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Abstract: COVID-19, or SARS-CoV-2, is considered as one of the greatest pandemics in our modern
time. It affected people’s health, education, employment, the economy, tourism, and transportation
systems. It will take a long time to recover from these effects and return people’s lives back to normal.
The main objective of this study is to investigate the various factors in health and food access, and
their spatial correlation and statistical association with COVID-19 spread. The minor aim is to explore
regression models on examining COVID-19 spread with these variables. To address these objectives,
we are studying the interrelation of various socio-economic factors that would help all humans to
better prepare for the next pandemic. One of these critical factors is food access and food distribution
as it could be high-risk population density places that are spreading the virus infections. More
variables, such as income and people density, would influence the pandemic spread. In this study,
we produced the spatial extent of COVID-19 cases with food outlets by using the spatial analysis
method of geographic information systems. The methodology consisted of clustering techniques
and overlaying the spatial extent mapping of the clusters of food outlets and the infected cases.
Post-mapping, we analyzed these clusters’ proximity for any spatial variability, correlations between
them, and their causal relationships. The quantitative analyses of the health issues and food access
areas against COVID-19 infections and deaths were performed using machine learning regression
techniques to understand the multi-variate factors. The results indicate a correlation between the
dependent variables and independent variables with a Pearson correlation R2-score = 0.44% for
COVID-19 cases and R2 = 60% for COVID-19 deaths. The regression model with an R2-score of 0.60
would be useful to show the goodness of fit for COVID-19 deaths and the health issues and food
access factors.

Keywords: COVID-19; GIS; machine learning; regression; North Carolina; Gilford County

1. Introduction

An outbreak is announced as a pandemic when it spreads in a large geographical area,
infects, and results in mortality for a high number of people, and all of that is caused by a
virus that is a subtype of a current virus [1]. The first pandemic recorded was in 1580 [1].
Before 1889, pandemics’ patterns show a 50–60-year cycle, while, after 1889, a 10–40-year
cycle is shown, with the possibility of shortening [1]. Unfortunately, nothing has been done
to change this pandemic pattern in the last century [1].

Research indicates that the current outbreak started to spread between people in late
November to December 2019 [2]. On 31 December, 27 cases were recorded of unknown
diseases [2]. The recent outbreak was identified on 7 January 2020, a virus called SARS-
CoV-2, which is caused by the beta coronavirus and attaches to the lower respiratory
census tract [2]. On 18 January, the cases spread around the country regarding the travel
for the Chinese Lunar New Year [3]. The government started to lock down the city of
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Wuhan, considered as ground zero, and closed all routes to the province [3]. The origin
of the cases was connected to visiting the Wuhan’s Huanan Seafood market [2]. All the
cases were related to traveling from Wuhan until 2 February 2020 [3]. Later, the cases
spreaded all over the world and to the United States of America. The first case in the United
States was recorded on 20 January 2020 [4]. By October 2021, the United States recorded
44,518,018 total cases and 716,370 total deaths [4].

The Chinese government reacted to the spread of COVID-19 by restricting people’s
movement, mandatory masks, and monitoring machines [5]. Internationally, the responses
included things such as social distancing, vaccines, and disinfecting hands to control the
spread [6]. The Center of Disease Control CDC in the United States reacted to the pandemic
by advising mask use, requiring negative tests for people to enter the US from a foreign
country, and collecting contact information from passengers to minimize incoming infection
cases [7]. However, the World Health Organization recommendations of face masks and
sanitizer were difficult to enforce in low-income countries in Africa because of poor facilities
and low access to equipment [8].

Investigating the factors or variables associated with a pandemic is essential to un-
derstand its spread. In the case of this pandemic, investigating the COVID-19 spread in
relation to food access distribution, income, population density, health issues, and poverty
is associated with future pandemic recovery plans and prevention. Food access would be
limited by a stay-at-home order, curfew, and social distance rule. At the same time, popu-
lation density or human traffic in public places, such as food outlets, would increase the
chance of infection. Food access in urban areas is a critical factor for human survival. Equal
distribution of food outlets supports healthy and active life in communities, while unequal
distribution may have a negative impact on people’s health and result in a higher incidence
of diabetes and other health risks. Analyzing food distribution is a multi-variate problem
as it depends on various factors of influence ranging from income to demography [9]. More
variables, such as income levels, affect people’s ability to buy food and access transportation
for takeout. Health issues and chronic diseases may be affected by the pandemic conditions
and the consequences associated with weakened immunity and infections.

A healthy life and well-being are some of the United Nations goals and strategies,
especially the Sustainable Development Goals SDG 3.3, which aims to end pandemics by
2030 [3]. However, the spread of a new virus threatens this goal [3] because this pandemic is
not the first and will not be the last, and the frequency of these pandemics might increase as
influenza mutates every cold season to form a new strain. Investigating the current stage of
the pandemic and its adverse effects helps us as humans to prepare for future pandemics.

2. Literature Review

Scientists have documented outbreaks and pandemics and analyzed them to limit
their negative influence. Previous pandemics, such as malaria and H1N1, affected human
health and life. In a study by Malik & Abdalla, they mapped the spread of H1N1 by
using spatiotemporal analysis. The study analyzed the spatial spread and spatial–temporal
distribution with the factors of population density and international flights from Mex-
ico [10]. The second study indicates the use of spatiotemporal analysis to map the H1N1
outbreak [11]. The study found that the virus infections did not spread much as clusters
between the first and third weeks but increased to larger clusters in the sixth week [12].
These clusters started to converge further from week six to eighteen, and then started to
decline in week 22 [12]. There have been some studies on pre-existing health risks and their
susceptibility to higher infection rates during epidemics. One study presented the effect of
obesity on influenza infection duration and concluded that obesity extended the shedding
duration by 42% for influenza and by 43% for influenza-H1N1 [13].

Since COVID-19 was announced as a pandemic on March 11 2020, scientists started to
study and analyze the spread of the virus and its associated factors. Several studies focused
on the global scale, while other studies investigated smaller scales and examined specific
variables’ correlation to COVID-19 [14]. In a study, the authors presented the sectors that
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were disrupted globally, namely: tourism, restaurants, leisure, entertainment, travel, sports,
etc. [15]. Another study presented the comparison between developed and developing
countries, where increased COVID-19 cases and deaths were present in developed countries
compared to developing countries [14].

Pandemic spread and prediction could be analyzed by several methods, including the
Geographic Information System (GIS) and machine learning (ML). The GIS is an effective
tool for visualizing the spread of cases with spatial reference maps, time, location, and other
overlaying techniques. The role of GIS is clear in mapping cases, mapping case clusters,
mapping the outbreak spread, and helping decision-makers act [16]. The geospatial analysis
of GIS on COVID-19 was mostly on five topics, which are spatial–temporal analysis, health
and social geography, environmental variables, data mining, and web-based mapping [17].
As an example, GIS can be used for dashboard tracing, which was applied for the first
time at John Hopkins University [18]. Another use of GIS was applied by the World
Health Organization to illustrate confirmed cases and deaths [9]. More examples are in the
HealthMap by the Boston Children’s Hospital, USA [19]. A study proved the effectiveness
of ML models on outbreak predictions by applying multi-layered perceptron MLP and
Adaptive Network-based Fuzzy Inference System ANFIS [20].

Currently, GIS is a useful tool for mapping cases and deaths, spreading, and predicting
the future spread for health authorities regarding taking necessary and precise action on
future outbreaks. The use of GIS is critical during the pandemic and post-pandemic for
policymakers to make decisions on developing surveillance tracking systems for controlling
and preventing future pandemics [18]. South Korea shows the best example of creating a
web-GIS tracking for its pandemic tracking system by tracing cases and highly infected
sites [21]. The application of the GIS into the South Korean method provided a decision-
making tool on updated tracking and predicted the needed procedures [22]. Given this
orientation, another study investigated the outbreak spree by applying the five GIS model
sizes in the United States [23]. It investigated the differences in using different size modeling
from local to global and applied those methods on four variables, black female populations,
income, household income, and percentage of nurse practitioners [23].

More tools on the analysis of COVID-19 cases and spreads included statistical regres-
sion models. These models have been used to investigate the fluctuation in cases and then
connect that to variables. A study presented the investigation in Germany on the spike and
decrease in COVID-19 cases in the first two months of the pandemic and found increases
and decreases in cases, and these changes on carve may be by variables that need to be
studied [24]. More investigation on the correlation of COVID-19 with other variables, such
as health issues, is critical around the world. The importance of cholesterol and its relation
to the virus entering human cells is illustrated in a study, and lower cholesterol helps clear
the virus sooner and limit infections [25]. High blood pressure recorded a correlation with
a reduction in lung function [26].

The correlation of COVID-19 with variables has been investigated by several regres-
sion models as an efficient method. More specifically, research on the correlation with
health issues has been applied and presents a correlation to various health issues. A multi-
variable linear regression analysis on global data of COVID-19 cases and deaths recorded a
high correlation of cases and deaths with high cholesterol and high body mass [14]. More-
over, the correlation is stronger in the younger population [14]. An analysis in the United
Kingdom on people’s body mass and COVID-19 hospitalization by applying logistic re-
gression demonstrated higher hospitalization for people with obesity [27]. Further, a study
conducted by penalized logistic regression models proved that hypertension illustrates a
correlation to COVID-19 cases and mortality [28]. Nevertheless, moderate blood pressure is
considered a dramatic factor in patient survival and limiting organ damage [28]. COVID-19
affects people’s health, and that effect may be more severe on people with health conditions.
A study presented a regression analysis on patients’ clearance after being affected with
COVID-19 and concluded that more days are recorded for people suffering from high
cholesterol and diabetes [29]. Additionally, a study presented a positive correlation be-



Healthcare 2022, 10, 324 4 of 19

tween COVID-19 and population density in India by computational correlation coefficient
models [30].

The analysis of the geographical spread of a virus provides a tool for decision-making
and long-term management for outbreaks [21]. Mapping the data based on normality
would show a visualization, followed by normalizing data, such as showing the percentage
based on every 100,000 people [31]. A recent study on the environmental effects of COVID-
19 spread took place in China to analyze the effects of temperature and humidity [3]. The
results illustrated the relationship between infected cases and weather, where low humidity
supported the suitability and spread of the virus [24]. Moreover, strong cases showed a
temperature range of 10 ◦C to 20 ◦C [3]. Furthermore, a higher number of cases were shown
in economically developed cities, such as Beijing, and lower cases in less developed cities,
such as Lhasa, which could be due to air pollution, geographical location, or population
density [3]. Moreover, a study in Malaysia discussed that tourism was affected badly by
the outbreak and, in turn, affected the economy and financial development [32].

Additional variables, such as income, were investigated in various geographical
locations. An investigation in Spain demonstrated the negative correlation of the mean
income to COVID-19 cases spread, where more cases spread in lower mean income districts
because of low access to health care, lack of awareness, and poverty rates [33]. More
specifically, low median income districts had 2.5 times higher cases than higher than mean
income districts in Spain [33]. More studies presented the correlation of income to COVID-
19 cases and deaths and its influence on food security. For instance, researchers in Kenya
analyzed surveys on COVID-19 influence and concluded that low-income households that
depend on labor jobs are more vulnerable to food insecurity due to financial shock [34].
More specifically, during the pandemic, people in low-income neighborhoods spent more
time at work than those in high-income neighborhoods due to labor shortages [35].

COVID-19 has a long-term influence on food security and impacted a population
increase of 17 million Americans in 2020 compared to 2018 [36]. Despite the increase in
food insecurity, the pandemic has had a dramatic influence on the increase in children
classified as having food insecurity by 3% more in 2020 than in 2017 [37]. Hence, the U.S
government increased the free food programs in nation-wide K–12 public schools.

In Brazilian data studies, the investigations found a positive correlation to different
socio-economic variables, such as population density, and negative correlation to social
isolation rates, which proves the importance of social distancing enforcement [38]. An-
other investigation was done in India by statistical analysis called Pearson’s correlation
coefficient [39]. A positive correlation between people density and COVID-19 cases was
presented in five states. A statistical analysis recorded a correlation of COVID-19 with the
number of tests and population density [39]. More variables, such as public transporta-
tion, were investigated for the correlation to COVID-19 cases and deaths. A statistical
analysis recorded a correlation of COVID-19 with the number of tests and population
density [40]. Regarding another study, a positive correlation was presented between public
transportation sites, such as airports and train stations, and COVID-19 cases, in which the
people living less than 25 miles from transportation spots showed higher cases than people
living more than 50 miles away [41]. This was further supported by another study on the
spatial distribution of COVID-19 cases in China, describing the possibility of transportation
influence on the spread between neighborhoods [42].

The demographic variables were also investigated in several studies. A study that
took place in the United States analyzed the cases and death numbers of COVID-19 and
concluded that African Americans have the highest rates because of their low income,
low access to transportation, and the high rate of chronic diseases, such as diabetes and
obesity [43]. Also, the study recorded the vulnerability of the Hispanic community on the
age of to the pandemic because of their high uninsured status rate, high chronic diseases,
language barrier, and their immigration status [10].

Researchers indicate that there is a lack of application of GIS on pandemic spreads
and more application is needed [12]. There is a need for more GIS analysis on the outbreak
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with different variables. Further research is needed to investigate more variables, such as
food access, in the United States [11]. The proposed study illustrates the investigation of
the spatial distribution of COVID-19 cases and deaths in Guilford County and examines
the possibility of correlation with specific variables in food access and health risks. This
study investigates variables such as health issues, income, food outlets and access areas,
population density, and poverty rates. This study is applying technology by exploring
machine learning models’ efficiency to analyze the pandemic distribution.

The research questions in this study are:

1. Is it possible that COVID-19 cases and deaths in geospatial distribution are associated
with food outlets and restaurants distribution?

2. Can other variables illustrate a geospatial correlation with COVID-19 cases and deaths?
3. How can machine learning discover a higher quantitative statistical correlation of

COVID-19 cases and deaths against various independent variables?
4. Do the machine learning results concur with the GIS regression results?

Our contributions in this study are:

1. Investigated the geospatial association of COVID-19 cases and deaths to food
outlets distribution

2. Examined the dependency of various socio-economic and health risk variables on
COVID-19 cases and deaths

3. Applied ML techniques to investigate the statistical association between COVID-19
cases and deaths to other variables

3. Study Area and Materials

This study took place in Guilford County (Figure 1) in the state of North Carolina,
with an area of 645.70 square miles and a population of 537,174 [44]. The county population
consisted of 35.4% black, 49.4% is white, 5.3% Asian, 8.4% Hispanic, and 1.5% other [44].
The county took steps to maintain people’s health and wellness. Mandatory face masks
were officially announced starting from 5 PM on Jun 26, 2020 [45]. Guilford County issued
a “stay at home” order for transportation on April 17, 2020 [46]. In June, the county
announced 5 testing sites spread around the county [46]. The county has three zip code
areas with a high cluster of cases, and they are 27,405, 27,407, and 27,406 [47]. By October
14, 2021, North Carolina recorded 1,436,699 total cases [4]. The datasets were obtained from
the health department in Guilford County.

Figure 1. Study area.
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4. Methods and Results

This study adopted a spatial-based and machine learning regression method to analyze
the correlation between COVID-19 cases, deaths, and independent variables. The spatial
method was applied to analyze the correlation and to present it visually on maps with
variation of correlation degree. ML regression model is a strong tool that could be used
for different topics and purposes, and the cause and analysis is one of them. Moreover,
applying several models to compare results is important to find the most suitable model
for this study and document it. In this study, the authors used ArcGIS-ArcMap software
version 10.3 for GIS analysis and Jupiter software to apply the regression analysis. The
method (Figure 2) applied used GIS tools for spatial and Sci-Kit Learn software libraries for
machine learning regression, respectively. The GIS regression methods applied four models:
the scatterplot matrix graph, spatial autocorrelation (Moran’s I), ordinary least squares
(OLS), and the geographically weighted regression. The ML regression method applied four
models, and they are linear multioutput regression, K-nearest neighbors of multioutput
regression, random forest of multioutput regression, and support vector regression. These
models were applied to analyze the correlation between dependent (COVID-19 cases and
deaths) and independent variables (med-income, poverty rate, population density, high
blood pressure, high cholesterol, obesity, number of healthy food outlets, and number of
healthy food outlets).
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4.1. GIS Methods

These maps in Figures 3 and 4 present the COVID-19 cases and deaths. In Figure 3,
higher numbers of cases are presented in dark blue color. The lowest COVID-19 infections
are in the downtown of Greensboro, where it has fewer residential homes than businesses,
and the highest are located outside of Greensboro in Summerfield, Gibsonville, Sedalia,
Burlington, and Pleasant Garden. In Figure 4, the highest numbers of deaths are ranging
between 22 and 33 per each census tract, displayed in blue color, and the lowest numbers
of deaths are given 0 to 3 per each census tract in yellow color. The COVID-19 deaths low
numbers are reported in Greensboro and the high mortality reported out of the city. An
observation from this distribution could be about people’s education and the mask enforce-
ment in large stores or offices. After that, scatterplot matrix graph in Figure 5 presents the
interaction between COVID-19 cases and independent variables. The graph illustrates some
positive and negative correlations and no correlation. Positive correlations include obesity
with poverty and high blood pressure. Negative correlation is presented between obesity
and med-income variables. However, there is no apparent strong correlation observed
between COVID-19 cases and other variables through this scatter matrix visualization.
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After that, we applied the spatial autocorrelation (Moran’s I) to find the cluster of cases
and deaths on some census tracts. The spatial autocorrelation is applied by this equation:

I =
n
S0

∑n
i=1 ∑n

j=1 Wi.jZiZj

∑n
i=1 Z2

i
(1)

In Equation (1) Zi is the deviation of an attribute for feature i from its mean (Xi − X).
The Wi.j is the spatial weight between feature I and j, and n is equal to the total number
of features. The S0 is the aggregate of all spatial weight. After applying the equation,
results are presented in Figures 7 and 8. Figure 7 illustrates that COVID-19 cases are
significantly clustered in Guilford County, which means there is high dependency of output
and independent input variables.
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In Figure 8, the spatial autocorrelation concluded that the cluster of COVID-19 deaths
is a result of random chance, which encourages the investigation further on different
variables. The Moran’s summary of COVID-19 cases and deaths by the Moran’s I spatial
autocorrelation is in Table 1 below.

Table 1. OLS results for COVID-19 cases and deaths.

Measures COVID-19 Cases COVID-19 Deaths

Moran’s Index 0.118617 0.005965

Expected Index −0.009259 −0.009259

Variance 0.000575 0.000551

Z-score 5.3314423 6.48788

p-value 0.000000 0.516475

Next, local Moran’s was applied based on this formula:

Ii =
χi − X

S2
i

∑n
j−1, j 6=i wi.j(xj−X) (2)

In Equation (2), n is the total number of features, and χi is the attribute for feature i.
Moreover, wi.j is the spatial weight between feature i and j. The output of this equation
is presented in Figures 9 and 10. Figure 9, the local Moran’s on COVID-19 cases, presents
tracts with high case numbers and its correlation with a high number and percentage of
variables in the south of Greensboro and east of Guilford County. The pink patch represents
high cases of COVID-19 with an increase in variables. The red patch represents high cases
and low variables correlation. The blue patch illustrates tract with low cases number with
low variables in Greensboro downtown. In Figure 10, the local Moran’s on COVID-19
deaths is presented with the correlation of variables in each tract. The red patch represents
high mortality with low correlation with variables, and the pink patch represents high
mortality number with high variables in the north of Greensboro.

Healthcare 2022, 10, 324 11 of 21 
 

 

Table 1. OLS results for COVID-19 cases and deaths. 

Measures COVID-19 Cases COVID-19 Deaths 
Moran’s Index 0.118617 0.005965 
Expected Index −0.009259 −0.009259 

Variance 0.000575 0.000551 
Z-score 5.3314423 6.48788 
P-value 0.000000 0.516475 

Next, local Moran’s was applied based on this formula: 

Ii = ఞ೔ି ௑തௌ೔మ ∑ 𝑤௜.௝(௫௝ିஎഥ)௡௝ିଵ,௝ஷ௜  (2)

In Equation (2), 𝑛 is the total number of features, and 𝜒௜ is the attribute for feature 𝑖. Moreover, 𝑤௜.௝ is the spatial weight between feature 𝑖 and 𝑗. The output of this equa-
tion is presented in Figures 9 and 10. Figure 9, the local Moran’s on COVID-19 cases, pre-
sents tracts with high case numbers and its correlation with a high number and percentage 
of variables in the south of Greensboro and east of Guilford County. The pink patch rep-
resents high cases of COVID-19 with an increase in variables. The red patch represents 
high cases and low variables correlation. The blue patch illustrates tract with low cases 
number with low variables in Greensboro downtown. In Figure 10, the local Moran’s on 
COVID-19 deaths is presented with the correlation of variables in each tract. The red patch 
represents high mortality with low correlation with variables, and the pink patch repre-
sents high mortality number with high variables in the north of Greensboro. 

 
Figure 9. The local Moran’s on COVID-19 cases in Guilford County. Figure 9. The local Moran’s on COVID-19 cases in Guilford County.



Healthcare 2022, 10, 324 11 of 19
Healthcare 2022, 10, 324 12 of 21 
 

 

 
Figure 10. The local Moran’s on COVID-19 deaths in Guilford County. 

Then, OLS was applied to examine dependent and independent variables. OLS is a 
linear regression to perform a prediction or detect relationship between dependent and 
independent variables. We examine COVID-19 cases as a dependent variable with all in-
dependent variables. This OLS model uses the equation below: 

Y = β0 + β1 X1 + β2 X2 + βn Xn + Ɛ (3)

where Y is the dependent variables, β is coefficients, X is explanatory or independent var-
iables, and Ɛ is random error. In Figure 11, red patches represent areas with higher 
COVID-19 cases than the model predicted, and the blue shaded census tracts illustrate 
areas with lower COVID-19 cases than the model expected. In this model, the multiple R 
square was 0.358946, and the adjusted R-square was 0.307662. The Akaike’s information 
criterion (AICc) was 1412.247528. The joint F-statistic was 0.000000, which was a signifi-
cant result. The Jarque–Bera statistic [g] was 1.511785, which indicates that the independ-
ent variables have an influence on the dependent variable. The joint Wald statistic [e] was 
significant and computed as 0.000000. The Keonker (BP) statistics, which determine if the 
independent variables have a consistent relationship to the dependent variable, was 
0.009854, also significant, but the relationship is not consistent. 

Figure 10. The local Moran’s on COVID-19 deaths in Guilford County.

Then, OLS was applied to examine dependent and independent variables. OLS is a
linear regression to perform a prediction or detect relationship between dependent and
independent variables. We examine COVID-19 cases as a dependent variable with all
independent variables. This OLS model uses the equation below:

Y = β0 + β1 X1 + β2 X2 + βn Xn +

Healthcare 2022, 10, x  12 of 21 
 

 

 

Figure 10. The local Moran’s on COVID-19 deaths in Guilford County. 

Then, OLS was applied to examine dependent and independent variables. OLS is a 

linear regression to perform a prediction or detect relationship between dependent and 

independent variables. We examine COVID-19 cases as a dependent variable with all in-

dependent variables. This OLS model uses the equation below: 

Y = β0 + β1 X1 + β2 X2 + βn Xn + Ɛ (3) 

where Y is the dependent variables, β is coefficients, X is explanatory or independent var-

iables, and Ɛ is random error. In Figure 11, red patches represent areas with higher 

COVID-19 cases than the model predicted, and the blue shaded census tracts illustrate 

areas with lower COVID-19 cases than the model expected. In this model, the multiple R 

square was 0.358946, and the adjusted R-square was 0.307662. The Akaike’s information 

criterion (AICc) was 1412.247528. The joint F-statistic was 0.000000, which was a signifi-

cant result. The Jarque–Bera statistic [g] was 1.511785, which indicates that the independ-

ent variables have an influence on the dependent variable. The joint Wald statistic [e] was 

significant and computed as 0.000000. The Keonker (BP) statistics, which determine if the 

independent variables have a consistent relationship to the dependent variable, was 

0.009854, also significant, but the relationship is not consistent. 

(3)

where Y is the dependent variables, β is coefficients, X is explanatory or independent
variables, and

Healthcare 2022, 10, x  12 of 21 
 

 

 

Figure 10. The local Moran’s on COVID-19 deaths in Guilford County. 

Then, OLS was applied to examine dependent and independent variables. OLS is a 

linear regression to perform a prediction or detect relationship between dependent and 

independent variables. We examine COVID-19 cases as a dependent variable with all in-

dependent variables. This OLS model uses the equation below: 

Y = β0 + β1 X1 + β2 X2 + βn Xn + Ɛ (3) 

where Y is the dependent variables, β is coefficients, X is explanatory or independent var-

iables, and Ɛ is random error. In Figure 11, red patches represent areas with higher 

COVID-19 cases than the model predicted, and the blue shaded census tracts illustrate 

areas with lower COVID-19 cases than the model expected. In this model, the multiple R 

square was 0.358946, and the adjusted R-square was 0.307662. The Akaike’s information 

criterion (AICc) was 1412.247528. The joint F-statistic was 0.000000, which was a signifi-

cant result. The Jarque–Bera statistic [g] was 1.511785, which indicates that the independ-

ent variables have an influence on the dependent variable. The joint Wald statistic [e] was 

significant and computed as 0.000000. The Keonker (BP) statistics, which determine if the 

independent variables have a consistent relationship to the dependent variable, was 

0.009854, also significant, but the relationship is not consistent. 

is random error. In Figure 11, red patches represent areas with higher
COVID-19 cases than the model predicted, and the blue shaded census tracts illustrate
areas with lower COVID-19 cases than the model expected. In this model, the multiple R
square was 0.358946, and the adjusted R-square was 0.307662. The Akaike’s information
criterion (AICc) was 1412.247528. The joint F-statistic was 0.000000, which was a significant
result. The Jarque–Bera statistic [g] was 1.511785, which indicates that the independent
variables have an influence on the dependent variable. The joint Wald statistic [e] was
significant and computed as 0.000000. The Keonker (BP) statistics, which determine if
the independent variables have a consistent relationship to the dependent variable, was
0.009854, also significant, but the relationship is not consistent.

In Figure 12, red patches represent areas with higher COVID-19 deaths than the model
predicted, and the blue shaded illustrates areas with lower COVID-19 deaths than the
model predicted. In this model, the multiple R square was 0.159614, and the adjusted
R-square was 0.092383. The Akaike’s information criterion (AICc) was 685.908921. Joint
F-statistic was 0.021994, which was a significant result. The joint Wald statistic [e] was
0.000000 as a significant result. The Keonker (BP) statistics determine if the independent
variables have a consistent relationship to the dependent variable, and it was 0.388493,
which was not significant. The Jarque–Bera statistic [g] was 0.000000, which is significant
and means the model is biased and needs further investigation.
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Figure 12. OLS on COVID-19 deaths in Guilford County.

Based on the independent variables’ coefficient of the OLS, variables with higher
coefficients than 7.5 will be applied in the GWR. These variables are high cholesterol, high
blood pressure, and healthy food outlets. In Figures 13 and 14 GWRs were applied on
COVID-19 cases and deaths to visualize the correlation with independent variables by
applying this equation:

y = B0 + B1x + E (4)
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In this equation above, the coefficient B1 illustrates the increase in y because of
one -unit increase in x. This map shows less tract with high correlation and more with
medium correlation. In Figure 13, the map presents the correlation between the dependent
and independent variables. Red patches, which represent high correlation, are in east of
Gilford County in the tracts 012803, 015300, and 017200. In Figure 14, the map presents
the correlation of COVID-19 deaths with variables (high cholesterol, high blood pressure,
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and health food outlets) and presents correlation degrees in color shades. The highest
correlation of COVID-19 deaths with the variables is presented on the tracts 015703, 012604,
and 013700.

4.2. ML Regression Results and Discussion

This study adopted machine learning techniques to investigate the correlation by
applying both linear and nonlinear regression models. Linear, multi-output linear, random
forest, and K-nearest neighborhood regression models were applied to investigate the data.
All models investigate all variables at the same time, but linear regression investigates
single output at a time. These four models were applied to evaluate their results. These
models are predicting the values of the dependent variables, such as COVID-19 cases and
COVID-19 deaths, with the correlation of independent variables of med-income, poverty
rate, population density, number of healthy food outlets, and number of un-healthy food
outlets. The dataset was divided into 80% training and 20% testing for multioutput model
development. The training set contained eighty-seven (87) observations and twenty-two
(22) observations in the testing set, and two different metrics: root mean square (RMS) and
R-squared (R2), which were used to evaluate the models developed. The implementation
of multioutput and multiple linear regression models were done with the Sklearn package
in Python and MATLAB 2020a, respectively. The default parameters for the multioutput
regression models were used in Table 2.

Table 2. Regression models’ parameters.

Model Parameters

Linear Regression Model copy_X = True,fit_intercept = True,n_jobs = None,normalize = False.

Random Forest Regression Model

bootstrap = True,ccp_alpha = 0.0,critrion = ‘mse’,max_depth =
None,max_features = ‘ato’,max_leaf_nodes = None,max_saples =

None,min_impurity_decrease = 0.0,min_imprity_split =
None,min_samples_leaf = 1,min_samples_split = 2,min_weight_fraction_leaf =

0.0,n_estimtors = 100,n_jobs = None,oob_score = False,random_state =
None,verbose = 0, warm_start = False)

K-Nearest Neighbor Regression Model lgorithm’:’auto’,’leaf_size’:30,’metric’:’minkowski’,’metric_params’: None,
‘n_jobs’: None,’n_neighbors’: 5, ‘p’: 2, ‘weights’: ‘uniform’

The equation below is derived in the linear regression model. In the equation, coeffi-
cients of variables were computed based on the linear regression model.

Y = 0.53 + 0.194 × 1 − 0.251X2 + 0.887X3 − 0.915X4 − 0.0996X5 + 0.315X6 − 0.026X7 (5)

The degree of linear association between all variables is computed by the Pearson
correlation coefficient (R2)-scores in the correlation matrix heatmap format in Figure 15. The
results could be read in three directions: R values close to 1 show a positive relationship,
and R values close to −1 illustrate negative relationships, but results close to zero have no
linear relationships. It can be observed in the heatmap (Figure 13) that there is a positive
correlation between obesity and poverty (R2 = 0.74). There is a high positive correlation
between high cholesterol and high blood pressure (R2 = 0.82). Furthermore, there is a
positive correlation between obesity and high blood pressure (R2 = 0.77). Moreover, there is
a strong negative correlation between obesity and med-income (R2 = −0.7), and a negative
correlation between income and poverty (R2 = −0.75). There is no correlation between
COVID-19 cases and health issues (obesity, high cholesterol, and high blood pressure).
Moreover, there is no correlation between unhealthy food outlets, healthy food outlets, and
health issues.
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Figure 15. Correlation matrix with heatmap.

From the tables’ results below (Tables 3 and 4), the authors applied and compared the
regression models results. The COVID-19 cases as a dependent variable have the highest
value of R2-score as 45% by the application of linear regression for multioutput regression
model, and COVID-19 deaths had a higher value of 60% by the application of support vector
regression model. The high correlation R2-scores of COVID-19 deaths and variables were
also presented by the GIS spatial autocorrelation as clustered distribution in Figure 7. These
regression models’ results indicate that independent variables (med-income, poverty rate,
population density, number of healthy food outlets, and number of unhealthy food outlets)
have more influence on the dependent variable COVID-19 deaths than COVID cases.

Table 3. R-square value of regression models.

Root Mean Square Error

Models CVID-19 Cases COVID-19 Deaths

Linear regression for multioutput Regression 0.146 0.141

K-nearest neighbors for multioutput regression 0.208 0.147

Random forest for multioutput regression 0.186 0.175

Support Vector Regression 0.168 0.127
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Table 4. Root square error (RMSE) values of regression models.

Correlation Coefficient

Models CVID-19 Cases COVID-19 Deaths

Linear regression for multioutput regression 0.446 0.508

K-nearest neighbors for multioutput regression −0.085 0.466

Random forest for multioutput regression 0.137 0.239

Support Vector Regression 0.290 0.601

The application of the multiple linear regression models considered the two dependent
variables (COVID-19 cases and deaths). The support vector regression model was applied
to examine all the data and errors within the threshold. In Figure 16, the predicted trends
for dependent variable COVID-19 deaths are presented against the original trend values.
Both trends, match the peaks and troughs well overall, showing similar behavior. However,
the residual errors seem to vary both on the positive and negative side of the trend. The
test data are kept out of the sample. The significance of Figure 11 is that the prediction
trend is matching the peaks and troughs present in the original trend of number of COVID
cases well (ground-truth). There are still many residual gaps between the original and
predicted values, but the trend was predicted well overall. This figure coincides well with
the R2-coefficient of 0.60 for number of COVID-19 deaths.
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5. Conclusions

This study implemented GIS and machine learning techniques on COVID-19 data in
109 census tracts in Guilford County to investigate any correlation between the spread of
the pandemic and social–economic, food access, and health issues variables. The GIS and
machine learning methods were applied to examine the datasets and compare their results
regarding if they are equivalent or different.

The GIS results illustrate the distribution of the variables where COVID-19 cases have
a cluster in Guilford County, while COVID-19 deaths have no cluster. The cases cluster
was biased and indicated more investigation of independent variables. COVID-19 deaths
presented a p-value at 0.00000, which indicates a 99% confidence that independent dose
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had no influence on the distribution. Moreover, the COVID-19 infection cases p-value result
was 0.516475, and that indicates less than 90% confidence that independent variables do
not influence the distribution. The OLS results did not a indicate high influence of the
independent variables on the dependents. The R-square of the influence of the independent
variables on COVID-19 cases is only 35%. It also indicated only 9% on COVID-19 deaths.
These percentages are low, and we suggest more investigation and including more variables.

The application of four spatial regression models indicates some influence on the
independent variables. The heat map presented a weak correlation between the dependent
and independent variables. There was a positive but not strong correlation between the
dependent variables COVID-19 cases and deaths, which means deaths increase where
cases are high. However, there were several strong negative correlations between income
and two variables (poverty and obesity), but there was a positive correlation between
poverty and obesity. More correlations between the independent variables are clear in
a positive correlation of high blood pressure with obesity and high cholesterol. These
independent variables do not show direct impacts on the dependent variables, but they
affect people’s health, which could make them control variables. For example, poverty led
to unhealthy diet, which affects people’s immune system, and the presence of two health
issues in a community makes them more vulnerable to health issues and risks. The highest
R-square for COVID-19 cases was 60% by support vector regression and for COVID-19
death; the highest R-square was 44% by the linear regression for multioutput regression.
These numbers are not high for correlation, which indicates an unclear influence of the
independent variables on the dependent variables.

The machine learning results take the same direction as the GIS results, correlation
between variables or independent variables. The study illustrates the need for future
investigation on the spread of COVID-19 infections and deaths in Guilford County. Further
study may include the distribution of more health issues, such as autoimmune diseases, to
investigate more correlations to COVID-19 infections. Further analysis would require more
datasets or a larger geographical scale.

In future, this study would examine several variables exclusively independent in the
regression model and investigate the feature engineering in machine learning to increase
the R2-score. Other independent variables would be related to the distribution of health
centers, religion, and public transportation stops and routes. These data could be obtained
from the transportation department and state health department. This study has a data
limitation. The study area has 118 census tracts but only 107 census tracts had all the
data variables recorded. That affected the results because more data would show more
correlation and distribution analysis. More data would provide a clearer picture of the
analysis to examine the issues on a state level, which includes many counties, and to
analyze patterns and compare the counties.
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