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Abstract: The traditional methods for preparing magnesium aluminum layered double hydrotalcite
(Mg2Al-CO3LDHs) in industry include coprecipitation and hydrothermal methods. Both these
methods have the disadvantages of high preparation cost and complicated water washing process.
Using Mg(OH)2, Al(OH)3, and CO2 as raw materials in this work, the Mg2Al-CO3 LDHs are
successfully prepared by mechanochemical method, which solves the shortcomings of traditional
preparation method and realizes the conversion and utilization of CO2 resource. The prepared
Mg2Al-CO3 LDHs are evaluated as a heat stabilizer in poly(vinyl chloride) (PVC). The result indicates
that, when 2.4 phr Mg2Al-CO3 LDHs, 0.3 phr ZnSt2, and 0.3 phr of zinc acetylacetonate are added to
the PVC, the thermal stability time of PVC can reach 190 min, which is better than PVC containing
commercial Mg2Al-CO3 LDHs. Meanwhile, its processing performance is basically the same as the
PVC containing commercial Mg2Al-CO3 LDHs.

Keywords: poly(vinyl chloride); magnesium-aluminum layered double hydroxide; carbon dioxide;
mechanochemical method; thermal stability

1. Introduction

Heat stabilizer is one of the most important categories in plastic additives, which is in sync with
the birth and development of poly(vinyl chloride) (PVC). There are many types of heat stabilizers,
among which traditional heat stabilizers include organic tin, organic antimony, lead salts, metal soaps,
etc. [1,2]. Organotin-based heat stabilizers have excellent thermal stability, weather resistance,
initial colorability, nontoxicity, transparency, among other excellent properties, and are currently
the most widely used, most effective and promising class of heat stabilizers. However, its expensive
price limits its widespread application [3,4]. Organic antimony stabilizers have good thermal stability,
low price, and low toxicity, but they have poor light stability, and lubricity [5]. Lead salt stabilizers
were widely used in PVC products due to their low cost and excellent performance. However, lead is a
heavy metal that is harmful to humans and the environment [6]. Metal soap heat stabilizers are mainly
Ca-Zn composite heat stabilizers. However, they may also have a “zinc burn” phenomenon even
though they are inexpensive and non-toxic [7]. So, they need to be formulated with another auxiliary
heat stabilizer to make a multi component complex formulation when added to PVC [8]. In general,
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there is an urgent need for a material that is not only inexpensive, non-toxic, and environmentally
friendly, but also has excellent overall performance.

Layered double hydroxides (LDHs), also known as hydrotalcite-like compounds, are a
class of compounds characterized by a layered structure. It has the generic formula[
M2+

1−xM3+
x (OH)2

]x+
(An−)x/n·mH2O where x = 0.2~0.33, M2+ is a divalent metal cation, M3+ is

trivalent cation, and An− is non-framework charge compensating anion. Particularly, its structure
may be positively charged by substituting a portion of divalent cations in the brucite lattice with
trivalent cations, which the intercalation of anions between the layers balance the charge [9,10]. Due to
its special layered structure, LDHs have controllability in the chemical composition of the cationic
sheets, the type and number of the intercalated anions, and the size and distribution of the grains.
Therefore, there are many kinds of hydrotalcites, which have broad application prospects in the
fields of adsorption [11], medicine [12], catalysis [13], electrochemistry [14–16], flame-retardant [17,18],
and photochemistry [19]. Moreover, it can also be used as a heat stabilizer for PVC [20]. In the 1980s,
hydrotalcite was firstly found that when added to PVC materials had better thermal stability than PVC
materials without adding hydrotalcite [10]. This set off a research upsurge concerning the application
of hydrotalcite in PVC resin. Nowadays, as a typical layered double hydroxides, Mg-Al-CO3-LDHs has
been widely used as a high-efficiency long-term stabilizer for calcium and zinc soap heat stabilization
systems [21]. Generally, the synthesis methods of Mg-Al-hydrotalcite-based heat stabilizers include the
co-precipitation method [22], ion exchange method [23], urea method [10], hydrothermal method [24],
roasting recovery method [25], and nucleation/crystallization separation method [26]. However, these
synthetic methods require a large amount of salt solution and alkaline solution, which results in the
need to wash with a large amount of water in the later stage and produce low-value salt solutions
and alkaline solutions. The production cost is too high and the raw material utilization rate is low.
This runs counter to the goal of reducing production costs and environmental friendly.

Nowadays, the world-population and energy consumption are continuous increasing, which will
consume a large amount of fossil energy and release the greenhouse gas CO2, causing serious
environmental problems such as global warming. For the sustainable development of human society,
it is urgent to develop new green technologies to realize the conversion and utilization of CO2

resource [27].
In this work, traditional corresponding salts were substituted with Mg(OH)2 and Al(OH)3 and

CO2 was used as carbon sources, Mg2Al-CO3 LDHs were prepared by mechanochemical methods,
the possible synthesis mechanisms were discussed as well. Meanwhile, the prepared Mg2Al-CO3

LDHs were formulated with Zn-based soap initial heat stabilizers to make multicomponent complex
formulation and added to PVC to evaluate the thermal stability performance.

2. Experimental

2.1. Materials

PVC resin (S-65) was industrial grade (Formosa Plastics Co. Ltd., Ningbo, China). Mg(OH)2,
Al(OH)3 and CO2 were of A.R. grade and dioctyl-phthalate (DOP). The water used in the experiment
was deionized water.

2.2. Preparation of Hydrotalcite

Briefly, 11.6g (0.2 mol) Mg(OH)2 and 7.8 g (0.1 mol) Al(OH)3 were mixed, the grinding ball and the
mixture were put into the grinding jar according to the ball-to-powder weight ratio of 10:1. The rotation
speed was set at 400 r/min. After 5 h of ball milling in a planetary ball mill, the solid powder was
transferred into a three-necked flask, then 100 mL water was added, 2.2 g (0.05 mol) CO2 was passed
into the solution, the pH was controlled at 11. After stirring in a 95 ◦C water bath for 30 h, the reactant
was filtered, washed, dried in an 80 ◦C drying oven for 12 h, and ground for use.
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2.3. Material Characterization

The X-ray diffraction (XRD) analysis was performed using a D8 ADVANCE diffractometer
(Bruker, German) with Cu-Kα targets (λ = 1.5406 Å) at a scanning rate of 8◦/min, with 10~80◦ of the
scanning range, and operated at a voltage of 40 kV and current of 40 mA.

The surface morphology of the samples were investigated via scanning electron microscope (SEM)
study. The SEM measurements were carried out in Mira3 scanning electron microscope (Tescan, China).
All samples were coated with a thin layer of gold prior to testing.

The fourier transform infrared spectroscopy (FTIR) study of the samples were carried out using a
Nicolet iS5 (Thermo Fisher, Waltham, MA, USA) spectrometer at room temperature. The samples were
crushed well and then examined in KBr pellets.

A TGA5500 thermogravimetric analysis instrument (Wakefield, MA, USA) was employed to
analysis the sample stability, the sample was heated under an air flow from room temperature to
600 ◦C at a constant rate of 5 ◦C min−1.

The sample size was analyzed with MS2000 laser particle size analyzer (Malvern, UK). The sample
was dispersed in absolute ethanol. After ultrasonication for 1 h, it was placed in the sample cell for
particle size testing.

2.4. Thermal Stability Testing of PVC–LDHs Composites

The static thermal aging test, Congo red test and thermal weight loss test were used to evaluate
the thermal stability of PVC-LDHs composites. The specific steps of the static thermal aging test were
as follow: 100 g PVC resin, 70 mL DOP and a certain of stabilizers were mixed evenly and then added
in a SK-160B plastics mixing mill (Shanghai Light Industry Machinery Co. Ltd., Shanghai, China)
for 5 min at 175 ◦C to form films. In addition, a group of sample without heat stabilizers was as
comparison. After that, the films were cut into 2 × 2 cm2 strips, which could be placed into a 180 ◦C
oven for static thermal aging test. The color changes of the composites were recorded by a digital
camera every 10 min. According to ISO standard 182-1:1990 (E), the specific steps of Congo red test
were as follow: 2 g PVC strips were cut into pieces and added into a test tube, which a Congo red test
paper was located at 3 cm above the sample. Then, the test tube was immersed in an oil bath at 190 ◦C
to evaluate the thermal stability of the sample. The time required for the Congo red paper to change
from red to blue was recorded and repeated three times to take the average. The specific steps of the
thermal weight loss test were as follows: 10 g PVC resin, 7 mL DOP, and certain stabilizers were mixed
evenly and then transferred into the porcelain boats. The porcelain boats were placed into an oven
with a temperature of 190 ◦C and took out every certain time to weigh and calculate the weight loss.

3. Results and Discussion

3.1. Characterization of Mg2Al-CO3 LDHs

In order to explore the crystal form of the prepared sample and the mixture after ball milling,
XRD analyses of the samples are carried out and the result is shown in Figure 1. It can be clearly seen
from the figure that the sample a has obvious characteristic diffraction peaks at 2θ = 11.66◦, 23.46◦,
34.80◦, 39.38◦, 46.84◦, 60.72◦, and 62.13, respectively, corresponding to the 003, 006, 222, 225, 228, 600 and
603 crystal planes, which matches the standard card (Chao and Gault, 1997) of Mg4Al2(OH)12CO3·3H2O
(PDF# 51-1525). According to Bragg’s law, the d-values between standard card and prepared LDHs are
indicated in Table 1. As shown in Table 1, the d-values of the standard card and the prepared LDH at
the 003, 006 crystal plane are almost identical, which indicates that the sample a is typical hydrotalcite
layered structure. The baseline is stable, the peak width is narrow and sharp, and there is no obvious
impurity peak, indicating that the Mg2Al-CO3 LDHs are successfully synthesized. Curve b has strong
Mg(OH)2 and Al(OH)3 characteristic diffraction peaks, and there is a weak and wide diffraction peak at
2θ = 11.66◦, corresponding to the 003 crystal planes of Mg4Al2(OH)12CO3·3H2O. It indicates that there
is almost no reaction of the raw materials in the sample, and only a small amount of amorphous LDH is
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generated. The reason for this is that, under mechanical force effects, such as impact force, shear force,
pressure, etc., the mixture sample will undergo crystal lattice distortion and particle amorphization,
and its structure will form an amorphous layer after being strongly damaged.
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Table 1. Crystal parameters of LDHs.

Sample d003/Å d006/Å d222/Å d225/Å d228/Å d600/Å d603/Å

Standard card 7.570 3.778 2.570 2.281 1.932 1.524 1.493
a 7.586 3.789 2.576 2.286 1.938 1.524 1.493

In order to explore the morphology of the samples, SEM microphotographs of the samples
are shown in Figure 2. It can be clearly seen from the images that the morphology of sample a
exhibits a regular hexagonal structure, and the sheets are stacked together, which is a typical layered
hydrotalcite structure. The crystal size of sample a is 300~500 nm and the thickness is about 30 nm.
It shows that sample a has small crystal size, and its size is uniform, the crystal morphology is regular,
which is consistent with the XRD pattern result. Sample b exhibits a flaky structure with only a small
amount of hexagonal structure and uneven crystal size, indicating that mechanical grinding cannot
directly synthesize Mg2Al-CO3 LDHs, and it needs to be crystallized for a certain time under certain
temperature conditions.

Materials 2020, 13, x FOR PEER REVIEW 4 of 15 

 

sample, and only a small amount of amorphous LDH is generated. The reason for this is that, under 

mechanical force effects, such as impact force, shear force, pressure, etc., the mixture sample will 

undergo crystal lattice distortion and particle amorphization, and its structure will form an 

amorphous layer after being strongly damaged. 

 

Figure 1. XRD patterns of Mg2Al-CO3 LDHs prepared with (a) CO2 and (b) noneas carbon sources. 

Table 1. Crystal parameters of LDHs. 

Sample d003/Å d006/Å d222/Å d225/Å d228/Å d600/Å d603/Å 

Standard card 7.570 3.778 2.570 2.281 1.932 1.524 1.493 

a 7.586 3.789 2.576 2.286 1.938 1.524 1.493 

In order to explore the morphology of the samples, SEM microphotographs of the samples are 

shown in Figure 2. It can be clearly seen from the images that the morphology of sample a exhibits a 

regular hexagonal structure, and the sheets are stacked together, which is a typical layered 

hydrotalcite structure. The crystal size of sample a is 300~500 nm and the thickness is about 30 nm. It 

shows that sample a has small crystal size, and its size is uniform, the crystal morphology is regular, 

which is consistent with the XRD pattern result. Sample b exhibits a flaky structure with only a small 

amount of hexagonal structure and uneven crystal size, indicating that mechanical grinding cannot 

directly synthesize Mg2Al-CO3 LDHs, and it needs to be crystallized for a certain time under certain 

temperature conditions. 

 

Figure 2. SEM images of Mg2Al-CO3 LDHs prepared with (a) CO2and (b) noneascarbon sources. Figure 2. SEM images of Mg2Al-CO3 LDHs prepared with (a) CO2 and (b) noneascarbon sources.



Materials 2020, 13, 5223 5 of 15

Figure 3 is a comparison diagram of the particle size of the Mg(OH)2 and Al(OH)3 mixture
samples before and after the ball milling process. Figure 3a is the particle size diagram of the mixture
before ball milling, it can be seen that the particle size distribution of the mixture sample is relatively
concentrated, with an average particle size of 1224 nm. Figure 3b is the particle size diagram of the
mixture after ball milling. It can be seen from the figure that the particle size distribution of the mixture
is also relatively concentrated, with an average particle diameter of 1041 nm. It is found that the
average particle size of the sample after ball milling process is reduced by 14.95%. During the ball
milling process, the particles of the mixture are continuously subjected to intense shearing, friction,
impact, and grinding, which reduces the grain size of the mixture sample. The crystals in the mixture
undergo plastic deformation, and dislocations multiply and move. Mechanical energy is converted
into chemical energy and stored in the crystal defects, which increases the chemical reaction activity of
the mixture and greatly reduces the reaction activation energy [28].
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In order to further explore the relevant information of the types of interlayer anions, crystal water
and lattice oxygen vibration in the prepared sample, infrared spectroscopy analysis is carried out and
the result is shown in Figure 4. It is found that the prepared sample showes a broad absorption peak
around 3460 cm−1, which is due to the stretching vibration of the hydroxyl attached to the metal ion
and the interlayer water molecules. The absorption peaks of the prepared sample at 1362 cm−1 is the
splitting peaks of the CO asymmetric stretching vibration in the CO3

2− group. It indicates that the
carbonate anion is successfully inserted between the layers. The peaks appearing in the low wave
number band represent lattice vibrational vibrations of Mg-O, Al-O, and Al-O-Mg. Among them,
the stretching vibration of Al-O bond is near 785 cm−1 and 553 cm−1 [22].
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Figure 5 shows the thermogravimetric-differential thermal analysis (TG-DTA) curve of the
prepared sample. It can be seen from the figure that the sample has two obvious stages of mass loss.
The first stage (~14%) is between 30 ◦C and 235 ◦C, mainly due to the loss of surface absorbed and
intercalated water molecules. It can be expressed by the Equation (1).

Mg4Al2(OH)12CO3·3H2O→Mg4Al2(OH)12CO3 + 3H2O (1)

The second stage (~28%) is between 235 ◦C and 450 ◦C, mainly due to the decompose of hydroxyl
in the layer and carbonate ion between the layers [29]. It can be expressed by the Equation (2).

Mg4Al2(OH)12CO3 → 3MgO + MgAl2O4 + 6H2O + CO2 ↑ (2)

The first endothermic peak at 225 ◦C corresponds to the removal of crystallization water. The second
and third peaks at 334 ◦C and 399 ◦C corresponds to the dehydroxylation of aluminum hydroxide and
magnesium hydroxide, respectively [22].
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As shown in Figure 6, the weighed mixture is added to a ball mill pot, and the LDH precursor is
generated under the action of mechanical force [30,31], which can be combined with carbonate ions
in an alkaline solution to form Mg2Al-CO3 LDHs after stirring 30 h. According to previous studies,
the formation mechanism of Mg2Al-CO3 LDHs prepared by Mg(OH)2, Al(OH)3 is similar to the
formation mechanism of hydrotalcite prepared by co-precipitation. A possible formation mechanism
of Mg2Al-CO3 LDHs prepared by cleaning method occurred according to the following reaction.

CO2 + 2OH− → CO2−
3 + H2O (3)

Al(OH)3 + OH− 
 AlO−2 + 2H2O
 Al(OH)−4 (4)

Mg(OH)2 + xAl(OH)−4 →Mg1−xAlx(OH)2
x+ + xMg(OH)2 + 2xOH− (5)

Mg1−xAlx(OH)2
x+ + 1/2xCO2−

3 + mH2O→Mg1−xAlx(OH)2(CO3)1/2x·mH2O (6)

In Equation (3), CO2 is absorbed by lye and converted into CO3
2−. In Equation (4), in an alkaline

system, Al(OH)3 reacts with OH− to produce Al(OH)−4 . In Equation (5), Al(OH)−4 diffuses into the
octahedral voids of OH− accumulation in brucite. Among them, Al3+ enters into the octahedral void,
substituting a portion of Mg2+ in the brucite lattice, forming a coordination structure. This octahedral
structure unit forms a network structure through stacking and different connection methods. During
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the formation of the network structure, defects will inevitably be formed, such as holes and incomplete
coordination, resulting in the crystal layer being positively charged. Then, in Equation (6), in order to
balance the positive charge carried by the laminate, CO2−

3 in the solution intercalates into the interlayer
through electrostatic interaction, hydrogen bonding and van der Waals force to balance the positive
charge on the laminate and gradually forms the hydrotalc structure [32,33].

4Mg(OH)2 + 2Al(OH)3 + CO2 + 2H2O→Mg4Al2(OH)12CO3·3H2O (7)

Equation (7) is the reaction equation, in which the crystal water in hydrotalcite are all from the
solution. It can be seen from the Equation (7) that the reactant raw materials are fully utilized.
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Figure 6. Schematic diagram of mechanochemical preparation method of Mg2Al-CO3LDHs.

3.2. Thermal Stability of Mg2Al-CO3 LDHs on PVC

In order to explore the synergistic thermal stability of Mg2Al-CO3 LDHs with other stabilizers
on PVC, the thermal stability of the samples have been tested. The result of Congo red test of PVC
samples are shown in Table 2, and the results of the static oven thermal aging test and thermal weight
loss test are shown in Figures 7 and 8. When the Congo red time is longer and the quality loss of PVC
in the static oven experiment is less, indicating that the thermal stability of PVC is better.

Table 2. The result of Congo red test of PVC samples.

Label PVC/g LDHs/phr ZnSt2/phr Thermal Stability Time of PVC Samples (min)

a 100 0 0 8
b 100 3.0 0 30
c 100 0 0.6 12
d 100 2.4 0.6 36
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As shown in Figures 7a and 8, the sample without any addition of heat stabilizer has been
completely turned black at 20 min, its thermal stability time is only 8 min according to Congo red
test, and it has a weight retention rate of 56.92% at 1440 min under 190 ◦C condition. Sample with
Mg2Al-CO3 LDHs addition amount of 3 phr begin to color at 20 min and completely turn black at
80 min as shown in Figure 7b. And it has the weight retention rate of 85.37% at 1440 min. Meanwhile,
its thermal stability time is 30 min, which is 22 min longer than the sample without any addition of
heat stabilizer but it still has a poor initial thermal stability. That is because Mg2Al-CO3 LDHs belongs
to a long-term thermal stabilizer, so it is necessary to add an initial thermal stabilizer into it. Here,
zinc stearate (ZnSt2) is used as an initial heat stabilizer. As shown in Figure 7c, the sample added
with ZnSt2 completely turned black at 30 min, has a “zinc burn” phenomenon, its thermal stability
time is 12 min. Meanwhile, it has the weight retention rate of 66.74%, which is higher than pure PVC.
In Figure 7d, the sample added with LDHs and ZnSt2 does not start coloring until 100 min, and has
been completely turned black at 160 min. Its thermal stability time is 36 min, which depends on the
synergistic effect of LDHs and ZnSt2. This is because the fatty acid radicals in zinc stearate can react
with allyl chloride on the PVC polymer chain, which can partially eliminate the unstable structure in the
long chain of PVC and reduce the initial thermal decomposition rate of PVC. In addition, zinc stearate
can absorb HCl gas in the system, and the specific reaction can be expressed by Equations (8) and (9).

2RCH = CHCH2Cl + Zn(C 17H35 COO)2 → 2R + ZnCl2+2C17H35COOCH2 (8)

Zn(C 17H35 COO)2+2HCl → ZnCl2 + 2C17H35COOH (9)

At the same time, it has a weight retention rate of 69.91%, the reason for the decrease in weight
retention rate after adding ZnSt2 is that the decomposition product ZnCl2 is a strong Lewis acid,
which will catalyze the degradation of PVC [7].

In order to compare the thermal stability of PVC containing commercial Mg2Al-CO3 LDHs with
the experimentally prepared Mg2Al-CO3 LDHs, different content of the auxiliary heat stabilizer zinc
acetylacetonate compound with experimentally prepared Mg2Al-CO3 LDHs and zinc stearate, then are
added to PVC. The result of Congo red test of PVC samplesare shown in Table 3. The results of the
static oven thermal aging test and thermal weight loss test are shown in Figures 9 and 10.

Table 3. The result of Congo red test of zinc acetylacetonate added to the PVC samples.

Label LDHs
Category PVC/g LDHs/phr ZnSt2/phr Zinc

Acetylacetonate/phr

Thermal Stability
Time of PVC

Samples (min)

a commercial 100 2.4 0.6 0 39
b experimental 100 2.4 0.6 0 36
c experimental 100 2.4 0.5 0.1 38
d experimental 100 2.4 0.4 0.2 45
e experimental 100 2.4 0.3 0.3 46
f experimental 100 2.4 0.2 0.4 41
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experimentally prepared LDHs + ZnSt2 + (b) 0, (c) 0.1, (d) 0.2, (e) 0.3 and (f) 0.4 phr Zinc acetylacetonate.

The sample containing commercial Mg2Al-CO3 LDHs does not start coloring until 110 min,
and completely turn black at 170 min, which is 10 min longer than the sample containing experimentally
prepared Mg2Al-CO3 LDHs as shown in Figure 9a,b. The reason is that small amounts of additivesuch
as stearic acid is added to commercial Mg2Al-CO3 LDHs, which can slightly improve its thermal



Materials 2020, 13, 5223 11 of 15

performance. As shown in Figure 9b–f, the samples added with zinc acetylacetonate effectively
improved the whiteness in the initial and slightly improved the long-term thermal stability of PVC.

As the content of zinc acetylacetonate increases, the initial and long-term thermal stability of
the PVC samples gradually improve, especially the sampled with 0.2 phr zinc acetylacetonate added,
which begins to color at 130 min, and completely turn black at 190 min, which is 20 min longer than the
sample containing commercial Mg2Al-CO3 LDHs.Zinc acetylacetonate belongs to β-diketone, which is
a kind of auxiliary heat stabilizer. The mechanism of action of zinc acetylacetonate as auxiliary heat
stabilizer can be represented in Figure 11. As shown in Figure 11a, zinc acetylacetonate can effectively
absorb the HCl gas generated by the thermal degradation of PVC, and the conversion product is
acetylacetone. Figure 11b shows that acetylacetone can replace the active allyl Cl atoms on the PVC
polymer chain under the catalytic action of ZnCl2, reducing the active sites on the PVC polymer
chain. Meanwhile, acetylacetone can also be cross-linked with PVC polymer chains to form a stable
structure [34].

Materials 2020, 13, x FOR PEER REVIEW 11 of 15 

 

performance. As shown in Figure 9b–f, the samples added with zinc acetylacetonate effectively 

improved the whiteness in the initial and slightly improved the long-term thermal stability of PVC. 

As the content of zinc acetylacetonate increases, the initial and long-term thermal stability of the 

PVC samples gradually improve, especially the sampled with 0.2 phr zinc acetylacetonate added, 

which begins to color at 130 min, and completely turn black at 190 min, which is 20 min longer than 

the sample containing commercial Mg2Al-CO3 LDHs.Zinc acetylacetonate belongs to β-diketone, 

which is a kind of auxiliary heat stabilizer. The mechanism of action of zinc acetylacetonate as 

auxiliary heat stabilizer can be represented in Figure 11. As shown in Figure 11a, zinc acetylacetonate 

can effectively absorb the HCl gas generated by the thermal degradation of PVC, and the conversion 

product is acetylacetone. Figure 11b shows that acetylacetone can replace the active allyl Cl atoms on 

the PVC polymer chain under the catalytic action of ZnCl2, reducing the active sites on the PVC 

polymer chain. Meanwhile, acetylacetone can also be cross-linked with PVC polymer chains to form 

a stable structure [34]. 

 
(a) 

 
(b) 

Figure 11. Mechanism of action of zinc acetylacetonate as auxiliary heat stabilizer. (a) absorb acid; (b) 

PVC polymer chains crosslinking. 

However, as the content of zinc acetylacetonate continued to increase, the initial and long-term 

thermal stability of the PVC sample decreased when the addition amount is 0.4 phr as shown in 

Figure 9f. This is because as the content of zinc acetylacetonate increased, more ZnCl2 is produced in 

the system, which will catalyze the thermal degradation of PVC due to its strong Lewis acidity [7], 

the initial and long-term thermal stability performance will decrease. 

As shown in Table 3 and Figure 10, the thermal stability time of PVC sample containing 

commercial LDHs is 38 min, which is 3 min longer than experimentally prepared LDHs, and it has a 

weight retention rate of 74.63% at 1440 min. However, as the content of zinc acetylacetonate 

increased, the thermal stability time and weight retention rate of PVC sample increases first and then 

decreases, when 0.3 phr zinc acetylacetonate is added, the PVC sample has a maximum thermal 

stability time of 46 min, which is 7 min longer than commercial LDHs. Meanwhile, it has weight 

retention rate of 73.53% at 1440 min. The Congo red test and thermal weight loss test demonstrate 

the same conclusion as the static oven thermal aging test. 
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(b) PVC polymer chains crosslinking.

However, as the content of zinc acetylacetonate continued to increase, the initial and long-term
thermal stability of the PVC sample decreased when the addition amount is 0.4 phr as shown in
Figure 9f. This is because as the content of zinc acetylacetonate increased, more ZnCl2 is produced in
the system, which will catalyze the thermal degradation of PVC due to its strong Lewis acidity [7],
the initial and long-term thermal stability performance will decrease.

As shown in Table 3 and Figure 10, the thermal stability time of PVC sample containing commercial
LDHs is 38 min, which is 3 min longer than experimentally prepared LDHs, and it has a weight
retention rate of 74.63% at 1440 min. However, as the content of zinc acetylacetonate increased,
the thermal stability time and weight retention rate of PVC sample increases first and then decreases,
when 0.3 phr zinc acetylacetonate is added, the PVC sample has a maximum thermal stability time
of 46 min, which is 7 min longer than commercial LDHs. Meanwhile, it has weight retention rate of
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73.53% at 1440 min. The Congo red test and thermal weight loss test demonstrate the same conclusion
as the static oven thermal aging test.

Therefore, when 0.3 phr of zinc acetylacetonate, 2.4 phr Mg2Al-CO3 LDHs, and 0.6 phr ZnSt2 are
added to the PVC, the thermal stability of PVC is the best.

3.3. Processing Performance Test of Compound Heat Stabilizer Added to PVC

In order to explore the difference in processing performance between the experimentally prepared
Mg2Al-CO3 LDHs and commercial Mg2Al-CO3 LDHs, a torque rheometer is carried out to test them.
The balanceable torque and the mixing process energy were carried out by a Torque Rheometer ZJL-200
(Chang Chun Intelligent Apparatus Co. Ltd., Changchun, China) at 190 ◦C at a speed of 40 r/min for
10 min.

The recipe of the samples are shown in Table 4, the rheological curves are shown in Figure 12 and
their rheological data are shown in Table 5.

Table 4. Rheology test recipe of the samples.

Label PVC/g DOP/g CaCO3/g Stearic Acid/g LDHs
Category LDHs/phr ZnSt2/phr zinc

Acetylacetonate/phr

a 100 10 30 0.5 commercial 2.4 0.6 0
b 100 10 30 0.5 experimental 2.4 0.6 0
c 100 10 30 0.5 experimental 2.4 0.3 0.3
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Table 5. Rheological data of the samples.

Label Maximum
Torque/(Nm)

Balance
Torque/(Nm)

Melting
Time/s

Melting
Temperature/◦C

Balance
Temperature/◦C

A 20.68 9.73 32 160.3 193.0
B 22.09 9.35 26 159.8 192.7
C 21.55 10.91 27 160.1 193.5

It can be seen from Figure 12 and Table 5 that the order of maximum torque of the three samples
is b > c >a, the balance torque is c > a > b, the melting time is a > c > b, melting temperature is
a > c > b, and the balance temperature is c > a > b. The comparison of the three samples show that the
maximum torque of sample a is the smallest, which is 20.68 Nm, indicating that its melt viscosity is
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low, the melt fluidity is the best, which is the easiest to process. Moreover, it has the longest melting
time 32 s, and the highest melting temperature 160.3 ◦C, indicating that sample a is the most difficult
to plasticize. Compared with the sample containing commercial Mg2Al-CO3 LDHs, the maximum
torque of the sample containing experimentally prepared Mg2Al-CO3 LDHs is larger, and the melting
time is shorter, indicating that its plasticization is faster, the viscosity of the melt is larger, is harder
to process, and the external lubricity of PVC composite is poorer [35]. It is necessary to improve the
external lubricity and balance the internal and external lubrication. Both the balance torque and the
balance temperature of sample b are low, indicating that PVC compounds consume the least energy
during processing. Comparing the sample adding zinc acetylacetonate with the sample without
zinc acetylacetonate, the maximum torque is reduced at 21.55 Nm, and the balance torque, balance
temperature, the melting time and melting temperature are slightly increased, indicating that the
addition of the auxiliary thermal stabilizer zinc acetylacetonate increases the external lubricity of the
PVC composite and improves the processing flow properties of the PVC composite. In summary, their
processing performance is basically the same, as the processing performance and thermal stability of
the prepared samples have reached the commercial level.

4. Conclusions

Through mechanochemical methods, the Mg2Al-CO3 LDHs were successfully prepared by
Mg(OH)2, Al(OH)3, and CO2. This method is simple in process, low in cost, high in materials
utilization rate, and suitable for large-scale production.

The samples Mg2Al-CO3 LDHs were used as a heat stabilizer in PVC. The result shows that
when 2.4 phr Mg2Al-CO3 LDHs, 0.3 phr ZnSt2 and 0.3 phr of zinc acetylacetonate are added to the
PVC, the thermal stability time of PVC can reach 190 min under 180 ◦C oven test conditions, which is
20 min longer than the PVC composite containing 2.4 phr commercial Mg2Al-CO3 LDHs and 0.6 phr
ZnSt2. Meanwhile, the result of Congo red test shows that its thermal stability time is 46 min, which is
7 min longer than the time of commercial Mg2Al-CO3 LDHs. Moreover, its processing performance is
basically the same as the PVC containing commercial Mg2Al-CO3 LDHs.
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