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Abstract

Epigenetics studies genomic modifications carrying information independent of DNA sequence 

heritable through cell division. In 1940, Waddington coined the term “epigenetic landscape” as a 

metaphor for pluripotency and differentiation, but methylation landscapes have not yet been 

rigorously computed. By using principles of statistical physics and information theory, we derive 

epigenetic energy landscapes from whole-genome bisulfite sequencing data that allow us to 

quantify methylation stochasticity genome-wide using Shannon’s entropy and associate entropy 

with chromatin structure. Moreover, we consider the Jensen-Shannon distance between sample-

specific energy landscapes as a measure of epigenetic dissimilarity and demonstrate its 

effectiveness for discerning epigenetic differences. By viewing methylation maintenance as a 

communications system, we introduce methylation channels and show that higher-order chromatin 

organization can be predicted from their informational properties. Our results provide a 

fundamental understanding of the information-theoretic nature of the epigenome that leads to a 

powerful approach for studying its role in disease and aging.
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INTRODUCTION

In his seminal work, Waddington employed deterministic differential equations to define 

epigenetics as the emergence of a phenotype that can be perturbed by the environment but 

whose endpoints are predetermined by genes1. However, growing appreciation for the role 

of epigenetic stochasticity in development and disease2–5 has led to simple probabilistic 

models of epigenetic landscapes that account for randomness in DNA methylation by adding 

a “noise” term to deterministic models6,7. Some authors have also characterized methylation 

stochasticity using the notion of epipolymorphism4,5, a form of non-additive Tsallis entropy 

whose measurement is limited to a small portion of the genome and can underestimate 

heterogeneity in WGBS data (Supplementary Note).4,5

Here we take a foundational approach to understanding the nature of epigenetic information 

using principles of statistical physics and information theory that organically incorporate 

stochasticity into the mathematical framework, and apply this approach on diverse whole-

genome bisulfite sequencing (WGBS) datasets. In contrast to metaphorical “Waddingtonian” 

landscapes, we present a rigorous derivation of epigenetic potential energy landscapes that 

encapsulate the higher-order statistical properties of methylation, fully capturing behavior 

that is opaque to customary mean-based summaries.

We quantify methylation stochasticity using Shannon’s entropy and provide a powerful 

information-theoretic methodology for distinguishing epigenomes using the Jensen-Shannon 

distance between sample-specific energy landscapes associated with stem cells, tissue 

lineages and cancer. Moreover, we establish a relationship between entropy and 

topologically associating domains that allows prediction of their boundaries from WGBS 

samples. We also introduce methylation channels as models of DNA methylation 

maintenance and show that their informational properties can effectively predict high-order 

chromatin organization using machine learning. Lastly, we introduce a sensitivity index that 

quantifies the rate by which environmental perturbations influence methylation stochasticity 

along the genome.

This merger of epigenetic biology and statistical physics yields many fundamental insights 

into the relationship between information-theoretic properties of the epigenome and nuclear 

organization in normal development and disease. Most importantly, it provides novel 

methods for evaluating informational properties of individual samples and their chromatin 

structure and for quantifying differences between tissue lineages, aging, and cancer at high 

resolution genome-wide.

RESULTS

Stochastic epigenetic variation and energy landscapes

Currently available methods for methylation analysis are predominantly limited to modeling 

stochastic variation at individual CpG sites while ignoring statistical dependence among 

neighboring sites8. However, fully characterizing the stochastic and polymorphic nature of 

epigenetic information requires knowledge of the probability distribution of methylation 

patterns (epialleles) formed by groups of CpG sites4,5. Presently, this distribution is 
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estimated empirically requiring much higher coverage than what is routinely available in 

WGBS data (Fig. 1 and Supplementary Note).

To remedy this problem and better understand the relationship between epigenetic 

stochasticity and phenotypic variability, we employed an approach based on statistical 

physics and information theory. We represented methylation within a genomic region 

containing N CpG sites by a random vector X = [X1, X2,…, XN], where Xn takes value 1 or 

0 depending on whether the n-th CpG site is methylated or unmethylated. We then modeled 

X using the Boltzmann-Gibbs distribution

(1)

where U(x) is the energy of the methylation pattern x and

(2)

is the partition function.

The function V(x) = U(x) − U(x*), where x* is a methylation pattern with the least energy 

(ground state), defines a potential energy landscape whose elevation (potential) provides a 

measure of the improbability of finding the methylation pattern x relative to the most likely 

pattern x*. This landscape possesses one or more “potential wells” corresponding to local 

minima of U(x) with each well associated with an attractor representing the most probable 

methylation pattern to be found within a genomic region among all patterns associated with 

the well (Fig. 2a). Demethylation and de novo methylation allow methylation patterns to be 

modified with higher probability for changes that move patterns towards lower potential 

energy. At steady-state, a genomic region can be associated with a “cloud” of methylation 

patterns that fluctuate around an attractor, resulting in pattern variability controlled by the 

width of the potential well. Notably, a potential energy landscape could be associated with 

two distinct attractors producing “bistable” behavior (Fig. 2a). DNA methylation is subject 

to this type of behavior, which was found to be associated with gene imprinting 

(Supplementary Note).

Using the maximum-entropy principle9, we determined an energy function that is consistent 

with methylation means and “nearest-neighbor” correlations, given by

(3)

where α, β, γ are parameters characteristic to the genomic region, ρn is the CpG density, and 

dn is the distance between CpG sites n and n − 1, leading to the 1D Ising model of statistical 

physics that takes into account non-cooperative and cooperative factors in methylation 

(Supplementary Note). This choice encapsulates the notion that methylation depends on two 
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distinct factors: the CpG architecture of the genome, quantified by the CpG densities and 

distances, and the local biochemical environment provided by the methylation machinery, 

quantified by parameters α, β, γ. Moreover, it allows computation of potential energy 

landscapes, joint probabilities of methylation patterns, marginal probabilities at individual 

CpG sites, and a number of novel measures for methylation analysis (Supplementary Note). 

Simulated data provided clear evidence that, in contrast to empirically estimating epiallelic 

probabilities, methylation pattern analysis using the Ising model can consistently produce 

accurate results using relatively low coverage data (Fig. 1 and Supplementary Note).

Using a maximum-likelihood approach (Online Methods), we estimated methylation 

potential energy landscapes from WGBS data corresponding to 35 diverse samples that 

allowed for detailed local profiling throughout the methylome (Supplementary Table 1). This 

analysis, for example, asserts that most methylation patterns associated with the CpG island 

(CGI) of WNT1 in normal colon exhibit high potential values (Fig. 2b), implying little 

variability from the pattern with the lowest potential (attractor), which coincides with the 

fully unmethylated pattern in this case. The accompanying violin plot shows that any 

deviation from the attractor towards a pattern of higher potential will rapidly be “funneled” 

back towards the attractor, leading to low methylation stochasticity. However, most 

methylation patterns in colon cancer manifest much lower potential values than in normal 

colon (Fig. 2b), implying a significant gain in pattern variability and increased methylation 

stochasticity in cancer. Similarly, most methylation patterns associated with the CGI of 

EPHA4, a key developmental gene, had low potential values in stem cells (Fig. 2b), 

implying significant pattern variability from the attractor, which also coincides with the fully 

unmethylated state. In contrast, EPHA4 shows higher potential values in the brain (Fig. 2b), 

yielding lower pattern variability and lower methylation stochasticity than in stem cells.

Epigenetic entropy comprehensively quantifies methylation stochasticity

To facilitate genome-wide analysis of methylation information, we partitioned the genome 

into non-overlapping genomic units and performed methylation analysis at a resolution of 

one genomic unit. Consistent with the length of DNA within a nucleosome (~146 bp), we 

chose genomic units of 150 bp each, which strikes a balance between leveraging as much 

information as possible within a genomic unit and performing high-resolution methylation 

analysis. We then quantified methylation within each genomic unit using the methylation 

level (average methylation), whose probability distribution is calculated from the Ising 

model, and used its mean and normalized Shannon entropy to measure methylation 

stochasticity (Online Methods).

In agreement with the literature10, the mean methylation level was globally higher in stem 

cells and brain tissues than in normal colon, lung and four livers, and the same was true for 

CD4+ lymphocytes and skin keratinocytes, while it was reduced in cancer and was 

progressively lost in cell culture (Fig. 3a,b). We also observed low normalized methylation 

entropy in stem and brain cells and CD4+ lymphocytes and skin keratinocytes associated 

with young subjects, and a global increase of entropy in most cancers but not in two liver 

cancer samples with profound hypomethylation accompanied by a less entropic methylation 

state (Fig. 3a). While differential entropy changes in cancer were often associated with 
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changes in mean level (Supplementary Fig. 1a), this was not always true (Supplementary 

Fig. 1b,c), proving that changes in stochasticity are not necessarily related to changes in 

mean methylation, which demands that both be assessed when interrogating biological 

samples (Supplementary Fig. 2). Furthermore, genome-wide mean level and entropy 

distributions over selected genomic features demonstrate lower and more variable values 

within CGIs and transcription start sites (TSSs) compared to other genomic features, such as 

shores, exons, introns, etc. (Supplementary Fig. 3a,b).

Consistent with a previous analysis comparing newborns to centenarians11, global 

hypomethylation was found in all three CD4 samples from older people compared to three 

samples from younger individuals, and the same was true in skin keratinocytes (Fig. 3a,c). 

This was accompanied by gain in methylation entropy, with changes more pronounced in 

entropy than mean (Fig. 3a,c). Although passage number in fibroblasts was also associated 

with global hypomethylation, this was more pronounced than in CD4 samples, whereas 

entropy loss was globally observed at later passages (Fig. 3a), in stark contrast to global gain 

in entropy observed in old CD4 samples. We also assessed changes in methylation 

stochasticity while accounting for biological, statistical, and technical variability, which 

confirmed that aged CD4 cells often exhibit changes in entropy (Supplementary Note). 

Using the Jensen-Shannon informational distance (Online Methods), we investigated 

differences between young and old in the CD4 samples, as well as dissimilarities with 

passage in cultured fibroblasts. Our results (Supplementary Note) suggest that increasing 

fibroblast culture passage inaccurately models methylation stochasticity in aging, which is 

associated with global gain in informational dissimilarity, driven by increased entropy.

Informational distances delineate lineages and identify developmentally critical genes

Previous studies indicated that epigenetic discordance within gene regulatory elements, such 

as enhancers, might fully account for observed epigenetic dissimilarities between two 

samples12,13. However, by computing genome-wide distributions of Jensen-Shannon 

distances within several genomic features, we did not find consistent containment of 

epigenetic dissimilarity within a particular feature (Supplementary Fig. 4). Therefore, to 

understand the relationship between epigenetic information and phenotypic variation, we 

used the Jensen-Shannon informational distance to precisely quantify epigenetic discordance 

between pairs of samples (Online Methods). We then asked if we could distinguish colon, 

lung, and liver from each other and from matched cancers, as well as from stem, brain, and 

CD4+ lymphocytes, for computational feasibility limiting to 17 representative samples and 

visualizing using multidimensional scaling (Online Methods). We found the samples falling 

into clear categories based on developmental germ layers, equidistant from stem cells, and 

with cancers well separated from normal (Fig. 4).

Given the interesting relationship between the stem cell sample and the three germ layers, 

we examined genes that had differences in mean methylation level in stem cells compared to 

differentiated tissues and genes that possessed epigenetic discordance quantified by the 

Jensen-Shannon distance. We ranked genes based on absolute differences in mean 

methylation level within their promoters, as well as using the Jensen-Shannon distance 

(Supplementary Table 2 and Online Methods). Some genes known to be involved in 
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development and differentiation (e.g., FOXD3, SALL1, SOX2, and ZIC1 when comparing 

stem to lung) had relatively small changes in mean methylation yet large Jensen-Shannon 

distances, affirming that the probability distributions of methylation levels within their 

promoters were different, despite little differences in mean. We further explored whether 

non-mean related methylation differences could identify genes between sample groups that 

are occult to existing mean-based analyses by employing a relative ranking scheme that 

assigned higher score to genes with larger Jensen-Shannon distance but smaller absolute 

change in mean methylation level (Online Methods). In the stem cell to brain comparison, 

for example, many key genes (IGF2BP1, FOXD3, NKX6-2, SALL1, EPHA4, ASCL2, and 

OTX1) topped the relative ranking list (Supplementary Table 2a), with GO enrichment 

analysis14 identifying key process categories associated with stem cell maintenance and 

brain cell development (Supplementary Table 3a). Moreover, 30 significant GO process 

categories using the relative scheme showed 10-fold or greater enrichment, compared to 5 

GO categories using the mean-based scheme. We obtained similar results when comparing 

stem cells to lung, with the relative scheme identifying key developmental processes and 

genes in both mesodermal and stem cell categories (Supplementary Tables 2b, 3b). 

Comparing stem cells to CD4+ lymphocytes uncovered enrichment for immune-related 

functions, driven by differential mean level, and many developmental and morphogenesis 

process categories, predominantly driven by the Jensen-Shannon distance (Supplementary 

Tables 2c, 3c).

When comparing differentiated tissues, mean-based GO analysis resulted in highly enriched 

process categories, mostly related to differentiated function, such as cellular regulation and 

signaling. However, the relative scheme resulted in highly enriched categories largely related 

to development and differentiation (Supplementary Tables 2d–f, 3d–f), likely due to relative 

rankings being low for genes that are only methylated in one cell type. When comparing 

lung normal to cancer, the relative scheme produced a larger number of highly enriched 

process categories than mean-based analysis, and these were again related to developmental 

morphogenesis categories (Supplementary Tables 2g, 3g). There were 40 significant GO 

process categories with 10-fold or greater enrichment when using the relative scheme, 

compared to 7 GO categories when using the mean-based scheme. These results show that 

major changes may occur in the probability distributions of methylation levels associated 

with developmentally critical genes and that the shape of these distributions, rather than their 

means per se, may be related to pluripotency and fate lineage determination in development 

and cancer.

Lastly, by assessing a relationship between transcription factor binding and Jensen-Shannon 

distances in development, we found a strong association between Jensen-Shannon distances 

and PRC2 binding within enhancer regions (Supplementary Note). This raises the intriguing 

possibility that the PRC2 complex not only influences the mean behavior of DNA 

methylation, as has been established previously15, but most importantly it controls the 

stochastic behavior of methylation in a developmentally relevant and targeted manner.
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Entropy blocks predict TAD boundaries

Topologically associating domains (TADs) are highly conserved structural features of the 

genome across tissue types and species16–18. Loci within these domains tend to interact 

frequently with each other, with much less frequent interactions taking place between loci 

within adjacent domains. Although genome-wide detection of TAD boundaries is 

experimentally challenging, these boundaries can be reasonably predicted from histone mark 

ChIP-seq data (CTCF, H3k4me1) using a computational approach19. We therefore examined 

the possibility of locating TAD boundaries genome-wide using WGBS data.

In many of our samples, known TAD boundary annotations were visually proximal to 

boundaries of entropy blocks, large genomic regions of consistently low or high normalized 

entropy values (Fig. 5a, Supplementary Fig. 5, and Online Methods). We thus hypothesized 

that TAD boundaries may be located within genomic regions that separate successive 

entropy blocks. As a first test, we computed entropy blocks in the stem data and identified 

404 regions predictive of TAD boundaries (Online Methods). We then found that 5862 

annotated TAD boundaries in H1 stem cells16 were located within these predictive regions or 

were close in a statistically significant manner, and correctly identified 6% of the annotated 

TAD boundaries (362 out of 5862) using 90% of the computed predictive regions (Online 

Methods and Supplementary Note).

Since TADs are thought to be cell-type invariant16,18, we can predict the location of more 

TAD boundaries by combining information from entropy blocks derived from additional 

phenotypes (Fig. 5b). We therefore computed entropy blocks using WGBS data from 17 

different cell types, determined predictive regions for each cell type, and combined these 

regions to form a single list (6687 predictive regions) that encompasses information from all 

cell types (Online Methods). Moreover, we combined the TAD boundary annotations for H1 

stem cells with available annotations for IMR90 lung fibroblasts16 and obtained a total of 

10,276 “ground-truth” annotations. We then obtained results similar to the case of stem cells 

with TAD boundaries falling within identified predictive regions did so significantly more 

often than expected by chance. This resulted in 62% correct identification of the annotated 

TAD boundaries (6369 out of 10,276) derived from 95% of computed predictive regions 

(Online Methods and Supplementary Note), which can be further improved by including 

additional phenotypes.

We further support these predictions by pointing to the relatively small errors obtained when 

locating TAD boundaries at the centers of predictive regions in comparison to TAD sizes. 

This is demonstrated by estimating the probability density and the corresponding cumulative 

probability distribution of location errors and TAD sizes (Fig. 5c), and the fact that the 

median location error was an order of magnitude smaller than the median TAD size (92-kb 

vs. 760-kb). Together, these results provide strong statistical evidence of an underlying 

relationship between TADs and entropy blocks, according to which a TAD is associated with 

consistently low or high normalized entropy values, which can be used to computationally 

identify TAD boundaries accurately from WGBS data genome-wide.
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Methylation channels explain epigenetic memory maintenance

To investigate epigenetic memory maintenance from an information-theoretic perspective, 

we modeled this process using a methylation channel, which quantifies transitions of the 

binary methylation state at each CpG site of the genome using the local probabilities of 

demethylation and de novo methylation (Fig. 6a and Supplementary Note). This results in a 

model for methylation maintenance known in information theory as the asymmetric-noise 

binary communication channel20.

A methylation channel is limited to transmitting a maximum amount of information, 

quantified by its information capacity20. Moreover, appreciable consumption of free energy, 

which must be dissipated to the surroundings in the form of heat, is required to achieve high 

transmission reliability essential for normal cellular function. We assessed methylation 

reliability using the notion of relative dissipated energy, identified approximate relationships 

between channel capacity, relative dissipated energy, and methylation entropy 

(Supplementary Note), and predicted that highly reliable methylation maintenance is 

achieved through high capacity methylation channels that produce less entropic methylation 

at the expense of higher energy consumption (Fig. 6b). This establishes the influence of 

methylation channels on epigenetic memory by providing a fundamental link between their 

information-theoretic properties and the nature of epigenetic memory maintenance.

We computed capacities, relative dissipated energies, and entropies genome-wide in 

individual samples and comparative studies (Fig. 6c and Supplementary Fig. 3c,d). We 

observed global loss of capacity and relative dissipated energy in colon and lung cancer, 

accompanied by global gain in CpG entropy (Fig. 6c,d), although this was not necessarily 

true in liver cancer (Fig. 6c). Moreover, brain cells, CD4+ lymphocytes, and skin 

keratinocytes exhibited high capacities and relative dissipated energies, with loss in older 

individuals, whereas stem cells had a narrow range of relatively high capacities and relative 

dissipated energies (Fig. 6c,e). By ordering genes in terms of normalized methylation 

entropy within their promoters in stem cells (Supplementary Table 5), we discovered many 

genes to be characterized by high information capacity and relative dissipated energy, such 

as FOXO3, TGIF1, SATB2, IGF2BP1, SMAD7, ZIC2, SALL1, and SOX2, which are 

involved in stem cell regulation, pluripotency, and differentiation21–28. We also found that 

the methylation state within CGIs and TSSs is maintained by methylation channels whose 

capacities are overall higher than within shores, shelves, open seas, exons, introns and 

intergenic regions, and this is accomplished by higher energy consumption (Supplementary 

Fig. 3c,d). These results highlight an information-theoretic view of epigenetic organization 

that explains methylation stochasticity in a way that is consistent with the need of cells to 

manage limited energy resources in a strategic manner. According to this model, reliable 

transmission of methylation information within critical regions of the genome is facilitated 

by high capacity methylation channels that result in low methylation stochasticity at the cost 

of high energy consumption. However, methylation transmission within other regions of the 

genome is transmitted by low capacity methylation channels that consume less energy but 

produce higher levels of methylation stochasticity.
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Information-theoretic prediction of chromatin changes in development and cancer

Recent work in chromatin organization has found the existence of cell-type specific 

compartments A and B, known to be associated with gene-rich transcriptionally active open 

chromatin and gene-poor transcriptionally inactive closed chromatin, respectively16,18,29. 

Although identifying compartments A/B is experimentally challenging29, this can 

sometimes be achieved computationally30. We therefore sought to identify compartments 

A/B in individual WGBS samples from local informational properties of the methylome.

By comparing Hi-C data from EBV cells to our methylation channels, we observed 

enrichment of low information capacity, low relative dissipated energy, and high normalized 

methylation entropy within compartment B, and the opposite was globally true for 

compartment A (Fig. 7a,b). This suggested the possibility of predicting compartments A/B 

from informational properties of methylation maintenance. We therefore employed a random 

forest regression model to learn the informational structure of compartments A/B from 

available “ground-truth” data (Online Methods). We achieved reliable prediction, with cross-

validated average correlation of 0.82 and average agreement of 91% between predicted and 

true A/B signals using a calling margin of 0.2 (Supplementary Fig. 6a and Online Methods), 

suggesting that a small number of local information-theoretic properties of methylation 

maintenance can be highly predictive of large-scale chromatin organization.

Consistent with the fact that compartments A/B are cell-type specific, and in agreement with 

the finding of extensive A/B compartment reorganization during early stages of 

development31, we observed many differences in predicted compartments between tissues 

and in carcinogenesis (Supplementary Fig. 6b–f). We also found from methylation data that 

our predicted compartment transitions corresponded often to TAD boundaries identified 

from Hi-C data.31 (Supplementary Fig. 6b). We also quantified observed differences in 

compartments A/B by computing percentages of switching in all sample pairs 

(Supplementary Table 5 and Online Methods) and clustered the samples by using the net 

percentage of A/B switching as a dissimilarity measure (Fig. 7c and Online Methods). The 

clusters had 31/34 samples grouped in a biologically meaningful manner, providing evidence 

that A/B switching, as determined by methylation information, can accurately quantify 

phenotypic differences in the samples. Notably, stem cell differentiation is associated with 

high levels of chromatin reorganization (Fig. 7c), whereas differentiated lineages and cancer 

are clustered together but are distinguished from each other. Moreover, fibroblasts form one 

cluster, whereas young CD4 samples form their own, and the same is true for skin.

Normal samples exhibit strikingly different chromatin organization from matched cancer 

samples (Fig. 7c). Previous studies found large hypomethylated blocks in cancer that are 

remarkably consistent across tumor types32. These blocks correspond closely to large-scale 

regions of chromatin organization, such as lamin-associated domains (LADs) and large 

organized chromatin K9-modifications (LOCKs)3,33. Consistent with our observations on 

the information-theoretic properties of compartment B and of carcinogenesis (Fig. 6c and 

Fig. 7a,b), we asked whether hypomethylated blocks are associated mainly with 

compartment B (Online Methods). We found (Fig. 7d) significant overlap with compartment 

B in normal lung, and the same was true for LADs and LOCKs (Supplementary Table 6). 

Compartment B in normal tissue exhibited regions of large Jensen-Shannon distances (Fig. 

Jenkinson et al. Page 9

Nat Genet. Author manuscript; available in PMC 2017 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7d), suggesting that considerable epigenetic changes may occur within this compartment 

during carcinogenesis, which is further supported by the genome-wide distributions of the 

Jensen-Shannon distance values between normal/cancer within compartments A/B in normal 

(Supplementary Fig. 7). The observed association of compartment B in normal tissue with 

hypomethylated blocks and large Jensen-Shannon distances indicates that compartment B 

demarcates genomic regions with methylation information that is more likely to be degraded 

in cancer.

Entropic sensitivity quantifies epigenetic responsiveness to environmental variability

Epigenetic changes integrate environmental signals with genetic variation to modulate 

phenotype. We therefore sought to investigate the influence of environmental exposure on 

methylation stochasticity. We viewed environmental variability as a process that directly 

influences the parameters of the methylation potential energy landscape and employed a 

probabilistic approach that allowed us to compute from WGBS data a sensitivity index that 

quantifies the rate by which environmental perturbations influence methylation entropy 

along the genome (Fig. 8, Supplementary Figs. 3e and 8, and Supplementary Note). For 

example, we observed entropic sensitivity within a CGI associated with WNT1 in normal 

colon, with a portion gaining entropy and losing sensitivity in the matched cancer sample 

(Fig. 8a).

Globally, we observed differences in entropic sensitivity among tissues (Fig. 8b, 

Supplementary Fig. 8), with stem and brain having higher levels of entropic sensitivity than 

the rest of the samples. Since the brain cells are significantly methylated (Fig. 3a), high 

levels of entropic sensitivity would predict that brain can exhibit high rates of demethylation 

in response to environmental stimuli, consistent with recent data showing that the DNA 

demethylase Tet3 acts as a synaptic activity sensor that epigenetically regulates neural 

plasticity through active demethylation34. Colon and lung cancer exhibited global loss of 

entropic sensitivity (Fig. 8b, Supplementary Fig. 8a), whereas gain was noted in liver cancer. 

Moreover, CD4+ lymphocytes and skin keratinocytes exhibited global loss of entropic 

sensitivity in older individuals (Fig. 8b, Supplementary Fig. 8b), while cultured fibroblasts 

had lower sensitivity. Notably, we observed higher and more variable entropic sensitivity 

values within CGIs and at TSSs compared to other genomic features, such as shores, exons, 

and introns (Supplementary Fig. 3e). However, some unmethylated CGIs exhibited low 

entropic sensitivity, whereas changes in entropic sensitivity within CGIs were observed 

between normal and cancer, as well as in older individuals (Supplementary Fig. 8c–h). 

Notably, differences in entropic sensitivity were not simply due to entropy itself, as many 

regions of low entropy had small sensitivity values, while other such regions displayed high 

values (Supplementary Fig. 8c–e,g). Lastly, we ordered genes in terms of entropic sensitivity 

within their promoters (Online Methods) and found many key developmental regulators or 

environmental sensors to be associated with high entropic sensitivity in stem and colon 

(Supplementary Table 7).

Entropic sensitivity within compartment A was higher than in compartment B in all samples 

(Fig. 8c), consistent with the notion that the transcriptionally active compartment A should 

be more responsive to stimuli. Moreover, observed differences between normal and cancer 
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were largely confined to compartment B (Fig. 8c). Substantial loss of entropic sensitivity 

was observed in compartment B in older CD4+ lymphocytes and skin keratinocytes, but not 

in compartment A. In contrast, cell culture gained sensitivity within compartment B (Fig. 

8c).

To further investigate entropic sensitivity changes between tissues, we ranked genes 

according to differential entropic sensitivity within their promoters between colon normal 

and cancer (Supplementary Table 8 and Online Methods). Several highly ranked genes were 

found to code for LIM-domain proteins, including LIMD2, and are implicated in colon and 

other types of cancer, such as QKI, HOXA9, a canonical rearranged homeobox gene35 that 

is dysregulated in cancer, and FOXQ1, which is overexpressed and enhances tumorigenicity 

of colorectal cancer36. Together, these results indicate that environmental exposure may 

influence epigenetic stochasticity in cells with sensitivity that varies along the genome and 

between compartments in a cell-type specific manner. This presents the intriguing possibility 

that disease, environmental exposure, and aging are associated with substantial changes in 

entropic sensitivity, thus compromising integration of environmental cues regulating cell 

growth and function.

DISCUSSION

Our information-theoretic approach to epigenomics utilizing the Ising model of statistical 

physics has shown that a formal approach to methylation analysis can precisely extract and 

quantify the information content of experimental data to yield fundamental insights into 

epigenetic behavior. We provided a formal definition of potential energy landscapes, 

characterized intrinsic epigenetic stochasticity, rigorously derived epigenetic entropy and 

methylation channels, associated chromatin organization with informational properties of 

methylation, and estimated entropic sensitivity to environmental conditions. We also 

developed high-resolution computational tools for analyzing stochasticity in WGBS 

methylation data with low (10–20×) coverage, for quantifying epigenetic distances using 

normal/disease pairs that could be crucial in personalized medicine, and for predicting 3D 

chromatin structure from individual methylation samples in health and disease.

Shannon entropy varied markedly among tissues, across the genome and among features of 

the genome. Entropy was increased with aging in skin and blood, but not in cell culture, 

suggesting a link between increased entropy and epigenetic aging. Jensen-Shannon distances 

precisely quantified epigenetic discordances between individual samples, demonstrating that 

cancer is informationally distant from both stem cells and normal tissues, thus providing a 

potential clinical advantage of identifying specific differences between two samples. 

Importantly, epigenetic discordance was found to be associated with changes in entropy or 

large Jensen-Shannon distances and not necessarily with differences in mean methylation, 

and should be routinely used in epigenetic analysis.

We discovered that TAD boundaries are potential transition points between high and low 

entropy blocks and that information-theoretic properties of methylation channels could 

effectively predict chromatin organization in terms of compartments A/B. Computed 

compartments B demonstrated lower capacity, lower relative dissipated energy, higher 
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Shannon entropy, lower entropic sensitivity, and larger JSD values in carcinogenesis, as well 

as significant overlap with hypomethylated blocks, LOCKs and LADs. Moreover, A/B 

switching accurately quantified differences in phenotype, with marked switching in 

development and carcinogenesis. Finally, some cancers and aging were associated with 

global loss of entropic sensitivity that could be related to the autonomous nature of tumor 

cells and the well-known reduced physiological plasticity of aging.

This study demonstrates a relationship between chromatin structure, methylation channels, 

and entropic sensitivity that may maximize an organism’s efficiency in storing epigenetic 

information and help explain developmental plasticity. In this model, pluripotent stem cells 

require relatively high energy to maintain high capacity methylation channels within a 

portion of the genome, achieving reduced methylation stochasticity. Other regions 

characterized by increased entropic sensitivity are associated with highly deformable 

potential energy landscapes, which may correspond to differentiation branch points, as 

metaphorically suggested by Waddington. After differentiation, some large genomic 

domains, such as regions associated with pluripotency, need not maintain high channel 

capacities and energy consumption, with their sequestration providing increased energy 

efficiency with the cost of high epigenetic stochasticity and reduced responsiveness.

Furthering this model, our observation that compartment B exhibits reduced energy 

expenditure and channel capacity, thus failing to accurately maintain methylation 

information, explains the observed significant overlap of compartment B in normal tissue 

with hypomethylated blocks in cancer, implying that compartment B is more dysregulated 

than compartment A in carcinogenesis, in agreement with the observed higher JSD values. 

We therefore hypothesize that cancer cells gain a micro-evolutionary advantage upon 

reorganization of dysregulated B domains, thereby amplifying epigenetic stochasticity to 

increase plasticity and adaptability beyond that of the primary tissue.

The stochastic nature and properties of DNA methylation and their close relationship with 

chromatin structure raise the intriguing possibility that epigenetic information is carried by a 

population of cells as a whole, and that this information not only helps to achieve and 

maintain a differentiated state but also to mediate developmental plasticity throughout the 

life of an organism.

ONLINE METHODS

Samples for whole-genome bisulfite sequencing

We used previously published WGBS data corresponding to 10 samples, which included H1 

human embryonic stem cells37, normal and matched cancer cells from colon and liver12, 

keratinocytes from skin biopsies of sun protected sites from younger and older individuals38, 

and EBV-immortalized lymphoblasts39. We also generated WGBS data corresponding to 25 

samples that included normal and matched cancer cells from liver and lung, pre-frontal 

cortex, cultured HNF fibroblasts at 5 passage numbers, and sorted CD4+ T-cells from 

younger and older individuals, all with IRB approval. We obtained pre-frontal cortex 

samples from the University of Maryland Brain and Tissue Bank, which is a Brain and 

Tissue Repository of the NIH NeuroBioBank. Peripheral blood mononuclear cells (PBMCs) 
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were isolated from peripheral blood collected from healthy subjects and separated by using a 

Ficoll density gradient separation method (Sigma-Aldrich). CD4+ T-cells were subsequently 

isolated from PBMCs by positive selection with MACS magnetic bead technology 

(Miltenyi). Post-separation flow cytometry assessed the purity of CD4+ T-cells to be at 97%. 

Primary neonatal dermal fibroblasts (Mycoplasma-free) were acquired from Lonza and 

cultured in Gibco's DMEM supplemented with 15% FBS (Gemini BioProducts).

DNA isolation

We extracted genomic DNA from samples using the Masterpure DNA Purification Kit 

(Epicentre). High molecular weight of the extracted DNA was verified by running a 1% 

agarose gel and by assessing the 260/280 and 260/230 ratios of samples on Nanodrop. 

Concentration was quantified using Qubit 2.0 Fluorometer (Invitrogen).

Generation of WGBS libraries

For every sample, 1% unmethylated Lambda DNA (Promega, cat # D1521) was spiked-in to 

monitor bisulfite conversion efficiency. Genomic DNA was fragmented to an average size of 

350 bp using a Covaris S2 sonicator (Woburn, MA). Bisulfite sequencing libraries were 

constructed using the Illumina TruSeq DNA Library Preparation kit protocol (primers 

included) or NEBNext Ultra (NEBNext Multiplex Oligos for Illumina module, New 

England BioLabs, cat # E7535L) according to the manufacturer’s instructions. Both 

protocols use a Kapa HiFi Uracil+ PCR system (Kapa Biosystems, cat # KK2801).

For Illumina TruSeq DNA libraries, gel-based size selection was performed to enrich for 

fragments in the 300–400 bp range. For NEBNext libraries, size selection was performed 

using modified AMPure XP bead ratios of 0.4× and 0.2×, aiming also for an insert size of 

300–400 bp. After size-selection, the samples were bisulfite converted and purified using the 

EZ DNA Methylation Gold Kit (Zymo Research, cat # D5005). PCR-enriched products were 

cleaned up using 0.9× AMPure XP beads (Beckman Coulter, cat # A63881).

Final libraries were run on the 2100 Bioanalyzer (Agilent, Santa Clare, CA, USA) using the 

High-Sensitivity DNA assay for quality control purposes. Libraries were then quantified by 

qPCR using the Library Quantification Kit for Illumina sequencing platforms (cat # 

KK4824, KAPA Biosystems, Boston, USA), using 7900HT Real Time PCR System 

(Applied Biosystems) and sequenced on the Illumina HiSeq2000 (2×100 bp read length, v3 

chemistry according to the manufacturer’s protocol with 10× PhiX spike-in) and HiSeq2500 

(2×125 bp read length, v4 chemistry according to the manufacturer’s protocol with 10× 

PhiX spike-in).

Quality control and alignment

FASTQ files were processed using Trim Galore! v0.3.6 (Babraham Institute) to perform 

single-pass adapter- and quality-trimming of reads, as well as running FastQC v0.11.2 for 

general quality check of sequencing data. Reads were then aligned to the hg19/GRCh37 

genome using Bismark v0.12.3 and Bowtie2 v2.1.0. Separate mbias plots for read 1 and read 

2 were generated by running the Bismark methylation extractor using the “mbias_only” flag. 

These plots were used to determine how many bases to remove from the 5' end of reads. The 
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number was generally higher for read 2, which is known to have poorer quality. The amount 

of 5' trimming ranged from 4 bp to 25 bp, with most common values being around 10 bp. 

BAM files were subsequently processed with Samtools v0.1.19 for sorting, merging, 

duplicate removal and indexing.

FASTQ files associated with the EBV sample were processed using the same pipeline 

described for the in-house samples. BAM files associated with the normal colon and liver 

samples, obtained from Ziller et al12, could not be assessed using the Bismark methylation 

extractor due to incompatibility of the original alignment tool (MAQ) used on these samples. 

We therefore followed the advice of the authors and trimmed 4 bp from all reads for those 

files.

Genomic features and annotations

Files and tracks bear genomic coordinates for hg19. CGIs were obtained from Wu et al40. 

CGI shores were defined as sequences flanking 2-kb on either side of islands, shelves as 

sequences flanking 2-kb beyond the shores, and open seas as everything else. The R 

Bioconductor package “TxDb.Hsapiens.UCSC.hg19.knownGene” was used for defining 

3UTRs, 5UTRs, exons, introns and transcription start sites (TSSs). Promoter regions were 

defined as sequences flanking 2-kb on either side of TSSs. A curated list of enhancers was 

obtained from the VISTA enhancer browser41 by downloading all human (hg19) positive 

enhancers that had reproducible expression in at least three independent transgenic embryos. 

Hypomethylated blocks (colon and lung cancer) were obtained from Timp et al32, whereas 

H1 stem cell LOCKs and Human Pulmonary Fibroblast (HPF) LOCKs were obtained from 

Wen et al42. LAD tracks associated with Tig3 cells derived from embryonic lung fibroblasts 

were obtained from Guelen et al43. Gene bodies were obtained from the UCSC genome 

browser, H1 and IMR90 TAD boundaries were obtained from Bing Ren’s Lab at UCSD, and 

BED files for Hi-C data processed into compartments A and B were provided by Fortin and 

Hansen.

Estimation and display of potential energy landscapes

We partitioned the genome into consecutive non-overlapping regions of equal size and 

estimated the parameters θ of the potential energy landscape within a region by maximizing 

the average log-likelihood , with x1, x2, …, xM being M independent 

observations of the methylation state (i.e., WGBS sequencing reads) within the region. To 

take into account partially observed methylation states, we replaced P(xm | θ) by the joint 

probability distribution over only those sites at which methylation information is available, 

which we calculated by marginalizing P(xm | θ) over these sites. After extensive 

experimentation, we considered 3-kb estimation regions by striking a balance between 

estimation and computational performance. To avoid statistical overfitting, we did not model 

regions with less than 10 CpG sites. We also ignored regions with not enough data for which 

less than 2/3 of the CpG sites were observed or the average depth of coverage was less than 

2.5 observations per CpG site. We finally performed optimization using the multilevel 

coordinate search (MCS) algorithm44, which was chosen due to its superior performance 
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among the derivative-free global optimization algorithms we tested (such as simulated 

annealing).

To visualize a potential energy landscape as a 3D plot, we used the 2D version of the Gray 

code45. According to this method, we placed all possible 2N binary-valued methylation 

states within a genomic region with N CpG sites on a 2D plane in a manner so that states 

located adjacent to each other in the east/west and north/south directions differ in only one 

bit. We then obtained a 3D plot by assigning to each state its potential value.

Computation of probability distribution of methylation level

We calculated the probability distribution P(l) of the methylation level 

within a genomic unit with N CpG sites from the Ising probability distribution P(x) of the 

methylation patterns within the genomic unit using P(l) = Σx∈Q(Nl) P(x) where Q(Nl) is the 

set of all methylation patterns with exactly Nl methylated CpG sites. In the rarer case when 

N was too large to make direct summation tractable, we used the method of maximum 

entropy to approximate P(l)46 by estimating the first four non-central moments of the 

methylation level L using Monte Carlo.

Normalized methylation entropy

We quantified methylation stochasticity within a genomic unit with N CpG sites using the 

normalized methylation entropy h = H/log2(N + 1), where H = − Σl P(l)log2P(l) is the 

informational (Shannon) entropy20 of the methylation level. The normalized methylation 

entropy ranges between 0 and 1, taking its maximum value when all methylation levels 

within a genomic unit are equally likely (fully disordered sate) regardless of the number of 

CpG sites, and achieving its minimum value only when a single methylation level is 

observed (perfectly ordered state).

Quantifying differential behavior in methylation level

To quantify differences in the probability distributions of the methylation level within a 

genomic unit between two samples, we employed the Jensen-Shannon distance47

where P1 and P2 are the probability distributions of the methylation level within the genomic 

unit in the first and second samples, Q = (P1 + P2)/2 is the average of the two probability 

distributions, and

is the relative entropy or Kullback-Leibler divergence20. The Jensen-Shannon distance 

simultaneously encapsulates any difference in the distribution (including mean methylation 

and entropy) by measuring dissimilarities between probability distributions of methylation 
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level within a genomic unit across two samples. It is a normalized distance metric, taking 

values between 0 and 1, which equals 0 only when the two probability distributions P1 and 

P2 are identical and reaches its maximum value of 1 when the supports of the two 

distributions do not intersect each other.

Epigenetic distances, multidimensional scaling, and gene ranking

We quantified the epigenetic discordance between two samples by calculating a dissimilarity 

value defined as the average of all Jensen-Shannon distance values computed genome-wide. 

To visualize epigenetic similarities or dissimilarities between samples, we computed the 

epigenetic distances between all pairs of samples, formed the corresponding dissimilarity 

matrix, and employed a 2D representation, using multidimensional scaling based on 

Kruskal’s non-metric method, to find a 2D configuration of points whose inter-point 

distances approximately correspond to the epigenetic dissimilarities among the samples.

To rank genes based on the absolute difference in mean methylation level within their 

promoters, we centered a 4-kb window at the transcription start site of each gene in the 

genome, computed the absolute difference in mean methylation level within each genomic 

unit that overlaps this window, and scored the gene by averaging these values. We used the 

same method to rank genes based on the Jensen-Shannon distance. We also ranked genes 

using a relative scheme that assigned a higher score to genes with larger Jensen-Shannon 

distances but smaller absolute differences in mean methylation level. We did so by scoring a 

gene using the ratio of its ranking in the mean-based list to its ranking in the list obtained by 

the Jensen-Shannon distance.

Computation of entropy blocks

Computation of entropy blocks requires detection of ordered and disordered blocks; i.e., 

large genomic regions of consistently low or high normalized methylation entropy values. To 

effectively summarize methylation entropy in a single sample, we computed the normalized 

methylation entropy h within each genomic unit and classified it into one of three classes: 

ordered (0 ≤ h ≤ 0.44), weakly ordered/disordered (0.44 ≤ h ≤ 0.92), and disordered (0.92 ≤ 

h ≤ 1). We determined the threshold values by investigating the relationship between the 

normalized methylation entropy within a genomic unit that contains one CpG site and the 

ratio of the probability p of methylation to the probability 1 − p of unmethylation at that site. 

To this end, we focused on the odds ratio r = p/(1 − p) and considered the methylation level 

to be “ordered” if r ≥ 10 or r ≤ 1/10 (i.e., if the probability of methylation is at least 10× 

larger than the probability of unmethylation, and likewise for the probability of 

unmethylation), in which case, p ≥ 0.9091 or p ≤ 0.0909, which correspond to a maximum 

normalized methylation entropy threshold of 0.44. Moreover, we considered the methylation 

level to be “disordered” if 1/2 ≤ r ≤ 2 (i.e., if the probability of methylation is no more than 

2× the probability of unmethylation, and likewise for the probability of unmethylation), in 

which case, 0.3333 ≤ p ≤ 0.6667, which corresponds to a minimum normalized methylation 

threshold of 0.92.

To compute entropy blocks, we slid a window of 500 genomic units (75-kb) along the 

genome and labeled the window as being ordered or disordered if at least 75% of its 
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genomic units were effectively classified as being ordered or disordered, respectively. We 

then determined ordered or disordered blocks by taking the union of all ordered or 

disordered windows and by removing discordant overlappings.

Prediction of TAD boundaries

Using entropy blocks computed for a given sample, we identified predictive regions of the 

genome that might contain TAD boundaries by detecting the space between successive 

entropy blocks with distinct labels (ordered or disordered). For example, if an ordered block 

located at chr1: 1–1000 were followed by a disordered block at chr1: 1501–2500, then chr1: 

1001–1500 was deemed to be a predictive region. To reduce false identification of predictive 

regions, we did not consider successive entropy blocks of the same type, since the genomic 

space between two such entropy blocks may be due to missing data or other unpredictable 

factors. To control the resolution of locating a TAD boundary, we only considered gaps 

smaller than 50-kb. This resulted in a resolution of an order of magnitude smaller than the 

mean TAD size (~900-kb). To combine predictive regions obtained from methylation 

analysis of several distinct epigenotypes, we computed the “predictive coverage” of each 

base pair by counting the number of predictive regions that contained the base pair. We then 

combined predictive regions by grouping consecutive base pairs whose predictive coverage 

was at least 4. We subsequently applied this method on WGBS data corresponding to 17 

distinct cell and tissue types (stem, colonnormal, coloncancer, livernormal-1, livercancer-1, 

livernormal-2, livercancer-2, livernormal-3, livercancer-3, lungnormal-1, lungcancer-1, 

lungnormal-2, lungcancer-2, lungnormal-3, lungcancer-3, brain-1, brain-2), and analyzed 

our results using “GenometriCorr”48, a statistical package for evaluating the correlation of 

genome-wide data with given genomic features. Finally, we considered a boundary 

prediction to be “correct” when the distance of a “true” TAD boundary from the center of a 

predictive region was less than the first quartile of the “true” TAD width distribution (Fig. 5c 

insert – green).

A/B compartment prediction and analysis

Genome-wide prediction of A/B compartments was performed by a random forest 

regression model. We trained this model using a small number of available Hi-C data 

associated with EBV and IMR90 samples49, as well as A/B tracks produced by the method 

of Fortin and Hansen using long-range correlations computed from pooled 450k array data 

associated with colon cancer, liver cancer, and lung cancer samples30. Due to the paucity of 

currently available Hi-C data, we included the Fortin-Hansen data in order to increase the 

number of training samples and improve the accuracy of performance evaluation. We first 

paired the Hi-C and Fortin-Hansen data with WGBS EBV, fibro-P10, and colon cancer 

samples, as well as with samples obtained by pooling WGBS liver cancer (livercancer-1, 

livercancer-2, livercancer-3) and lung cancer (lungcancer-1, luncancer-2, lungcancer-3) data. 

We subsequently partitioned the entire genome into 100-kb bins (to match the available Hi-C 

and Fortin-Hansen data), and computed eight information-theoretic features of methylation 

maintenance within each bin (median values and interquartile ranges of information 

capacity, relative dissipated energy, normalized methylation entropy, and mean methylation 

level). By using all feature/output pairs, we trained a random forest model using the R 

package “randomForest” with its default settings, except that we increased the number of 
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trees to 1000. We then applied the trained random forest model on each WGBS sample and 

produced A/B tracks that approximately identified A/B compartments associated with the 

samples. Since regression takes into account only information within a 100-kb bin, we 

averaged the predicted A/B values using a three-bin smoothing window and removed from 

the overall A/B signal its genome-wide median value, as suggested by Fortin and Hansen30.

To test the accuracy of the resulting predictions, we employed 5-fold leave-one-out cross 

validation, which involved training using four sample pairs and testing on the remaining pair 

for all five combinations. We evaluated performance by computing the average correlation as 

well as the average percentage agreement between the predicted and each of the “ground-

truth” A/B signals within 100-kb bins at which the absolute values of the predicted and 

“ground-truth” signals were both greater than a calling margin, where we used a non-zero 

calling margin to remove unreliable predictions. We finally calculated agreement by testing 

whether the predicted and the “ground-truth” A/B values within a 100-kb bin had the same 

sign.

For each pair of WGBS samples, we computed the percentage of A to B compartment 

switching by dividing the number of 100-kb bin pairs for which an A prediction is made in 

the first sample and a B prediction is made in the second sample by the total number of bins 

for which A/B predictions were available in both samples, and similarly for the case of B to 

A switching. We summed these percentages and formed a matrix of dissimilarity measures, 

which we then used as an input to a Ward error sum of squares hierarchical clustering 

scheme50, which we implemented using the R package “hclust” by setting the method 

variable to “ward.D2”.

To test the significance of overlapping of hypomethylated blocks, LADs, and LOCKs with 

compartment B, we used available hypomethylated blocks, LOCKs, and LADs, and 

predicted compartment B data for the lungnormal-1, lungnormal-2, and lungnormal-3 

samples, which best match the previous tracks. To evaluate enrichment of hypomethylated 

blocks (and similarly for LADs and LOCKs) within compartment B, we defined two binary 

(0–1) random variables R and B for each genomic unit of the genome, such that R = 1 if the 

genomic unit overlaps a block, and B = 1 if the genomic unit overlaps compartment B. We 

then tested against the null hypothesis that R and B are statistically independent by applying 

the χ2-test on the 2 × 2 contingency table for R and B and calculated the odds ratio (OR) as 

a measure of enrichment.

Entropy sensitivity and gene ranking

We ranked genes based on entropic sensitivity and its differences between a test and a 

reference sample within their promoters. We did so by centering a 4-kb window at the 

transcription start site of each gene in the genome, computed the value or the absolute 

difference in the value of the entropic sensitivity index within each genomic unit that 

“touches” this window, and scored the gene by averaging these values.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Estimation of epiallelic probabilities, epipolymorphisms, and normalized epiallelic 

entropies. Multiple WGBS reads within a genomic region are used to form a methylation 

matrix whose entries represent the methylation status of each CpG site (blue: methylated, 

white: unmethylated, red: no data). Most methods for methylation analysis estimate 

marginal probabilities at individual CpG sites using only data within each column of the 

methylation matrix, which can then be employed to estimate epiallelic probabilities by 

assuming statistical independence. Empirical estimation of epiallelic probabilities uses only 

fully observed rows of the methylation matrix, whereas estimation of these probabilities 

using an Ising potential energy landscape employs all data available in the methylation 

matrix. At low levels of correlation, a marginal approach to estimating epiallelic 

probabilities may provide accurate estimation of epipolymorphisms and entropies. However, 

when high correlation is present, only the Ising-based approach can provide accurate 

estimates of epipolymorphisms and entropies, while the marginal approach will overestimate 

these quantities. In this example, empirical estimation of epiallelic probabilities 

underestimates the true values of epipolymorphisms and entropies regardless of correlation 

level.
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Figure 2. 
Potential energy landscapes. (a) Hypothetical monostable and bistable potential energy 

landscapes illustrating the presence of potential wells that correspond to attractors (green 

balls), and associated clouds of methylation patterns (brown balls). The magenta balls 

indicate unlikely methylation patterns drawn towards lower potential energies during 

maintenance. (b) Potential energy landscapes associated with twelve CpG sites within the 

CGIs of WNT1 in colon normal and colon cancer and within the CGI of EPHA4 in stem and 

brain. Each point in the domain of the potential energy landscape marks a methylation 

pattern, with the point at (0,0) indicating the fully unmethylated state, which is the ground 
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state in both examples. The 212 potential values are distributed over a 64×64 square grid 

using a 2D version of the Gray code (Online Methods). Violin plots summarize distributions 

of potential values.
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Figure 3. 
Mean methylation level and normalized entropy. (a) Boxplots of genome-wide distributions 

of mean methylation level (MML) and normalized methylation entropy (NME) values in all 

samples used in this study. The boxes show the 25% quantile, the median, and the 75% 

quantile, whereas each whisker has a length of 1.5× the interquartile range. (b) Genome-

wide 1D and 2D log10 transformed MML and NME densities associated with lung normal/

cancer show global MML loss in cancer accompanied by gain in entropy. (c) CD4+ 

lymphocytes from older subjects exhibit global loss of MML, accompanied with gain in 

entropy.
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Figure 4. 
Informational distances and lineages. Visualization of genomic dissimilarity between 

seventeen diverse cell and tissue samples using multidimensional scaling (equally scaled 

axes with a horizontal break), evaluated using the Jensen-Shannon distance, displays 

grouping of samples into clear categories based on lineage. Endoderm (colon, lung, liver), 

mesoderm (CD4), and ectoderm (brain) derived tissues are located roughly equidistant from 

stem cells (dashed circle). Cancerous tissues are well separated from normal tissues and 

stem cells, with two liver cancers being far removed from their matched normal 

counterparts.
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Figure 5. 
Entropy blocks and TAD boundaries. (a) In the normal/cancer panel, a subset of known TAD 

boundary annotations in H1 stem cells appear to be correlated with boundaries of entropy 

blocks (blue: ordered, red: disordered), suggesting that TADs may maintain a consistent 

level of methylation entropy within themselves. (b) Regions of entropic transitions can be 

used to identify the location of some TAD boundaries (black squares). Since TADs are cell-

type invariant, the location of more TAD boundaries can be identified using additional 

WGBS data corresponding to distinct phenotypes. (c) Probability densities and cumulative 

probability distributions (insert) of the TAD boundary location error and TAD sizes. The 
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cumulative probability distributions imply that the probability of the location error to be 

smaller than K base pairs is greater than the probability that the TAD size is smaller than K, 

for every K. Therefore, the location error is smaller than the TAD size in a well-defined 

statistical sense, known as stochastic ordering.
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Figure 6. 
Information-theoretic properties of methylation channels. (a) A methylation channel 

maintains the methylation state at a CpG site (1: methylated; 0: unmethylated) using four 

conditional probabilities (μ: demethylation probability; ν: de novo methylation probability). 

(b) Theoretical curves of the capacity (CAP), relative dissipated energy (RDE), and input/

output entropy (ENTR) of a methylation channel in terms of the log2 ratio of the probability 

of de novo methylation to the probability of demethylation (turnover ratio). Methylation 

maintenance by a high capacity methylation channel (CAP ≥ 0.89) dissipates significant 

energy (RDE ≥ 7.125), achieving high reliability (probability of error ≤ 0.0073) and an 

ordered methylation state (ENTR ≤ 0.44). Conversely, methylation maintenance by a low 

capacity methylation channel (CAP ≤ 0.81) dissipates less energy (RDE ≤ 5.25), achieving 

lower reliability (probability of error ≥ 0.026) and a disordered methylation state (ENTR ≥ 

0.92). These thresholds correspond to entropy levels used to identify ordered and disordered 

genomic units that build entropy blocks (Online Methods). (c) Boxplots of genome-wide 

distributions of capacities, relative dissipated energies, and entropies at individual CpG sites 

show global differences among cell types. The boxes show the 25% quantile, the median, 

and the 75% quantile, whereas each whisker has a length of 1.5× the interquartile range. (d) 

Genome-wide 1D and 2D log10 transformed capacities and relative dissipated energies 

associated with lung normal/cancer show global channel capacity loss in cancer 

accompanied by a reduction in dissipated energy. (e) Aging CD4+ lymphocytes exhibit 

global loss of capacity and dissipated energy as well.
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Figure 7. 
Information-theoretic prediction of large scale chromatin organization. (a) Analysis of Hi-C 

and WGBS data shows that maintenance of the methylation state within compartment B 

(blue) in EBV cells is mainly performed by low information capacity methylation channels 

that dissipate low amounts of energy and result in a relatively disordered and less methylated 

state than in compartment A (brown). (b) Violin plots of genome-wide distributions of 

information capacity (CAP), relative dissipated energy (RDE), normalized methylation 

entropy (NME), and mean methylation level (MML) demonstrate the attractiveness of these 

quantities as features for predicting compartments A/B using WGBS data from single 

samples. The boxes show the 25% quantile, the median, and the 75% quantile, whereas each 

whisker has a length of 1.5× the interquartile range. (c) Hierarchical clustering of samples 

using the net percentage of A/B compartment switching as a dissimilarity measure. At a 

given height, a cluster is characterized by lower overall compartment switching than an 

alternative grouping of samples. (d) UCSC genome browser images of two chromosomal 

regions show significant overlap of compartment B in normal lung (blue) with 

hypomethylated blocks, LADs, and LOCKs. Gain in Jensen-Shannon distance (JSD) is 

observed within compartment B (blue) in lung samples during carcinogenesis.
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Figure 8. 
Entropic sensitivity distributions in single samples and comparative studies. (a) Gain in 

entropy and loss of entropic sensitivity is observed within a portion of the CGI associated 

with WNT1. NME: normalized methylation entropy, ESI: entropic sensitivity index, dESI: 

differential entropic sensitivity index. (b) Boxplots of genome-wide distributions of entropic 

sensitivity display global differences across cell types. (c) Boxplots of genome-wide 

distributions of entropic sensitivity within compartment A (brown) and compartment B 

(blue) show appreciably higher entropic sensitivity within compartment A than within 

compartment B. The boxes in (b) & (c) show the 25% quantile, the median, and the 75% 

quantile, whereas each whisker has a length of 1.5× the interquartile range.
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