove in the 50 to 30

direction of the adenine strand (55), and high negative
propeller twist (14,17). The minor groove narrowing in
MD structures (Figure 3) is saturated at the third step
from the 50-end of the adenine strand. Similar saturation
has been observed in X-ray (56) and NMR (28) structures
of the A6 tract. The simulated propeller twist profiles
(shown in Figure 4) exhibit analogous saturation at the
third base pair. Although A-tracts are commonly defined
as having four or more A�T pairs in a row, early experi-
ments by Koo et al. (23) revealed slight electrophoretic
anomaly also for A3 tracts. Thus, A-tracts as short as
A3 may show unique local structural features. This has
also been suggested in a recent study on the role of
DNA shape in protein–DNA recognition (49).

The profiles of conformational parameters for the
simulated AT and TA tract tandems (AT_long and
TA_long) almost precisely repeat the profiles for the
simulated monomers twice in a row. We demonstrate
this by the minor groove width profiles shown in the
Supplementary Data.

We also checked for the presence of bifurcated
hydrogen bonds in the major groove of the AA steps,
involving the N6 atom of adenine and the O4 atom of
thymine in the next base pair along the 50 to 30 direction
of the adenine strand. They were observed in some A-tract
structures but not in others, and are not a prerequisite for

A-tract induced bending (14,17). A careful examination of
the N6–O4 distances in the MD and NMR structures
studied here provides no evidence for the presence of
such bonds.
We finally examined the N6–N6 distances in the AT

step, extensively studied by Sponer and Hobza (57)
using crystal structures and quantum chemical calcula-
tions. The frequent close N6–N6 major groove contacts
in AT steps were explained by activated partial sp3

pyramidalization of the adenine amino groups (57,58).
Although the force field does not account for this effect,
our simulated N6–N6 distances are roughly midway
between the optimal (3.26 Å) and repulsive values
(3.52 Å) found by Sponer and Hobza. This indicates the
overall tendency of the AT step to bring the two N6 amino
groups into close contact. The NMR distances in the
structures examined here (4.2±0.1 Å) are too large for
any contact to take place and do not agree with
X-ray data.
In our analysis, we filter out snapshots with broken

intra-base pair H-bonds and non-canonical backbone
states (g-flips). In this way, we limit our sampling to the
B-DNA structural family. The H-bond breaks we observe
are different from the base pair breathing events detected
by imino proton exchange, which take place at much
longer time scales. For the A4T4 tract, the experimental
base pair lifetimes are roughly 100ms, whereas the open
state lifetimes are of the order of 10 ns (59). The fast
opening events in our simulations may be related to a
subtle underestimation of base pair stability by the force
field, for instance due to the lack of an explicit polariza-
tion term. Nevertheless, the H-bond breaks we observe are
by and large limited to terminal pairs. Indeed, the
maximum population of a broken H-bond outside the ter-
minal pairs is only 0.8%. A detailed check of the simulated
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(cyan) simulations and the NMR data AT_nmr (red) are shown. The
colour coding for TA tracts is analogous. Error bars represent 1 SD for
the ensemble of NMR models.

T T T T A A A AA A A A T T T T

10

11

12

13

Å
AT - minor groove

TA - minor groove

Figure 3. Profiles of average minor groove width. Colour coding and
error bars are as in Figure 2.

G GC A A A A T T T T G CC
–20

–10

0

10

deg

C CG T T T T A A A A CGG

AT – propeller TA – propeller

Figure 4. Profiles of average propeller twist. Colour coding and error
bars are as in Figure 2.

Nucleic Acids Research, 2010, Vol. 38, No. 10 3419



data shows that, except for terminal pairs and steps (and
next to terminal ones in two cases), the influence of
H-bond breaks on the averaged intra- and inter- base
pair parameters is minor. This is in line with a recent sim-
ulation study (60) that, however, revealed a dramatic
influence of broken H-bonds on the standard deviations
of the parameters.
The situation is different in the case of g-flips. In the

crystal structures of naked B-DNA, the flips are present
only in exceptional circumstances (61–63). Thus, simula-
tions of naked B-DNA should exhibit a very low popula-
tion of g-flips. Longer simulations using the earlier
parm94 or parm99 force fields resulted in accumulation
of irreversible g-flips that had a detrimental effect on the
helical structure. Irreversible flips have been eliminated
in parmbsc0 (42), but random, infrequent reversible
flips do occur. In fact, it is not possible to block the flips
completely. Any realistic force field should make the
g/trans state easily accessible, since it is common in
protein–DNA complexes and in RNA. However, the
flips seem to be overpopulated at the time scale of our
simulations. Indeed, the longest flip we observe (in
TA_long) lasts for >70 ns, roughly half of the total simu-
lation time. Once formed, a flip significantly affects local
conformation: we observe, for instance, a decrease of twist
and roll by 4� and of slide by 0.5 Å. Moreover, the effect is
not limited to the flipped step itself but is non-local (see
Supplementary Data for additional information). As a
solution, we propose to filter out any shapshsot with a
g-flip, which yields a conformation in the limit of negligi-
ble population of g-flips. Since no flip >80 ns has been
observed even in the 1.2 ms B-DNA simulation (64), it is
well possible that the population of g-flips indeed becomes
negligible at very long simulation times. However, for sim-
ulations of the order of 100 ns, we rather suggest to filter
out the flips, since the occasional long-living flips may bias
the values of structural parameters.

CONCLUSIONS

In this article, we propose a method to measure global
bending magnitude and direction in nucleic acids struc-
tures. The method relies on a properly defined average
of the base-fixed coordinate frames within suitably
chosen groups of DNA or RNA bases. The bending mag-
nitude and direction is then computed using the average
frames of the groups.
The proposed method is applied to AT and TA tracts of

double-helical DNA, which we study using our own
atomistic MD simulations as well as published NMR
and electrophoretic mobility data. We show that the
simulated structures exhibit characteristic local confor-
mational features and their global bending magnitudes
agree with the electrophoresis data, whereas the NMR
structures show much more pronounced bends. We
expose similarities and differences among the results
obtained from MD, NMR and electrophoresis, hoping
that such a comparison may stimulate further research
in the field.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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