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Abstract

Background

Parkinson’s disease (PD) is a progressive multifactorial neurodegenerative condition. Epi-

demiological studies have shown that patients with type 2 diabetes mellitus (T2DM2) are at

increased risk for developing PD, indicating a possible insulin-modulating role in this latter

condition. We hypothesized that drugs similar to glucagon-like peptide-1 (GLP-1) and gas-

tric inhibitory polypeptide (GIP), used in the treatment of T2DM2, may play a role in PD.

Objectives

The purpose of this study is to systematically review and meta-analyze data of preclinical

and clinical studies evaluating the efficacy and safety of GLP-1 and GIP drugs in the treat-

ment of PD.

Methods

Two reviewers will independently evaluate the studies available in the Ovid Medline, Ovid

Embase, Web of Science, Cochrane Central Register of Controlled Trials, Cinahl, and Lilacs

databases. Preclinical rodent or non-human primate studies and randomized controlled

human clinical trials will be included, without language or publication period restrictions. Out-

comes of interest in preclinical studies will be primarily locomotor improvements and

adverse effects in animal models of PD. For clinical trials, we will evaluate clinical improve-

ments rated by the Movement Disorders Society Unified Parkinson’s Disease Rating Scale–

parts I, II, III, and IV, and adverse effects. The risk of bias of preclinical studies will be
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assessed by the SYRCLE tool and CAMARADES checklist and the clinical studies by the

Cochrane tool; the certainty of the evidence will be rated by GRADE.

Discussion and conclusion

There is an urge for new PD treatments that may slow the progression of the disease rather

than just restoring dopamine levels. This study will comprehensively review and update the

state of the art of what is known about incretin hormones and PD and highlight the strengths

and limitations of translating preclinical data to the clinic whenever possible.

Systematic review registration

PROSPERO registration number CRD42020223435.

Background

Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are

incretin hormones secreted by specific intestinal enteroendocrine cells in response to nutrient

ingestion and absorption, preferably of carbohydrate and fat [1–3].

Both hormone effects are characterized by stimulation of pancreatic islet β cell proliferation

and differentiation, as well as induction of glucose-dependent pancreatic insulin secretion [2,

4]. Curiously, GLP-1 also acts as a potent glucagon inhibitor in a postprandial state, while GIP

stimulates glucagon release during fasting [2, 5, 6]. Together, they play an important role in

regulating glycemic homeostasis, and, for that reason, analogs have been used in the treatment

of type II diabetes mellitus (T2DM) [7, 8].

In addition to their conventional application in the T2DM treatment, several in vitro and in
vivo studies [9–14] have evaluated the GLP-1 and GIP pleiotropic actions in extrapancreatic

tissues, such as neuroprotective and neurotrophic effects in Parkinson’s disease (PD) models.

PD is a chronic and progressive neurodegenerative disorder characterized by both motor

and non-motor symptoms [15]. The pathological selective degeneration of dopaminergic neu-

rons in one of the basal ganglia termed substantia nigra pars compacta (SNpc) culminates with

reduced dopamine production and motor impairment. One of the morphological hallmarks of

PD is the intracytoplasmic fibrillar aggregates referred to as Lewy bodies, in which the protein

α-synuclein is a major component [15]. The causes of PD are not well defined. However, it is

suggested that its pathogenesis is multifactorial, involving genetic susceptibility, aging and

exposure to certain chemical agents [16].

T2DM has been associated with more severe symptoms and accelerated progression of PD

[17–19]. The importance of metabolic dysfunction in PD is becoming widely accepted, includ-

ing dysfunction of insulin signaling pathways [17, 20, 21].

In the CNS, insulin is behind many processes that could be dysregulated in PD, including

apoptosis, autophagy, mitochondrial dysfunction, oxidative stress, neuroinflammation, and

synaptic plasticity [22–27]. It is even possible that there is a relationship between the accumu-

lation of the anomalous α-synuclein protein and the development of insulin resistance [22]. In

transgenic mice with overexpression of alpha-synuclein, the accumulation of this protein

appears to act as a negative regulator of the insulin signaling pathway by destabilizing its recep-

tor substrate (Insulin receptor substrate-1, IRS-1) and inhibiting activation of the other impor-

tant protein kinases of the pathway [28]. This may trigger a vicious cycle of
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neuroinflammation and worsen the α-synuclein accumulation, which could lead to more neu-

ronal loss.

Animal studies have shown that obese rats [29] or mice [30] or transgenic mice [31] with a

diabetic profile are more susceptible to the neurotoxins used in PD animal models, such as by

the development of brain insulin resistance [29, 31], accumulation of intracytoplasmic α-synu-

clein protein in the SNpc [31], activation of microglia cells (neuroinflammation) [31], endo-

plasmic reticulum stress in the midbrain [31], dopamine depletion in the SNpc and striatum

[29], oxidative stress in dopaminergic neurons [29, 30] and/or dopaminergic neuronal loss

[31].

Apart from peripheral tissues, the incretin hormone receptors are also expressed in the

CNS [32–35]. The binding to GLP-1 and GIP receptors by GLP-1 and GIP agonists may

restore brain insulin sensitivity by activation of specific insulin-modulated pathways that pro-

mote cell survival, while inhibiting pro-apoptotic pathways [36–39]. Therefore, interventions

aimed at reversing insulin resistance are being increasingly recognized as possible new thera-

pies for PD.

However, the GLP-1 and GIP receptor agonists may differ in their neuroprotective effects

in view of pharmacodynamic and pharmacokinetic differences, and it is not quite clear if they

would act as adjuvants in the treatment of PD with other usual antiparkinsonian drugs, or if

they really could alter the progression of the disease.

Studies comparing different animal models of PD and different experimental designs with

incretin hormones are scarce [40]. Either, there are a few randomized controlled trials with

these analogs available in the literature; therefore, the possibility of translating the efficacy of

this group of drugs from preclinical studies to the clinic has not yet been evaluated.

Translating the knowledge of basic research into new therapeutic approaches following the

concept of "bench to bedside" is just one of the stages of translational medical research [41,

42]. Therefore, we propose to perform a systematic review and meta-analysis of randomized

controlled clinical trials and preclinical studies evaluating the efficacy and safety of GLP-1 and

GIP receptor agonists in slowing the progression of PD, exploring their potential mechanisms

of neuroprotection. By analyzing preclinical and clinical studies, the ultimate goal is to verify if

the results from preclinical studies can be translated into clinical practice whenever possible.

Methods

Standards

This protocol will follow established guidelines for systematic reviews and meta-analyses of

clinical trials (PRISMA-P) [43], and specific guidelines for conducting systematic reviews of

preclinical studies [44].

Protocol registration number

This protocol is registered in the International Prospective Register of Systematic Reviews

(PROSPERO registration number: CRD42020223435).

Eligibility criteria

For clinical studies. Study design. Randomized controlled trials.

Participants. Studies including adults (� 18 years old) with a specialist-confirmed PD diag-

nosis (ICD-10: G20) according to the International Parkinson and Movement Disorder Soci-

ety (MDS) criteria or the UK Parkinson’s Disease Society Brain Bank diagnostic criteria, or on
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the basis of clinical neurological assessment [45]. There will be no restrictions regarding sex,

ethnicity or severity of PD.

Intervention. Studies including patients on treatment of PD with drugs capable of activating

the following receptors:

• GLP-1: GLP-1, liraglutide, lixisenatide, semaglutide, geniposide, exenatide, exendin-4, oxy-

tomodulin or others;

• GIP: D-Ala2-GIP-glu-PAL or others;

• GLP-1/GIP (dual agonists): DA-JC1, DA-JC4, DA-CH5, DA3-CH or others.

There will be no restrictions regarding duration and doses. Patients concomitantly receiv-

ing usual antiparkinsonian drugs (e.g., levodopa or dopaminergic drugs, such as monoamine

oxidase inhibitors, catechol-O-methyltransferase inhibitors or dopaminergic agonists) will be

accepted.

Comparators. Studies including specialist-confirmed PD patients who have not received

treatment with GLP-1, GIP or dual GLP-1/GIP receptor agonist drugs. Participants on GLP-1/

GIP placebos receiving standard of care (e.g., background treatment with antiparkinsonian

drugs) will also be accepted.

Primary outcomes. Studies that measured:

• PD motor signs rated by the “Movement Disorders Society Unified Parkinson’s Disease Rat-

ing Scale—part III [46]”. A difference of -3.25 points will be considered a minimal, but clini-

cally important, improvement and 4.63 points will be considered minimal, but clinically

important, worsening [47].

• Non-motor symptoms rated by the MDS-UPDRS Scale, part I [46] or the Non-Motor Symp-

toms Questionnaire [48];

• Activities of daily living rated by the MDS-UPDRS Scale, part II [46];

• Dyskinesias or motor fluctuations rated by the MDS-UPDRS Scale part IV [46] or the Uni-

fied Dyskinesia Rating Scale [49];

• Adverse effects or serious adverse effects as reported in the included studies.

Secondary outcomes. Studies that measured:

• Quality of life rated by validated scales or questionnaires, such as the Parkinson’s Disease 39

item Quality of life questionnaire [50], the Parkinson’s disease quality of life questionnaire

[51] or others;

• Psychological alterations, such as depression or dementia rated by the Mattis Dementia Rat-

ing Scale [52] or the Montgomery-Asberg Depression Rating Scale [53].

Exclusion criteria. Considering the potential association between diabetes and PD, we will

exclude studies that exclusively enrolled patients with diabetes (any type). Furthermore, we

will exclude studies involving participants with advanced dementia because cognitive

impairment could affect the accuracy of patient-reported outcomes.

For preclinical studies. Study design. Any non-human studies using the following most

common neurotoxin-induced animal models of PD for the establishment of therapeutic

measures:

• 6-hydroxydopamine,1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, lipopolysaccharide,

rotenone (or other possible pesticide exposure);
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• Transgenic animal models that explore the function of PD-linked genes (e.g. α-synuclein,

DJ-1, LRRK2, Parkin, UCH-L1, PINK1);

• Other models mentioned in the screened studies.

Animal species. Studies with adult rodents or non-human primates, without restriction as

to strain, sex, life stage of exposure and/or moment of outcome evaluation.

Intervention. Studies including PD treatment with drugs capable of activating the following

receptors:

• GLP-1: GLP-1, liraglutide, lixisenatide, semaglutide, geniposide, exenatide, exendin-4, oxy-

tomodulin or others;

• GIP: D-Ala2-GIP-glu-PAL or others;

• GLP-1/GIP (dual agonists): DA-JC1, DA-JC4, DA-CH5, DA3-CH or others receptor agonist

drugs.

Only studies that performed exposure to each drug separately will be accepted. There will

be no restriction on dose level, route of administration or duration of exposure. Animals con-

comitantly treated with usual antiparkinsonian drugs will be accepted.

Comparators. Studies including PD or vehicle animals not exposed to the GLP-1, GIP or

GLP-1/GIP receptor agonist drugs. Control animals treated with usual antiparkinsonian drugs

will be accepted.

Primary outcomes. Studies that measured:

• Motor signs (motor activity and sensorimotor reflex) in tests commonly used to assess neu-

rological parameters in rodents/non-human primates;

• Mortality or adverse effects, such as body weight changes, organ weight changes, macrosco-

pical and histopathological analysis, liver or pancreatic enzyme levels, glucose levels, or oth-

ers as reported in the included studies.

Secondary outcomes. Studies that measured cognitive functions/neurological behaviors

and/or morphological changes that could be indicative of the GLP-1/GIP mode of action, such

as:

• Learning and memory in tests commonly used to assess neurological parameters in rodents/

non-human primates;

• Anxiety or depression behaviors measured by tests commonly used to assess neurological

parameters in rodents/non-human primates;

• Number of nigrostriatal dopaminergic neurons by positive immunostaining of the tyrosine

hydroxylase enzyme of neurons in the SNpc and other CNS regions;

• Quantification of dopamine levels and its metabolites in the striated nucleus or other CNS

regions;

• Quantification of antiapoptotic signaling molecules;

• Evaluation of neuroinflammation by quantifying inflammatory cytokines or transcription

factors involved in inflammatory response;

• α-synuclein accumulation in the SNpc and other CNS regions.

• Quantification of reactive oxygen species in dopaminergic neurons, as well as quantification

of markers for oxidative stress and antioxidant enzymes;
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• Quantification of neurotrophic factors related to neuroplasticity mechanisms.

Search methods for primary studies

Electronic searches. Peer-reviewed original studies published in the following electronic

databases will be searched: Ovid Medline, Ovid Embase, Web of Science, Cochrane Central

Register of Controlled Trials, Cinahl, and Lilacs without language and year of publication

restrictions. Clinicaltrials.gov will also be consulted especially concerning possible unpub-

lished trials with available data. All electronic searches will be performed from database incep-

tion to December, 2021.

Search strategy. Key terms, MeSH terms and free terms related to “Parkinson’s Disease”,

“Parkinsonian Disorders”, “Glucagon-Like Peptide 1”, “Glucagon-Like Peptide 1 receptor”,

“Exenatide”, “Liraglutide”, “Lixisenatide”, “Semaglutide”, “Geniposide”, “Oxytomodulin”,

“D-Ala2-GIP-glu-PAL”, “DA-JC1”, “DA-JC4”, “DA-CH5”, “DA3-CH”, and “Glucose-depen-

dent insulinotropic polypeptide” will be combined for each database (see S1 Appendix for an

example of search strategy that will be adapted for each database).

Searching other resources. References listed in the selected studies will be analyzed for

additional citations. Corresponding authors will be contacted to retrieve additional data.

Eligibility determination

Two reviewers (CV and DG), after calibration exercises, will independently screen all titles

and abstracts identified by the literature search, obtain full-text articles of all potentially eligible

studies, and evaluate them for eligibility. Disagreements will be resolved by consensus and,

eventually, through consultation with technical advisors (JLVC, LCL, TVP) to improve accu-

racy and consistency among screeners.

Study flow diagram

A PRISMA flow diagram will be performed to indicate the number of included and excluded

studies and the corresponding reasons for exclusion.

Data extraction

Reviewers (CV and DG) will undergo calibration exercises, and work in pairs to independently

extract data from the included studies. A standardized, piloted form will be used to extract

information from the clinical studies: reference, name of the evaluated drug, study design,

severity of PD, name of the antiparkinsonian drugs possibly used concomitantly with the

incretin analogs, treatment characteristics (dose, period of application, interval between appli-

cations, number of applications) and presentation of results (outcomes and the respective eval-

uation methods in the control and treatment groups).

For preclinical studies, the following information will be extracted: reference, name of the

evaluated drug, description of the PD animal model (including strain, age, sex, the weight of

animals and name of the PD-inducing neurotoxin or transgenic model), type and source of

food used, conditions of the housing, control of temperature and humidity, characteristics of

the test substance, experimental design (number of animals/group, acute or chronic exposure),

treatment (doses, number of applications, vehicle, route of administration), euthanasia proto-

col, anesthetics possibly used, results (outcomes and the respective evaluation methods for

control and treatment groups), and description of the statistics used. Whenever results in the

preclinical studies are presented in graphs, the measures will be estimated by the Digitzeit soft-

ware (version 2.4) in pairs, independently (CV and DG), and the mean of both measures will
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be extracted in case of minor divergence. Disagreements will be resolved by consensus and,

eventually, through consultation with technical advisors (JLVC, LCL, TVP) to improve accu-

racy and consistency among screeners.

Assessment of internal validity of individual studies

Two reviewers (CV and DG) will independently assess the internal validity of each study. Dis-

agreements will be resolved by consensus and, eventually, through consultation with technical

advisors.

For clinical studies, the Cochrane risk of bias tool will be used to assess the risk of bias [54,

55]. The following domains will be considered: a) selection bias (random sequence generation/

allocation concealment); b) performance bias (blinding of participants and personnel); c)

detection bias (blinding of outcome assessment); d) attrition bias (incomplete outcome data);

e) other sources of bias.

For preclinical studies, specific assessment tools will be applied to evaluate the risk of bias,

including the SYRCLE risk of bias tool [56] and the CAMARADES checklist [57], respectively.

The following domains will be considered for the risk of bias assessment: a) selection bias

(random sequence generation/baseline characteristics/allocation concealment); b) perfor-

mance bias (random housing/blinding of researchers during intervention); c) detection bias

(random outcome assessment/outcome assessment blinding); d) attrition bias (incomplete

outcome data); e) other sources of bias.

The possible answers for each domain in the risk of bias assessment of clinical and preclini-

cal studies will be “Yes” (high risk of bias), “No” (low risk of bias) or “Unclear” (unclear risk of

bias). Results will be presented in the form of tables and graphs.

Data synthesis and statistical analysis

Meta-analyses will be performed separately for preclinical and clinical studies, for each out-

come (primary and secondary outcomes) through an inverse-variance random effects model.

We will use the restricted maximum-likelihood (REML) estimator of the between-study vari-

ance. However, we will also present the results for the inverse-variance fixed-effects model as a

sensitivity analysis.

Whenever feasible, inter-species comparison analyses will be performed to contrast the

treatment effects observed in animal studies to those detected in human trials (e.g., a drug’s

effect on motor function in animals will be compared to the corresponding effects on

humans). Inter-species comparisons will consider the direction, magnitude, and uncertainty

of effects. Morphological outcomes in preclinical studies will be used to elucidate the GLP-1/

GIP possible neuroprotective mode of action and will be in separate meta-analyses whenever

possible or summarized in descriptive tables. All meta-analyses will be performed by the Stata

software package (version 14.2) and presented in forest plots.

To perform the meta-analyses, the same measure of association will be calculated for the

studies, depending on the type of data:

• Dichotomous outcome—Relative risks will be used as the effect measure, with a 95% confi-

dence interval.

• Continuous outcome—Mean differences (MD) or standardized mean differences (SMD)

will be used as the measure of treatment effect, with a 95% confidence interval.

Funnel plot asymmetry. Funnel plot asymmetry will be limited to outcomes with 10 or

more estimates. We will plot a measure of precision (e.g., standard error) on the vertical axis
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and the corresponding estimate on the horizontal axis. We will also use Egger’s regression test

for continuous outcomes and Harbord’s test for binary outcomes [58, 59].

Heterogeneity assessment. Heterogeneity among individual studies will be assessed using

the I2 statistic and Cochran’s Q test [60]. The latter will be considered statistically significant

when P< 0.10.

Meta-regression and subgroup analysis. Meta-regression models with the REML estima-

tor of the between-study variance will be fitted whenever 10 or more estimates are available. If

less than 10 estimates are available, subgroup analyses will be performed. Meta-regression and

subgroup analyses will be conducted whenever possible (at least 2 studies) to investigate possi-

ble sources of heterogeneity in clinical studies, such as due to the inclusion of participants with

different PD severity (severe, moderate and mild scored on the MDS-UPDRS part III), sub-

types of PD (tremor dominant, mixed and akinetic/rigid), genomic status of each patient’s PD

related genes (α-synuclein, DJ-1, LRRK2, Parkin, UCH-L1 or PINK1), use of other antiparkin-

sonian drugs (levodopa or dopaminergic drugs, such as monoamine oxidase inhibitors, cate-

chol-O-methyltransferase inhibitors or dopaminergic agonists), and different treatment

schemes with the GLP-1, GIP or GLP-1/GIP receptor agonists (different doses, route of

administration and duration of treatment). In case of concomitant use with other antiparkin-

sonian drugs, we will consider whether the patients were in an “off” medication state (with the

withdrawal of the medication at least the day before the evaluations). Whenever possible, “on”

and “off” state measures will be compared separately since it is expected a higher magnitude of

effect in an “on” medication state.

For preclinical studies, heterogeneity will be investigated considering the use of different

animal species (rats, mice and non-human primates), different PD models (different neurotox-

ins and transgenic models), different PD severity (partial and full lesions), use of other antipar-

kinsonian drugs (levodopa or dopaminergic drugs, such as monoamine oxidase inhibitors,

catechol-O-methyltransferase inhibitors or dopaminergic agonists) and different treatment

schemes (different doses, route of administration and duration of treatment).

If there are enough studies (at least 2), we will investigate the impact of high risk of bias

studies on the meta-analyses in a sensitivity analysis.

If it is not possible to pool results in the meta-analyses due to high not explained heteroge-

neity or not enough similar data for each outcome, findings will only be narratively described.

Certainty of evidence

The GRADE system [61–63] will be used to rate the certainty of evidence provided by preclini-

cal and clinical studies separately. The certainty of evidence will be determined for each out-

come. Randomized controlled clinical trials and animal studies, when well designed, can

eliminate much of the confounding factors by random allocation of participants and animals

to the different study groups. Thus, they start from the initial classification of "high certainty".

However, there are several factors that can downgrade the initial classification of the study

groups in relation to the reliability of the evidence that they generated: risk of bias [64], impre-

cision [65], inconsistency [66], indirectness [67], and publication bias [68].

Four descriptors will be used to indicate the level of confidence in the evidence generated

by preclinical and clinical studies, separately: high certainty level (++++); moderate certainty

level (+++); low certainty level (++); very low certainty level (+). All results will be presented as

tables.

Highly reliable evidence implies that further studies will hardly change the available results;

on the other hand, very low levels of evidence indicate that future studies may alter not only

the confidence in the available results, but the results themselves.
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Discussion and conclusion

Ever since its discovery in the late 60s, levodopa remains the gold standard for the symptom-

atic treatment of PD [69]. Levodopa is a dopamine precursor that easily crosses the blood-

brain barrier, and in the CNS is converted to dopamine to restore the low dopamine levels

caused by dopaminergic neuron degeneration. However, long-term levodopa treatment is fre-

quently associated with motor fluctuations and dyskinesias that have a serious impact on

patient quality of life [69].

Currently, the goal for the treatment of PD is the development of drugs that may slow the

progression of the disease, instead of just restoring dopamine levels. GLP-1 and GIP receptor

agonists have been indicated as possible neuroprotectors due to a reduction in neuronal insu-

lin resistance in a variety of preclinical models [22, 36–38].

The use of animal models has been crucial to elucidate the pathophysiology behind PD and

the development of therapeutic strategies. However, each model has its own particularities and

there is still no single model that mimics all the human features of PD [70, 71].

Although the clinical aspects in animals are not the same as in humans, there are different

locomotor tests that investigate bradykinesia, decreased motor activity, tremors, muscle rigid-

ity or motor coordination in animals, besides neurobehavioral conditions, such as anxiety,

depression, memory loss and others [71]. In the present work, corresponding outcomes will be

used for more straightforward comparisons with clinical findings in humans whenever possi-

ble. The morphological outcomes in animals will be used to investigate the mechanisms of

action in both animals and humans. Naturally, the future discussion will also take into account

the applicability and limitations of the current PD animal models.

It is acknowledged that, as each outcome will be evaluated separately, meta-analyses and

subgroup analyses eventually will not be possible due to the lack of studies with similar data or

due to high heterogeneous findings. It is also possible to predict a low number of clinical trials

that do not address all drugs identified in preclinical studies.

Nevertheless, this study will update the state of the art in terms of what is known about

incretin hormones and PD and provide a critical appraisal on the possible efficacy and safety

of these drugs in altering the course of the disease, highlighting the strengths and limitations of

translating preclinical data to the clinic whenever possible.
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