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Abstract: The last decade has witnessed a growing demand for precise positioning in many
applications including car navigation. Navigating automated land vehicles requires at least sub-meter
level positioning accuracy with the lowest possible cost. The Global Navigation Satellite System
(GNSS) Single-Frequency Precise Point Positioning (SF-PPP) is capable of achieving sub-meter level
accuracy in benign GNSS conditions using low-cost GNSS receivers. However, SF-PPP alone cannot
be employed for land vehicles due to frequent signal degradation and blockage. In this paper,
real-time SF-PPP is integrated with a low-cost consumer-grade Inertial Navigation System (INS) to
provide a continuous and precise navigation solution. The PPP accuracy and the applied estimation
algorithm contributed to reducing the effects of INS errors. The system was evaluated through two
road tests which included open-sky, suburban, momentary outages, and complete GNSS outage
conditions. The results showed that the developed PPP/INS system maintained horizontal sub-meter
Root Mean Square (RMS) accuracy in open-sky and suburban environments. Moreover, the PPP/INS
system could provide a continuous real-time positioning solution within the lane the vehicle is
moving in. This lane-level accuracy was preserved even when passing under bridges and overpasses
on the road. The developed PPP/INS system is expected to benefit low-cost precise land vehicle
navigation applications including level 2 of vehicle automation which comprises services such as
lane departure warning and lane-keeping assistance.

Keywords: PPP; GNSS; low-cost sensors; PPP/INS integration; vehicle navigation; automated vehicles

1. Introduction

The automotive industry is investing lavishly in the research and development of automated
vehicles. Various technologies are developed every day to support and advance the vehicle automation
process. The Society of Automotive Engineers (SAE) international standard J3016 defines five levels
of vehicle automation: 0 (no automation); 1 (driver assistance); 2 (partial automation); 4 (high
automation); and 5 (full automation) [1]. Land vehicles, currently available in the market, employ
up to level 2 of automation [2]. The driver assistance features of level 2 such as lane-departure
warning and lane-keeping assist require a navigation system with accuracy in the sub-meter level.
The implementation of such a navigation system with low-cost requirements is not a trivial task.

Sensors 2019, 19, 4896; doi:10.3390/s19224896 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-0108-8203
https://orcid.org/0000-0001-6614-7783
https://orcid.org/0000-0001-7683-5045
http://dx.doi.org/10.3390/s19224896
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/19/22/4896?type=check_update&version=2


Sensors 2019, 19, 4896 2 of 21

Global Navigation Satellite System (GNSS) positioning is the core of vehicle navigation
systems [3–5]. The demand for GNSS precise positioning is increasing, not only in vehicular navigation
but in other applications such as agriculture and remote sensing [6–8]. To obtain a high-precision
low-cost GNSS solution, Single-Frequency (SF) Precise Point Positioning (PPP) was utilized in this
work. SF-PPP has faster convergence than Dual-Frequency (DF) PPP and also comes with a lower
cost because it is based on SF measurements which can be obtained from low-cost GNSS receivers.
These features of SF-PPP have made it a suitable candidate for dynamic positioning applications with
a rapidly changing environment [9].

SF-PPP alone cannot provide a continuous navigation solution for land vehicles because of
the frequent GNSS signal blockage due to buildings, trees, tunnels, etc. Therefore, SF-PPP must be
integrated with other navigation systems such as the Inertial Navigation System (INS). However, to
retain the advantage of using a low-cost GNSS solution, low-cost inertial sensors must also be used [10].
The problem with low-cost sensors, which are typically Micro-Electro-Mechanical Systems (MEMS)
sensors, is the excessive error growth in position over time. An uncompensated bias in one of the
accelerometers leads to an error in the position over a time interval ∆t that is proportional to (∆t)2,
while for gyroscopes it is proportional to (∆t)3 [11].

Over the last decade, many research papers have investigated PPP/INS integration models,
benefits, and performance. That research, however, focused on employing the DF-PPP which requires
high-cost GNSS receivers. Furthermore, employing low-cost consumer-grade MEMS sensors for
real-time PPP/INS integration has not been investigated in the literature so far.

In [12], DF-PPP using multi-GNSS was integrated with an INS and an odometer. The odometer
was used as a measurement update to reduce the Inertial Measurement Unit (IMU) drift. The results
showed that the integration with INS enhanced the positioning performance. The accuracy was
further improved using the odometer update. The final system achieved decimeter-level Root Mean
Square (RMS) positioning accuracy using measurements from both the Global Positioning System
(GPS) and the Russian Global Navigation Satellite System (GLONASS). Nevertheless, the testing
environment was relatively open-sky, and hence simulated GNSS outages were required to test the
integration performance. Moreover, Sensonor’s STIM300 (Horten, Norway) [13] was utilized as a
low-cost IMU, but it is more appropriately considered as a high-performance MEMS unit due to its
cost of approximately US$ 8000 [14].

Reference [15] presents a tightly-integrated DF-PPP/INS system where single-differencing
between satellites was applied. The results showed decimeter-level accuracy during simulated GNSS
outages with 10 s and 30 s duration. The authors mentioned that they used IMU-CPT from NovAtel
(Calgary, AB, Canada) as a low-cost MEMS IMU; nevertheless, IMU-CPT has fiber optic gyros and
MEMS accelerometers and is classified as a tactical-grade IMU [16].

One study for the integration of SF-PPP with a low-cost INS was presented in [17]. The authors
developed a SF-PPP model augmented with slant ionospheric delay and receiver Differential Code
Bias (DCB) constraints. Virtual observation functions for both the slant ionospheric delay and receiver
DCBs were added to the measurement model. The GNSS data was collected using a Trimble NetR9
multi-GNSS receiver (high-cost receiver) (Sunnyvale, CA, USA), whereas the IMU data were collected
using a MEMS IMU (POS1100, manufactured by Wuhan MP Space Time Technology Company,
(Wuhan, China) with 10◦/hr gyro instability. The RMS position errors of the integrated solution were
in the decimeter-level. The test was performed in an open-sky environment; therefore, seven simulated
GNSS outages were used to test the integration performance. With seven 30 s GNSS outages and using
three-GNSS (GPS, BeiDou, and GLONASS), the RMS position errors were below half a meter.

In the research work mentioned above, the PPP corrections were obtained from the final
International GNSS Service (IGS) products [18], which are available for post-mission analysis, not
real-time. The performance when utilizing low-cost consumer-grade MEMS sensors with a low-cost
GNSS receiver for real-time SF-PPP/INS integration has not been explored. Furthermore, testing the
performance of the integrated system was based on simulated GNSS outages, not real GNSS outages.



Sensors 2019, 19, 4896 3 of 21

The aim of this work is to develop an integrated real-time PPP/INS system utilizing a low-cost
GNSS receiver and a low-cost IMU. This system can provide a continuous and reliable positioning
solution for land vehicle navigation with sub-meter level accuracy in open-sky and suburban areas.
The initial results of the developed PPP/INS system were presented at the ION GNSS+ 2018 conference,
Miami, FL, USA [19]. In this paper, more details are added to the methodology in addition to extended
results and discussions. Moreover, we studied the application of our developed system as a navigation
solution for level 2 automated vehicles. We demonstrated and analyzed the performance of our system
on highways and suburban areas.

The next section describes the methodology adopted in the implemented system. Section 3
describes the experimental work and achieved results, whereas Section 4 provides the discussion of
these results. Finally, Section 5 concludes the presented work.

2. Methodology

The implemented integration of SF-PPP and INS is performed in the Loosely-Coupled (LC) mode
using an Extended Kalman Filter (EKF). The EKF is the most commonly used filter for integrated
navigation systems [20,21]. In the LC mode, the final PPP solution is integrated with the INS solution,
which allows employing low-cost GNSS receivers that do not provide raw measurements. The three
factors that control the LC GNSS/INS integration performance are the quality of the INS measurements,
the accuracy of the GNSS solution, and the fusion algorithm. High-end IMUs could be used to
maximize the quality of the INS solution, but it comes with a cost overhead. Therefore, MEMS IMUs
are used to meet the low-cost requirement. The performance of the developed system relies on utilizing
PPP for a high-quality GNSS solution and a robust PPP/INS fusion algorithm.

Figure 1 shows the block diagram of the developed PPP/INS integrated system. The estimated
navigation parameters and sensor errors are fed back to the mechanization module in a closed-loop
configuration. Thus, the error states are reset every epoch which contributes to preserving the linearity
assumption of the KF. The rest of this section gives more details about the implemented SF-PPP, INS
mechanization, and the EKF system and measurement models.
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Figure 1. Block diagram of the developed SF-PPP/INS integrated system. The integration is performed
in the loosely-coupled mode where the SF-PPP and INS solutions are integrated through an Extended
Kalman filter. The dotted lines represent the closed-loop configuration where the estimated errors are
fed back to the INS mechanization module.
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2.1. Real-Time SF-PPP

SF-PPP relies on the code and phase observations of a single GNSS frequency. The use of
multi-constellation contributes to enhancing the availability and accuracy of the PPP solution in the
kinematic applications [22]. Therefore, both GPS and GLONASS measurements were adopted in the
implemented SF-PPP model. The L1-band frequencies were chosen for both constellations due to their
availability in most of the low-cost receivers in the market, especially the C1 code for GPS.

Assuming that the proper correction models have been applied to correct the Sagnac and
relativistic effects [23], phase wind-up error [24], receiver antenna phase centers, and site displacement
effects [25], the SF observations for GPS and GLONASS can be written as

CG
1 = ρ′G + c(dtr − dts,G)− Bs,G

C1
+ T + IG

1 + εG
C1

, (1)

ΦG
1 = ρ′G + c(dtr − dts,G) + T − IG

1 + λG
1 N1 + εG

Φ1
, (2)

PR
1 = ρ′R + c(dtr − dts,R) + ISBG−R − Bs,R

P1
+ T + IR

1 + εR
P1

, (3)

ΦR
1 = ρ′R + c(dtr − dts,R) + ISBG−R + T − IR

1 + λR
1 N1 + εR

Φ1
, (4)

where the superscripts G and R refer to GPS and GLONASS, respectively, ρ′ is the geometric distance
between receiver and satellite, in meters, contaminated by the orbital errors, dtr and dts are the receiver
and satellite clock errors in seconds, and c is the speed of light. The term Bs represents the satellite DCB,
T is the tropospheric delay, and I is the ionospheric delay, all in meters. The phase integer ambiguity
in cycles is denoted by N1. The Inter-System Bias (ISB) between GLONASS and GPS clock references
is added to GLONASS observations. Finally, ε represents the multipath and receiver noise errors.

The most dominant factor that controls real-time PPP accuracy is the availability of precise
real-time corrections. Currently, open-access real-time corrections can be obtained either from the
IGS Real-time Service (IGS-RTS) or from a Satellite-based Augmentation System (SBAS) [26]. In the
implemented SF-PPP, corrections for the satellite orbit and clock errors, ionospheric delays, and code
biases are obtained from the Centre National d’Etudes Spatiales (CNES), one of the IGS-RTS analysis
centers. CNES products can be received in real-time from the Internet such as the CLK91 stream chosen
in this work. Moreover, CNES is the only IGS analysis center transmitting ionospheric corrections so
far. The CLK91 stream transmits orbit, clock, and code biases corrections for GPS and GLONASS every
5 s, and transmits ionospheric corrections every 60 s. Finally, the implemented SF-PPP algorithm is
designed to use SBAS corrections in case of any interruption to the CLK91 stream.

The total tropospheric delay is modeled a priori using Saastamoinen’s model [27]. After applying
all the necessary corrections, the corrected SF-PPP observations are given by

CG
1corr

= ρ + Br + εG
C1

, (5)

ΦG
1corr

= ρ + Br + λG
1 N1 + εG

Φ1
, (6)

PR
1corr

= ρ + Br + ISBG−R + εR
P1

, (7)

ΦR
1corr

= ρ + Br + ISBG−R + λR
1 N1 + εR

Φ1
, (8)

where ρ is the true geometric range, and Br = c(dtr) is the receiver clock bias in meters. The unknowns
in the previous equations are the three position parameters, the receiver clock bias, the ISB between
GLONASS and GPS, and the float ambiguities (one per each satellite). These unknowns were estimated
through the SF-PPP navigation filter. The corrected PPP measurements were used as an update to the
filter, whereas the prediction of the filter states was based on the stochastic characteristics of each state.

2.2. INS Mechanization

A standard INS consists of a full IMU system, i.e., it has three orthogonal accelerometers and three
orthogonal gyroscopes to measure the accelerations and rotations in all directions in three-dimensional
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(3D) space. INS mechanization is the process of using the IMU measurements to calculate the position,
velocity, and attitude information. The mechanization process starts with a set of initial states and
then adds the change in these states at each measurement epoch. Figure 2 shows the general block
diagram of the INS mechanization process. The IMU measurements are typically measured in the
body (vehicle) frame with respect to the inertial frame; however, the mechanization may be performed
in another frame such as the Local-Level Frame (LLF).

The LLF, sometimes called the navigation frame, is a practical choice for vehicular navigation as it
provides the position in terms of latitude, longitude, and altitude. The altitude is typically calculated
as the ellipsoidal height h from the Earth’s ellipsoidal model. However, the orthometric height H
(above mean sea level) can be obtained if the geoidal height (undulation) N was available using the
formula h = H + N [28]. In this work, the ellipsoidal height is adopted. The LLF shares the same
origin with the vehicle frame, and its axes point to either East, North, and Up (ENU) directions or
North, East, and Down (NED) directions. In this work, the ENU directions of the LLF are adopted.
More details about the different navigation reference frames can be found in [11].

Transformation 

into Navigational 

 Frame
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Model

Attitude 

Computation
Gyroscopes

Platform 
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PositionAccelerometers

Inertial Measurement Unit

Correction

Velocity

Attitude

Platform 
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Figure 2. A block diagram of the INS mechanization process [11]. The inputs to the mechanization
process are the accelerations and rotations measured by the inertial measurement unit. These
measurements are transformed to the navigation frame and integrated to obtain the position, velocity,
and attitude parameters.

In the LLF, the position vector rl and the velocity vector vl can be written as

rl =
[

ϕ λ h
]T

, (9)

vl =
[
ve vn vu

]T
, (10)

where ϕ is the latitude, λ is the longitude, h is the ellipsoidal height, and ve, vn, vu represent the
velocities in east, north and up directions, respectively.

The INS mechanization equations in the continuous-time form are differential equations of the
rate of change of the navigation states [11,29] ṙl

v̇l

Ṙl
b

 =

 D−1vl

Rl
bfb − (2Ωl

ie + Ωl
el)v

l + gl

Rl
b(Ω

b
ib −Ωb

il),

 (11)

where Rl
b is the rotation matrix from the body frame to LLF, fb is the vector of specific force

measurements from accelerometers in the body frame, and gl is the gravity vector in the LLF. The
notation Ωp

mn, where the subscripts m, n and the superscript p are arbitrary navigation frames, denotes
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the skew-symmetric matrix form of the angular velocities vector that represent the rotation from
n-frame to m-frame measured in p-frame coordinates. The letters i, e, l refer to the inertial frame,
Earth-Centered Earth-Fixed (ECEF) frame, and LLF, respectively. D−1 is a transformation of the
velocity vector vl to geodetic coordinates that uses the meridian radius RM and normal radius RN of
the Earth’s ellipsoid and is defined as

D−1 =

 0 1
RM+h 0

1
(RN+h) cos ϕ

0 0

0 0 1

 . (12)

The mechanization equations in Equation (11) can be intuitively formulated from the block
diagram in Figure 2. The position is obtained directly by integrating the velocity, which, in turn, is
obtained from integrating the acceleration. The acceleration fb is measured in the body frame with
respect to the inertial frame, and hence must be transformed first to the LLF using Rl

b. In addition,
the gravity and Coriolis effects must be removed to obtain the motion acceleration. Therefore, the
vehicle acceleration v̇l has correction terms for the gravity vector gl and Coriolis effects (2Ωl

ie + Ωl
el)v

l.
These Coriolis effects combine the effect of Earth rotation with respect to the inertial frame and the
movement of LLF over Earth’s curvature [11].

The vehicle attitude is represented by the three Euler angles: pitch (p), roll (r), and azimuth
(Az) [29]. The pitch angle describes the rotation around the x-axis (lateral direction) of the vehicle
frame, whereas the roll angle is the rotation around the y-axis (forward direction). The azimuth angle is
the rotation around the z-axis (up direction) measured clockwise between the vehicle forward direction
and the Earth’s north direction. The matrix Rl

b is given by

Rl
b =

 cos Az cos r + sin Az sin p sin r sin Az cos p cos Az sin r− sin Az sin p cos r
− sin Az cos r + cos Az sin p sin r cos Az cos p − sin Az sin r− cos Az sin p cos r

− cos p sin r sin p cos p cos r

 . (13)

The third equation in Equation (11), Ṙl
b = Rl

b(Ω
b
ib −Ωb

il), together with Equation (13) are needed
to calculate the attitude angles. However, the solution to this problem cannot be obtained in closed
form and requires numerical integration methods such as the quaternion approach.

2.3. System Model

The basic concept of the EKF is that the errors in the system states can be assumed to be linear
when the absolute states itself cannot [30]. The system error model consists of fifteen error states
that can be grouped into five 3× 1 column vectors: position errors δrl, velocity errors δvl, attitude
errors δψl , accelerometers biases ba, and gyroscope biases bg. The state vector δX can be described
as follows:

δX15×1 =
[
δrl δvl δψl ba bg

]T
. (14)

The system model can be described in the continuous-time domain using

δẋ = FδX + W, (15)

where F is the system dynamic coefficient matrix, and W is the process noise vector with covariance
matrix Q.

For better long-term performance, the implemented system model considered the INS error terms
with small values in the F matrix. The derivation and components of the dynamic coefficient matrix
F can be found in [29]. The errors of the accelerometers and gyroscopes were modeled using the
first-order Gauss–Markov process.
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In the discrete implementation of the EKF, the prediction is based on the state transition matrix φ

which can be related to F using the formula

φ ≈ I + F∆t, (16)

where I is the identity matrix and ∆t is the time interval between current and previous IMU
measurement epochs.

The discrete EKF equations are used to predict the current states and its a priori covariance P−k at
epoch k based on their values from the previous epoch. The EKF prediction equations in closed-loop
configuration can be written as

δ̂x
−
k = 0, (17)

P−k = φk−1P+
k−1φT

k−1 + Qk−1, (18)

where P+
k−1 is the posterior state covariance matrix of the previous epoch.

2.4. Measurement Model

The measurement model is described by

δZ = HδX + η, (19)

where δZ is the measurement error vector, H is the measurement design matrix, and η is the
measurement noise with covariance matrix R.

The measurement design matrix R can be directly taken from the covariance of the PPP solution.
However, in the implemented algorithm, the covariance of the PPP solution is passed to a multi-level
scaling module based on the other PPP statistics such as the Dilution of Precision (DOP), and the
number of visible satellites. This scaling has contributed to a better performance in challenging
GNSS environments.

The measurement error vector δZ represents the difference between the values predicted by the
INS system model and the update observations. When taking the update from the PPP solution, this
difference can be calculated using

δZPPP =

[
rl

INS − rl
PPP

vl
INS − vl

PPP

]
, (20)

where rl
PPP and vl

PPP are the position and velocity vectors obtained from the PPP solution and
represented in the LLF. The design matrix is given by

HPPP =
[

I6×6 06×9

]
. (21)

In the case of a GNSS signal blockage, the update from PPP is not available. Using only the
INS solution, especially with low-cost sensors, will lead to a large solution drift. For land vehicles,
some constraints can aid the INS during GNSS outages. Two examples of these constraints, which
are applied in this work, are the Zero-Velocity Update (ZUPT) and the Nonholonomic Constraints
(NHC) [31].

In ZUPT, when the vehicle is detected to be static, all the velocities should be zero. This fact is
used to reset the velocity errors and limit the position error growth. ZUPT can be useful in many
application not only the car navigation [32]. The measurement error vector and design matrix when
using ZUPT are
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δZZUPT =
[
vl

INS − 03×1

]
, (22)

HZUPT =
[
03×3 I3×3 03×9

]
. (23)

The ZUPT detection module is designed to compare the variance of the forward acceleration
against a threshold value. The threshold starts with a predefined value, and then goes through an
online detection algorithm to refine this value ongoing.

The NHC in land vehicles are based on the fact that the vehicle does not slip or fly, which means
that the vehicle velocity in the lateral and up directions is close to zero. Thus, the measurement vector
of the NHC update is represented using the INS velocity in the body frame

δZNHC =

[
vb

INS,lateral − 0
vb

INS,up − 0

]
. (24)

In [33], the error in the velocity in the body-frame was related to the velocity error in the LLF and
the attitude errors by the formula

δvb = Rb
l δvl − Rb

l (v
l×)δψl , (25)

where (vl×) is the skew-symmetric form of the velocity error vector in the LLF. Following the ENU
directions order and assuming the forward motion is in the y-direction of the body frame, the design
matrix of the NHC update can be written as

HNHC =

[
01×3 R11 R21 R31 −vuR21 + vnR31 vuR11 − veR31 −vnR11 + veR21

01×3 R31 R32 R33 −vuR32 + vnR33 vuR31 − veR33 −vnR13 + veR32

]
, (26)

where Rij is the element at row i and column j of the matrix Rb
l which is the transpose of the matrix

defined in Equation (13).
The EKF update equations are used to update the system states and its posterior covariance

matrix P+
k as follows:

Kk = P−k HT
k {HkP−k HT

k + Rk}−1, (27)

δx̂+k = δx̂−k + Kk(δZk − Hkδx̂−k ), (28)

P+
k = (I − Kk Hk)P−k , (29)

where Kk is the Kalman gain.

3. Experiments and Results

To assess the developed PPP/INS system in real time, two road test trajectories were performed.
The first trajectory examines the open-sky and suburban performance, whereas the second trajectory
includes more challenging conditions such as high dynamics, overpass bridges, and a complete GNSS
outage. This section starts with the experimental setup used in these tests; then, the results obtained
from each trajectory are displayed.

3.1. Experimental Setup

The test data were collected using a testing van where the GNSS antennas were put on the roof.
The remaining equipment was mounted on a flat platform that is firmly attached to the testing vehicle
such that the IMU frame is oriented with the vehicle frame to the maximum possible extent.

The SF-GNSS measurements, for GPS and GLONASS, were obtained from the low-cost u-blox
EVK-8MT receiver (Thalwil, Switzerland). Moreover, precise satellite orbit and clock corrections every
5 s and ionospheric corrections every 1 min were received in real time from the CLK91 stream of the
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CNES analysis center. SBAS corrections were also logged by the GNSS receiver to be used in case of
any interruption to the CLK91 stream.

In the INS part, LSM6DSL, a low-cost consumer-grade MEMS IMU was utilized [34]. The results
are compared to u-blox EVK-M8U Untethered Dead Reckoning (UDR) solution, which is a benchmark
in the navigation market for low-cost GNSS/INS applications at the time these tests were performed.
The u-blox receiver was configured to use SBAS corrections to get the best-integrated solution for
comparison. The reference was obtained from a DGNSS/INS integrated solution where the real-time
rover data was collected using the NovAtel SPAN on a ProPak6 system (Calgary, AB, Canada) with
IMU-KVH [35] as a tactical-grade IMU. The IGS UCAL station was used as a reference station with
a maximum baseline length of 12 km. Furthermore, the reference data were post-processed using
NovAtel’s Waypoint Inertial Explorer software.

3.2. Road Test Trajectory 1

The first road test trajectory lasted approximately 35 min in Calgary, Alberta, Canada. Figure 3
shows the trajectory on a Google map; the test started from an open-sky condition at the University of
Calgary and near the Alberta Children’s Hospital, and then the car moved towards a residential area.
The residential area was a typical suburban environment with community houses and trees on both
sides of the road. Finally, the car moved back toward the university.

Figure 3. The first test trajectory of SF-PPP/INS integration, Calgary, Alberta, Canada.

The speed profile and the corresponding ZUPT detection flag are shown in Figure 4. The car
forward speed, measured by a car odometer, was less than 60 km/h with frequent stops and low-speed
periods, which is typical for a suburban area. The ZUPT flag is raised whenever the vehicle is detected
to be static. The value of the ZUPT flag in this test indicates the success of the ZUPT detection module
with zero false alarms. A few misdetections were found that correspond to vehicle stops that are less
than the adequate time needed to declare a stop with high confidence. Nevertheless, as mentioned
earlier, the ZUPT update is not used when there is a reliable velocity update from the PPP solution.
Figure 5 shows the number of satellites used in the PPP solution versus time. A minimum number of
four satellites were seen in this test, whereas the maximum number was 16 thanks to employing both
GPS and GLONASS satellites.
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Figure 4. Vehicle speed and Zero-Velocity Update (ZUPT) flag of the first trajectory.
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Figure 5. Number of satellites used in the PPP solution of the first trajectory.

Figure 6 shows the 3D position errors for the SF-PPP, the integrated SF-PPP/INS, and the u-blox
UDR solutions. The trend of the integrated PPP/INS solution looks similar to the SF-PPP solution;
however, the integrated solution smoothed most of the spikes that were in the PPP solution at the
epochs with a low number of satellites. The u-blox UDR solution has fewer error spikes than the
developed PPP/INS; nevertheless, the u-blox errors have relatively a wider error range compared to
the proposed PPP/INS solution after the first 5 min. Both SF-PPP and SF-PPP/INS solutions seem
to have a convergence period of 5 min at the beginning of the trajectory that does not exist in the
u-blox UDR solution. When this issue was explored further, it was found that, on the day of this test,
CNES has recently changed the format of its real-time ionospheric corrections such that it became
incompatible with the developed code. Since there were no ionospheric corrections from CNES, the
code automatically shifted to use the SBAS ionospheric corrections instead which needed around 5 min
to be obtained in real-time.
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Figure 6. The first trajectory position errors versus time in (a) east, (b) north, and (c) up directions.

Table 1 compares the RMS and maximum errors of both u-blox UDR and the developed SF-PPP/INS
solutions after the first 5 min to avoid the initial convergence time without ionospheric corrections. The
developed SF-PPP/INS system achieved sub-meter RMS horizontal accuracy, and the results were better
than the u-blox UDR solution. Furthermore, the RMS error in the vertical direction of the developed
system is less than the UDR solution. This error reduction indicates that the integrated solution has
benefited from the SF-PPP precise solution in the case of benign GNSS environments.
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Table 1. The first trajectory RMS and maximum position errors after 5 min. The first five minutes were
excluded to avoid the effect of the time needed to acquire the ionospheric corrections on the comparison.

Developed SF-PPP/INS u-blox UDR

RMS Error (m) MAX Error (m) RMS Error (m) MAX Error (m)

Horizontal 0.6 5.4 1.0 4.8

Vertical 1.1 3.4 1.9 3.7

The final step is to further demonstrate the advantage of our PPP/INS integration in preserving
the lane-level accuracy in suburban environments. Figure 7 shows two examples, using Google Earth,
of how trees and houses in a suburban environment can affect the PPP solution. It can be seen that
the PPP-alone solution (blue) was affected several times by the partial outages of GNSS satellites
and this drove the solution outside the driving lane. On the other hand, the integrated PPP/INS
solution (green) maintained the lane-level position accuracy, following the reference solution (red) and
providing a solution within the driving lane.

(a)

(b)

Figure 7. Two examples (a) and (b) of the developed SF-PPP/INS system performance in suburban
areas showing how the system can provide a solution within the driving lane. The three displayed
solutions are: reference (red), SF-PPP (blue), and integrated SF-PPP/INS (green).
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3.3. Road Test Trajectory 2

The second road test was carried out in Calgary, Alberta, Canada for approximately one hour.
Figure 8 shows the trajectory where the car started in a suburban area and moved north to make a few
loops in an open-sky environment in the top left part of the trajectory. After that, the car moved back
south on a highway inside the city with an 80 km/h speed limit passing under several overpasses and
experiencing changing dynamics as can be seen from the speed profile in Figure 9. The last part of the
trajectory included underground parking for three minutes, and the test ended in a suburban area.
Figure 10 shows the number of satellites used in the PPP solution. The epochs, before the 50th min, at
which the number of satellites dropped to five or less correspond mainly to the times when the car
moves under an overpass. The long period of zero satellites after the 50th min corresponds to the time
when the car went down the underground parking.

Figure 8. The second test trajectory for SF-PPP/INS integration, Calgary, Alberta, Canada.
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Figure 9. Vehicle speed profile and Zero-Velocity Update (ZUPT) flag of the second trajectory.



Sensors 2019, 19, 4896 14 of 21

0 10 20 30 40 50 60

Time (min)

0

2

4

6

8

10

12

14

16

18

N
um

be
r o

f S
at

el
lit

es

Figure 10. Number of satellites used in the PPP solution of the second trajectory of SF-PPP/INS integration.

Table 2 compares the RMS and maximum position errors of the whole trajectory for both
u-blox UDR and the developed SF-PPP/INS solutions. The maximum errors mainly occurred in
the underground parking where no PPP solution was available. These results show that the proposed
solution has lower errors compared to the u-blox UDR solution in this test.

Table 2. The RMS and maximum position errors for the whole of the second trajectory. The developed
SF-PPP/INS system errors are less than the UDR errors. The maximum errors occurred when the
vehicle entered the underground parking.

Developed SF-PPP/INS u-blox UDR

RMS Error (m) MAX Error (m) RMS Error (m) MAX Error (m)

Horizontal 1.5 12.5 8.8 60.8

Vertical 1.5 8.5 3.3 11.9

Figure 11 shows the 3D position errors within ±6 m for the SF-PPP, the integrated SF-PPP/INS,
and the u-blox UDR solutions. The SF-PPP solution suffers from several large error spikes in the east,
north, and up directions. Typically, these errors come with a status of “no fix” when the number
of satellites is low and the solution is considered unreliable. On the other hand, the developed
SF-PPP/INS solution could bridge all the momentary GNSS outages due to overpasses with a
sub-meter RMS horizontal error, and provide a continuous solution even in the underground parking.
The u-blox UDR position errors are worse than the developed PPP/INS system in most of the trajectory.

For further analysis, the test results are divided into two parts; the first part ends before entering
the parking lot and includes the open-sky and highway driving with several overpass bridges.
The second part includes driving through underground parking for three minutes. Table 3 shows the
position accuracy comparison for the first part of the trajectory. The results show that the PPP/INS
solution preserved the sub-meter horizontal accuracy according to the RMS errors compared to a few
meters accuracy for u-blox UDR.
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Figure 11. The second trajectory position errors versus time in (a) east, (b) north, and (c) up directions.
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Table 3. The RMS and maximum position errors, before entering the underground parking in the
second trajectory. The developed SF-PPP/INS system maintained sub-meter horizontal accuracy and
meter-level vertical accuracy, and was better than UDR solution.

Developed SF-PPP/INS u-blox UDR

RMS Error (m) MAX Error (m) RMS Error (m) MAX Error (m)

Horizontal 0.7 2.6 2.6 21.1

Vertical 1.4 4.6 2.8 5.3

Automated vehicles on highways must have a continuous navigation solution with lane-level
accuracy. The frequent overpasses impose a challenge on GNSS-based navigation systems including
the ones with PPP accuracy. Figure 12 shows two examples of how the developed SF-PPP/INS system
could maintain the lane-level accuracy even when the car is moving under a wide overpass.

(a)

(b)

Figure 12. Two examples (a) and (b) of the developed SF-PPP/INS system performance on highways
showing how the system could maintain a solution within the driving lane. The three displayed
solutions are: reference (red), SF-PPP (blue), and integrated SF-PPP/INS (green).

In the second part of the trajectory, Figure 13 shows on a Google map how the SF-PPP/INS
solution outperforms the u-blox UDR solution in the complete GNSS outage in the underground
parking. This is an example of how the developed system behaves in relatively long GNSS outages.
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Despite the errors reached the meter level, this performance is still acceptable given the utilized
low-cost consumer-grade IMU and the long outage period (3 min).
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Figure 13. Navigation performance comparison between developed SF-PPP/INS and u-blox UDR in
underground parking for 3 min.

4. Discussion

The results in Section 3 have shown that the integrated PPP/INS solution is dominated by the
precision of the SF-PPP solution when there is enough number of visible satellites. The INS benefits
show up when there is a challenging GNSS environment. When the number of visible satellites is
low, typically five or less but can vary based on the satellite geometry and multipath effects, the PPP
solution suffers from large spikes. These spikes are accompanied by high covariance and sometimes
with no-fix status, which means there is no SF-PPP solution. The integration with INS smooths these
spikes and assures the continuity of the navigation solution. The fast convergence of the SF-PPP
solution after GNSS outages has contributed to a more stable and reliable integrated solution.

Although the integration with INS helps to reduce the effect of the large errors in the PPP solution,
the integrated SF-PPP/INS itself has some error spikes. For example, an error spike occurred in the
SF-PPP/INS solution after 22 min in Figure 6a. The fusion of the PPP and INS solutions is based on the
quality of the two solutions measured by statistics such as the standard deviation. This is why, in some
cases, an inaccurate standard deviation of the PPP solution can mislead the EKF and cause a drift in
the integrated solution especially with varying dynamics such as turning. This can be considered as
one of the limitations of the loosely-coupled mode of integration.

From the results of the two performed tests, we can also see that the horizontal errors (north
and east) are generally less than the vertical errors. One reason is that the vertical DOP (VDOP)
is generally higher than the horizontal DOP (HDOP) because we cannot see satellites in the down
direction. Another reason is that height errors are strongly affected by tropospheric errors. In our
system, the total tropospheric error was a priori modeled as mentioned in Section 2.1. When higher
accuracy is required, such as the case with DF-PPP, only the dry component of the tropospheric delay
is modeled, whereas the wet component is estimated as an unknown in the EKF.

A crucial factor in the performance of real-time PPP systems, SF or DF, is the availability of the
real-time precise corrections. From the results of trajectory 1, when there was an issue with the real-time
ionospheric corrections, the solution quality degraded which could result in losing the PPP accuracy.
A good practice, which is implemented in the developed system, is to have a backup correction source
such as another correction stream or SBAS corrections.

The advantage of using SF-PPP compared to the Standard Point Positioning (SPP), which is
the typical solution from low-cost GNSS receivers, was demonstrated by comparing the developed
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solution with u-blox UDR solution, which is an SPP solution augmented with SBAS corrections. The
SF-PPP solution contributed to reducing the horizontal RMS errors of the integrated solution from the
meter to sub-meter level of accuracy in suburban environments.

The significance of the presented results is that they represent the performance of the developed
system in real challenging situations. The vehicle moved between open-sky and suburban areas
passing under several overpasses. Natural GNSS outages, even shorter than simulated outages, are
more serious because GNSS signals are gradually re-acquired after the outage. On the contrary, in
simulated outages, the signals come back with full strength and a good number of visible satellites right
after the introduced outage. The system was also tested in case of a long GNSS outage in underground
parking. The good performance during a long GNSS outage is an indication of the well-estimated
IMU biases before the outage, which is due to both the PPP accuracy and the reliable estimation
approach applied.

The achieved results of the developed PPP/INS system show that this system can play a role in
the applications of level 2 autonomy. The system could maintain the lane-level accuracy in suburban
areas and on highways. The lane width is typically 3 m or more, e.g., the city of Toronto recommended
lane widths between 3 and 4.3 m for the main driving lanes [36], which means that a sub-meter level
accuracy is sufficient to keep the vehicle in the lane. The quality of the solution can be increased if
higher grades IMU were used; however, this will come at the expense of increasing the system cost.

5. Conclusions

The developed system aims at providing a precise real-time low-cost navigation solution for
land vehicles with sub-meter accuracy. To fulfill the low-cost requirements, SF-PPP was adopted
because it can employ measurements from low-cost SF GNSS receivers in the market. Moreover,
low-cost consumer-grade MEMS sensors were utilized for the INS part. The EKF was selected as the
integration filter in the developed SF-PPP/INS system. To enhance the performance in the case of
GNSS outages, NHC and ZUPT updates were used to limit the solution drift caused by the IMU sensor
errors. The performance of the proposed system was investigated using data from two road tests.
The testing data included suburban environments, short real GNSS outages, and a 3-min GNSS outage
in underground parking. Despite using low-cost IMU and GNSS receivers, the developed PPP/INS
system maintained sub-meter level accuracy in suburban areas and during short GNSS outages.
Moreover, the system provided a reliable long-term navigation solution in GNSS-denied environments
compared to the SPP/SBAS solution provided by u-blox UDR technology. The SF-PPP solution
assisted in keeping the positioning solution accuracy to the sub-meter level in suburban environments.
Furthermore, fast re-convergence was achieved after the GNSS outages. The INS solution smoothed the
PPP output and was utilized to bridge the momentary and long GNSS outages reliably. The developed
PPP/INS system is anticipated to play an important role in low-cost automotive applications. It can
be utilized in providing sub-meter level accuracy for navigation along highways, which is presently
desirable by car manufacturers for their autonomous level 2 operation.
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Abbreviations

The following abbreviations are used in this manuscript:

CNES Centre National d’Etudes Spatiales
DCB Differential Code Bias
DF Dual-Frequency
DOP Dilution of Precision
ECEF Earth-Centered Earth-Fixed
EKF Extended Kalman Filter
GLONASS Global Navigation Satellite System
GNSS Global Navigation Satellite System
GPS Global Positioning System
IGS International GNSS Service
IMU Inertial Measurement Unit
INS Inertial Navigation System
ISB Inter-System Bias
LC Loosely-Coupled
LLF Local-Level Frame
MEMS Micro-Electro-Mechanical Systems
NHC Non-Holonomic Constraints
PPP Precise Point Positioning
RMS Root Mean Square
RTS Real-Time Service
SAE Society of Automotive Engineers
SBAS Satellite-Based Augmentation System
SF Single-Frequency
SPP Standard Point Positioning
UDR Untethered Dead Reckoning
ZUPT Zero-Velocity Update
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