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Abstract: In 2021, approximately 248,530 new prostate cancer (PCa) cases are estimated in the United States.
Hispanic/Latinos (H/L) are the second largest racial/ethnic group in the US. The objective of this
study was to assess DNA methylation patterns between aggressive and indolent PCa along with
ancestry proportions in 49 H/L men from Puerto Rico (PR). Prostate tumors were classified as
aggressive (n = 17) and indolent (n = 32) based on the Gleason score. Genomic DNA samples were
extracted by macro-dissection. DNA methylation patterns were assessed using the Illumina EPIC
DNA methylation platform. We used ADMIXTURE to estimate global ancestry proportions. We
identified 892 differentially methylated genes in prostate tumor tissues as compared with normal
tissues. Based on an epigenetic clock model, we observed that the total number of stem cell divisions
(TNSC) and stem cell division rate (SCDR) were significantly higher in tumor than adjacent normal
tissues. Regarding PCa aggressiveness, 141 differentially methylated genes were identified. Ancestry
proportions of PR men were estimated as African, European, and Indigenous American; these were
24.1%, 64.2%, and 11.7%, respectively. The identification of DNA methylation profiles associated with
risk and aggressiveness of PCa in PR H/L men will shed light on potential mechanisms contributing
to PCa disparities in PR population.

Keywords: prostate cancer; DNA methylation; aggressiveness; Hispanic/Latino population;
ancestry structure

1. Introduction

Based on American Cancer Society data, 248,530 new prostate cancer (PCa) cases and
34,130 PCa-specific deaths are anticipated in the US in 2021 [1]. The lifetime risk of PCa is
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12.5% [2]. PCa-specific mortality (PCSM) rates have been found to vary among different
ethnic groups in the US. The study by Chinea et al. (2017) reported differences in PCSM
rates when comparing Hispanic/Latino (H/L) subgroups to non-Hispanic Whites (NHWs)
and non-Hispanic Blacks (NHBs) [3]. However, this study aggregated all H/L subgroups
into one broad group including: Mexican Americans, Puerto Ricans, Cubans, South or
Central Americans, and Dominicans. Therefore, we need to investigate variations in H/L
subgroup specific PCSM rates. Among different H/L subgroups, Puerto Rican (PR) men
showed much higher PCSM rates than other Hispanic groups and NHBs [3]. Indeed, in
Puerto Rico (PR), PCa is the most common type of cancer case and accounts for the most
cancer-specific deaths [4].

PCa is a complex disease that is mediated by the accumulation of genetic and epi-
genetic aberrations, such as altered androgen receptor activity, changes in chromatin
structure, differential expression of oncogenes and tumor suppressor genes, or defective
cell division [5]. Differential DNA methylation can influence carcinogenesis and disease
progression [6]. Indeed, the most common molecular event in PCa is dysregulation of DNA
methylation. Among these epigenetic changes, some specific changes may be associated
with poor outcomes, including PCSM, metastasis, and recurrence [7]. A study from the Can-
cer Genome Atlas (TCGA) found associations between gene expression and methylation
profiles. This study suggested that epigenetic changes define distinct molecular subtypes
of PCa [8]. The role of DNA methylation in promoter regions has been investigated many
times, and most hypermethylation has been related with gene silencing of tumor suppres-
sor genes in PCa and with poor outcomes [6,9–11]. PCa is typically known as a slowly
developing disease. However, approximately 20% of cases are classified as aggressive.
The aggressive PCa phenotype is associated with the development of metastasis and poor
survival outcomes.

Mateo et al. (2015) reported that the dysregulation of tumor suppressor genes are
often found in aggressive PCa [5]. Promoter hypermethylation may drive cancer through
tumor suppressor gene inactivation and activation of oncogenes [12]. Therefore, additional
studies are needed to further understand the epigenetic regulation of tumor suppressor
genes and oncogenes in PCa.

Numerous studies reported that differential DNA methylation influences the like-
lihood of developing PCa and also affects its progression [13,14]. Yang and Park (2012)
conducted an extensive review of over 100 studies and presented a list of frequently re-
ported differentially methylated genes in malignant prostate tissue [14]. Most of the studies
reviewed investigated a small number of genes because of a small sample size in order
to increase the chance to yield statistically significant results. However, this approach
may not assess methylation impact associated with multiple genes. Several of the studies
used an epigenome-wide methylation approach, often used to examine multiple genes.
As expected, numerous differential methylated genes were identified. However, another
data set is needed to validate findings [15–17]. Since differential DNA methylation may
influence health disparities in PCa [18], there is a need to investigate methylation profiles
to evaluate potential PR-specific methylated genes.

Aging is one of the major risk factors for PCa. The risk of carcinogenesis in any given
tissue is closely related with the mitotic age of the tissue and therefore the cumulative
number of cell divisions [19]. The turnover rate of tissues is affected by several factors, such
as inflammation, injury, and exposure to carcinogens [20]. Therefore, increased turnover
in tissues may increase molecular alterations and eventually lead to carcinogenesis [21].
DNA methylation may be involved in aging [22]. DNA methylation biomarkers for aging,
also known as the epigenetic clock, have been developed based on DNA methylation
data. DNA methylation age (DNAmAge), generated from the epigenetic clock, estimates
epigenetic age, measures subject age, and, more importantly, predicts disease risk [23]. This
DNAmAge can be used for predicting chronic diseases, including cancers, if these values
show substantial deviations [24]. With this model, we can estimate epigenetic age and
predict cancer risk [25]. In this study, the total number of stem cell divisions (TNSC) and
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stem cell division rate (SCDR) were compared between tumor and adjacent normal tissues
using this method [25].

Currently, the dysregulation of DNA methylation in PR PCa patients is well known.
We recently reported differentially methylated genes in PCa tumor tissues and methylated
genes associated with aggressiveness in a small number of PR men with PCa [26]. Our
findings on epigenetic differences between prostate tumor and adjacent non-involved
(normal) tissues will be used to detect PCa early and may clarify how PCa starts from
the normal tissues. In addition, our goal is to identify PR specific DNA methylation
biomarkers responsible for cancer disparities in PR H/L men. In addition, we characterized
the ancestry structure of PR patients who participated in this study. Via et al. analyzed
642 PR individuals for ancestry structure and reported that PR is an admixed popula-
tion [27].

2. Materials and Methods
2.1. IRB Approval, and Tissue Sample Selection

Two Institutional Review Boards approved this study: the Moffitt Cancer Center
(Protocol no. Pro00048100) and the Ponce Health Sciences University (PHSU) (Protocol
no. 1909021277A001). All study participants signed an Informed Consent. We obtained
49 formalin-fixed paraffin-embedded (FFPE) prostate tumor and adjacent non-involved
pair samples from the Puerto Rico Biobank (PRBB), a U54 PHSU-MCC PACHE Partnership
core facility. Based on Gleason scores, tumors from study participants were classified as
either aggressive, 17, or as indolent, 32.

2.2. DNA Methylation Analysis
2.2.1. Illumina EPIC Methylation and DNA Samples

We used the Illumina Infinium Methylation EPIC (EPIC) BeadChip DNA methyla-
tion platform to obtain DNA methylation levels in DNA samples from FFPE-preserved
tissues as described in the manufacturer’s instructions. This instrument is located at the
Molecular Genomics Core, MCC, Tampa, FL, USA. Genomic DNA was obtained from the
prostate tissues. DNA was extracted from the marked tumor area on the H&E slides by the
pathologist (J.D.). DNA quality was tested with DNA integrity numbers (DINs).

2.2.2. Quality Control and Normalization for Data Obtained from Epigenome-Wide
Methylation Assays

Raw IDAT files were read by the minfi (version 1.28.4) [28,29] Bioconductor package
for R (version 3.5.2). Minfi’s implementation detection p-value was used to calculate detec-
tion p-values. Normalization was performed using the normal-exponential out-of-band
(NOOB) [30] method. Next, functional normalization (FunNorm) [31], a between-array
normalization method, was used. As Illumina recommended, the preprocess Funnorm
function returned an object containing β-values which were measured with an offset of
100 in the denominator [32]. To visualize data quality and identify outliers and potential
batch effects, we used a histogram of β-values, the number of missing values, and principal
component analysis (PCA). We set β-values with a corresponding detection p-value > 0.05
as missing values.

2.2.3. Detection of Differentially Methylated Regions (DMRs)

Student’s t-test and false discovery rates (FDR) were used for two group comparisons
and multiple testing respectively [33]. We set the minimum point for the mean β-value
between the two groups as 0.2. Therefore, CpG sites were considered significant if the
difference in for tumor versus normal was >0.2 and 0.05 when comparing low-risk (indolent)
and high-risk (aggressive) [34]. We used a region-based analysis to prevent potential false
positives. We considered all the CpG probes within a specific gene and determined as
DMRs if several CpG probes within that gene were differentially methylated [35–38]. We
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did not consider as a DMR if only one CpG probe was different within a specific gene.
Statistical analysis was performed using MATLAB (Natick, MA, USA).

2.3. Analysis for Ancestry Structure

The ancestry informative markers (AIMs) were used to estimate ancestry structure of
the 49 Puerto Rican men with the prostate cancer previously described. AIMs, 106 genetic
variations, provide the proportion of indigenous American, African, and European ances-
try. Genotyping was performed by a multiplex PCR coupled with single-base extension
methodology using a Sequenom analyzer. We excluded 5 single nucleotide polymorphisms
because of weak clustering or less than optimal genotyping rates (<90%). Admixture [39]
was used to estimate ancestry structure.

2.4. Estimation of Epigenetic Mitotic Clocks

The total number of stem cell divisions (TNSC) and stem cell division rate (SCDR)
were calculated using epiTOC2 methods as described previously [25].

3. Results
3.1. Demographic and Clinicopathological Characteristics of Study Group

The mean age at diagnosis for PR H/L men in the two groups of PCa was 64.6 years for
aggressive (high-risk) group, and 60.3 years for the indolent (low-risk) group. Thirty-five
percent of all patients (n = 17) had a high Gleason score (7 (4 + 3) or 8 − 10) and were
classified as a high-risk group. As expected, the significantly different distribution in
clinical stage was detected between two groups. No statistically significant differences
(p > 0.05) between the two groups were evident in terms of prostate-specific antigen (PSA)
levels and surgical margins (Table 1).

Table 1. Clinicopathological characteristics of Puerto Rican men (n = 49) with prostate cancer in the
pilot study.

Risk
High Low

p-Value
n = 17 n = 32

Age at Diagnosis 64.6 ± 5.7 60.3 ± 9.1 0.085
PSA 7.72 ± 5.07 7.01 ± 6.46 0.724

Gleason score <0.0001
6 0 20

7 (3 + 4) 0 12
7 (4 + 3) 11 0

8–9 6 0
Stage <0.0001
T1c 1 1
T2a 2 9
T2c 8 20
T3a 1 1
T3b 5 1

Surgical margins 0.71
Yes 1 3
No 14 27

Missing 2 2
p-values were obtained from Student’s t, chi-square, or Fisher exact tests. PSA, prostate-specific antigen.

3.2. Differential Methylation between Prostate Cancer Tumors and Adjacent Non-Involved Tissue

Quality control analysis, PCA, β-value distributions, and missing values identified
and excluded three samples (two tumors and one adjacent non-involved) which did not
meet quality control criteria. The first principal component (PC1) showed a clear separation
between tumor (n = 49) and adjacent non-involved tissues (n = 49) from the unsuper-
vised PCA model based on the remaining DNA samples (n = 98) (Figure 1A). These data
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suggested significant differential methylation between adjacent non-involved and tumor
tissues. To measure differential methylation levels between adjacent non-involved and
tumor tissues, a two-group comparison was performed with a volcano plot. This is a
type of scatterplot that shows statistical significance (q-value) versus magnitude of change
(∆β-value). In this figure, the most hypermethylated CpG probes are towards the right,
the most hypomethylated CpG probes are towards the left, and the most statistically sig-
nificant genes are towards the top. A volcano plot was based on the false discovery rate
(FDR)-corrected p-values (q < 0.001) and the mean difference (∆β-value > 0.2) between the
two groups (Figure 1B). From this analysis, we identified 8293 differentially methylated
CpG probes; the majority of probes (n = 7744) were hypermethylated in tumor samples
(Figure 1B). A scatter density graph of the average β value for tumor vs. adjacent normal
samples demonstrated that many CpG-probes have a similar methylation level in tumor
and normal samples, since most of the CpG-probes are along the diagonal (Figure 1C).
The “bump” located at x = 0.24, y = 0.5 indicates an increase of methylation in PCa tu-
mor samples. A histogram of the ∆β-value showed more hyper-methylated probes than
hypo-methylated probes, especially for ∆β-value > 0.2 (Figure 1D).

With the DAVID Functional Annotation Tools [40], we grouped genes based on func-
tional similarity in order to better interpret the large lists of genes derived from epigenome-
wide analysis. From 12 functional annotation categories, the highest enriched gene-set
for hyper-methylated probes was the Homeobox group (Figure 1E). We compared the ∆β-
value for significant hyper-methylated CpG-probes based on functional locations, DNase
Hypersensitivity CpG-probes (DHS), Open Chromatin probes (OC), and Transcription
factor binding sites (TFBS) (Figure 1F).

Based on DMR selection criteria, we identified 3034 differential probes in 892 genes.
Some identified genes, such GSTP1 (Figure 2A), RARB (Figure 2B), and RASSF1 (Figure 2C),
which were previously suggested as methylation biomarkers for PCa [14], showed DMRs
in tumor tissues. In addition, some genes, including Tumor Protein D52 (TPD52), which is
an oncogene [41], showed hypomethylation in multiple CpG sites in prostate tumor tissues
(Figure 2D).

Hypermethylation of RARB showed a significant association with PCa risk (OR 1.76,
95% CI: 1.29–2.40), and the association was more evident in NHBs (OR 2.18, 95% CI:
1.39–3.44) [40]. A role of methylation in RASSF1A gene in PCa risk was reported in a
meta-analysis. The odds ratio (OR) of RASSF1A methylation in men with PCa, compared to
controls, was 14.7 (95% CI = 7.6–28.6), with high specificity (AUC: 0.87, 95% CI: 0.72–0.94)
and sensitivity (AUC: 0.76, 95% CI: 0.55–0.89). Therefore, promoter methylation of the
RASSF1A gene has been suggested as a potential biomarker for PCa risk [41]. Additionally,
the hypomethylated genes in this study, such as tumor protein D52 (TPD52), an oncogene,
have been reported to be over-expressed in PCa as compared with adjacent normal tissues.
Therefore, methylation in TPD52 was proposed as a biomarker for PCa risk [42]. These
results can be further evaluated for their contribution to PCa risk in PR PCa patients.
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Figure 1. Analysis of tumor vs. normal tissues. The two first principal components in a PCA model
using all 49 tumor and 49 adjacent normal samples and all CpG-probes (n = 807,583) separates normal
(blue circles) and tumor (orange triangles) tissues from each other (A). A volcano plot comparing
tumor vs. normal tissues with ∆β-value on the x-axis and FDR corrected p-value, −log10(q-value), on
the y-axis (B). Blue circles indicate significant hypo-methylated CpG-probes and red circles hyper-
methylated CpG-probes. Scatter density graph of average β-value for tumor samples vs. normal
samples (C). Histogram comparing the number of hypo- and hyper-methylated probes (D). Enriched
gene-sets for hyper-methylated probes using DAVID (E). Comparing the ∆β-value for significant
hyper-methylated CpG-probes (F). DNase Hypersensitivity CpG-probes (DHS), Open Chromatin
probes (OC), Transcription factor binding sites (TFBS). **** p < 0.0001.
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Figure 2. Differently methylated genes in tumor vs. normal tissues. GSM plots comparing the
methylation levels between normal and tumor tissues for GSTP1 (A), RARB (B), RASSF1 (C), and
TPD52 (D). The selected CpG probes are shown on the y-axis with probe-id on the right y-axis and
the genomic position on the left y-axis. The methylation level for each CpG probe is shown along the
x-axis (β-value) with a boxplot for normal samples (N) in blue and tumor samples (T) in orange. The
leftmost column indicated CpG island while the second column indicates the CpG probes location
in the gene. Total number of stem cell divisions per stem cell (TNSC) boxplot comparing tumor vs.
normal tissues (E), and stem cell division rate (SCDR) boxplot (F). **** p < 0.0001.

3.3. Comparison of Epigenetic Clocks between Tumor vs. Adjacent Normal Tissues

Risk of mutations in a cell are increased by a high turnover rate, and this is associated
with an accelerated cell division as part of the cell cycle [21]. Therefore, the mitotic age
is correlated with the risk of carcinogenesis [19]. With Tischendorf’s epigenetic mitotic
clocks [42], we estimated a mathematical expression to estimate the fraction of cells methy-
lated at 163 candidate CpG sites in tumor or adjacent normal tissues. The total number of
stem cell divisions (TNSC) at the patient’s age, and the parameters for prostate-specific
probability of de novo methylation and baseline methylation (i.e., at fetal stage) were
determined. We note that TNSC and stem cell division rate (SCDR) in tumor tissues were
significantly higher than adjacent normal tissues (p < 0.0001) (Figure 2E,F).
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3.4. Differentially Methylated Genes Associated with Aggressive Type of Prostate Cancer

To further investigate the differentially methylated genes in prostate tumor samples,
we calculated a PCA model using only the tumor samples. The unsupervised PCA model
did not show a clear distinction between tumor and adjacent non-involved tissues in the
first principal component (PC1) (Figure 3A).

Figure 3. Analysis of high-risk vs. low risk. The two first principal components in a PCA model using
all tumor samples (n = 49) and all CpG-probes (n = 785,071) with low-risk tumors (green diamonds)
and high-risk tumors (purple squares) (A). A volcano plot comparing low-risk tumors vs. high-risk
tumors with ∆β-value on the x-axis and p-value, −log10(p-value), on the y-axis (B). Blue circles
indicate significant hypo-methylates CpG-probes and red circles hyper-methylated CpG-probes.
GSM plots comparing the methylation levels between low-risk tumors and high-risk tumors for
MGC29506 (C), RIN2 (D).

The p values (p < 0.001) and the mean difference (∆β-value > 0.05) between the
indo-lent and aggressive groups are presented in a volcano plot (Figure 3B). This analysis
resulted in 181 differentially methylated CpG probes, with a majority of the probes showing
hypomethylation in tumor samples (Figure 3B). The volcano plot shows the significant
differentially methylated CpG sites between aggressive and indolent prostate tumors found
in 141 genes (Figure 3B). Supplementary Table S1 presents the gene symbol, p-values,
probeID, and mean difference of methylation levels in high- and low-risk groups. Some
identified genes include RIN2 (Figure 3D), which was previously suggested as a methyla-
tion biomarker for early stage of esophageal cancer [43], and MGC29506 (Figure 3C), which
was previously suggested as a biomarker for gastric [44] and testicular cancers [23].

Among 181 differently methylated CpG sites, methylation level was significantly
increased in 130 sites and significantly decreased in 51 sites, in 141 unique genes (p < 0.001),
and the strongest evidence was found for SPRED2 [43], HLA-C [44], TMEM108 [45],
and PRKAG2 [46], which are involved in MARK signaling, immune pathway, and cel-
lular homeostasis.
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3.5. Ancestry Analysis

We determined the ancestry structure for the 49 study participants. The contribution
of African ancestry ranged between < 1% and 85.3%, averaging 21.9% (standard deviation,
SD 17.8%) (Figure 4 and Table 2). We found that the European and indigenous American
ancestry components were 65.8% and 12.3%, on average, respectively. Interestingly, in
Puerto Rican men in this study, there were large variations in European and African
ancestries. However, the Indigenous American ancestries were relatively homogenous
(Table 2, Figure 4).

Figure 4. Visualization of the ancestry proportions for each individual in 49 PR H/L men with PCa
(Puerto Rico PCa) compared to 1000 Genomes Admixed Americans populations. Assuming three
ancestral populations (k = 3), each column represents one individual, and each color corresponds to
the contribution of each ancestral population to the genome of a given individual (blue = African,
yellow = European, and red = Indigenous American).

Table 2. Ancestry proportions in the study cohort (n = 49).

Ancestral Population Average SD Maximum Minimum

African 0.219 0.178 0.853 0.00001
European 0.658 0.179 0.978 0.0995

Indigenous American 0.123 0.0784 0.292 0.00001
SD: standard deviation.

4. Discussion

Puerto Rican Hispanic/Latino men are at an increased risk of prostate cancer-specific
mortality compared with NHW men. However, the relationship between this observation
and epigenetics and how this relationship explains PCa racial and ethnic health disparities
are controversial [26]. This study represents an ongoing effort to investigate DNA methyla-
tion in PR H/L men with PCa. We observed that several differentially methylated genes
were found in aggressive tumor tissue from PR PCa patients. Our findings will help us
to both understand why and know when PR patients have an aggressive type of prostate
cancer. Once we identify these unique DNA methylation patterns at the time the patient is
diagnosed, long-term, they may provide new molecular tools to clinicians to determine
their treatments for PR H/L men with PCa with high risk.

This study represents the first steps towards implementing personalized medicine in
PR PCa patients. This approach is tailored to the biology of the individual, making it more
effective than a “one size fits all” approach. It may provide a molecular tool to clinicians to
reduce cancer health disparities.
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We identified 892 genes that showed significant differential methylation for multiple
probes in the prostate tumor tissue. The promising methylation marker candidates were
identified in many genes including: GSTP1, RARB, RASSF1, and TPD52 (Figure 2). GSTP1
is one of the metabolizing enzymes and plays a key role in preventing the carcinogenesis
caused by environmental exposures [47]. Hypermethylation of the GSTP1, a tumor suppres-
sor gene, frequently occurs in different cancer types, including PCa [48]. Hypermethylation
of the GSTP1 is associated with down-regulation of GSTP1 expression, and eventually leads
to carcinogenesis. Therefore, hypermethylation of GSTP1 was suggested as a biomarker of
early stage of PCa [49]. Interestingly, GSTP1 methylation in tumors is more strongly related
to NHB men with PCa [50] than NHWs. RARB is one of the well-known tumor suppressor
genes, frequently hypermethylated in prostate tumorigenesis [51].

Massie et al. (2017) reviewed associations with DNA methylations and PCa and
reported a list of frequently differentially methylated genes in prostate tumor tissues [7].
After an extensive review of 17 studies, they identified 5962 differentially methylated
genes in tumors. Among 892 genes we identified, 526 (59.0%) genes, including GSTP1 and
SMAD3, were validated in the list of genes from Massie’s review.

Methylated genes (n = 366) identified in this study were not found in the list of Massie’s
study. This may be partly due to differences in methodology, platforms used, sample size,
and the unique ancestral composition of the Puerto Rican population, among others, or can
be specific to the PR patients studied. These genes observed in this study may contribute to
differences in PCa outcomes that have been reported between PR and NHW men. DNA
methylation continues to change during progression of PCa with different characteristics
at different stages if the disease. Therefore, it is crucial to study the epigenetic clock or
DNA methylation age (DNAmAge) to understand a picture of the epigenetic landscape in
PCa progression.

Several groups have reported different methylation patterns between PCa tumor and
adjacent normal tissues [52]. Using epigenome-wide DNA methylation data derived from
73 PCa tumors and 63 adjacent prostatic tissue samples, Kirby et al. (2017) identified
methylation patterns that distinguished prostate tumor from adjacent normal tissue with
a high predictive power [53]. However, this study only compared tumors with adjacent
normal tissues, and different methylation pattens in aggressive PCa were not assessed.
We identified 141 differentially methylated genes, including MGC29506 and RIN2, after
comparison of PR patients with aggressive vs. indolent PCa (Supplementary Table S1).

Currently, the exact function of the MGC29506 gene is unknown. Katoh and Katoh
(2003) reported that the expression of MGC29506 was down-regulated in intestinal-type
gastric cancer as compared with adjacent normal tissues [54]. Further, MGC29506 protein
inhibited proliferation of cells by arresting cells at the G0/G1 and S phases of the cell
cycle. These results suggested the potential of MGC29506 as a suppressor gene in gastric
cancer [55].

Although RIN2 has not been studied in terms of its role in PCa, as one of DNA
damage and repair related gene sets, this gene has been investigated in colorectal [56] and
esophageal [57] cancers. Recently Wang et al. (2021) reported a 12-gene-based prognostic
signature selected from 160 DNA damage and repair related genes. This signature can
predict survival of patients with colorectal cancer (AUC: 0.80) [56]. Alvi et al. (2013)
reported that methylation status of four genes, including RIN2, can distinguish between
esophageal tumor and benign tissues with high accuracy (AUC: 0.98) [57].

We identified several genes associated with prostate cancer. One of genes we identified
is PRDM16. Few studies have reported for the role of PRDM16 in PCa. Chandrashekar et al.
reported that PRDM16 expression was associated with the survival of PCa patients with
different Gleason scores. Its expression in prostate tumor indicated a high diagnostic
value for early detection of PCa [58]. Another gene, TP73 were extensively investigated in
prostate cancer. We previously reported a significant role of genetic variation in TP73 in
prostate cancer. We detected a significant inverse relationship between p73 variation and
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PCa aggressiveness. Additionally, p73 variation is marginally associated with overall death
as well as PCa-specific death [59].

SPRED2 is known as one of the key negative regulators of the MAPK signaling
pathway. Kachroo et al. observed the downregulation of SPRED2 in an aggressive type
of prostate cancer and SPRED2 overexpression suppressed prostate cancer cell prolifer-
ation [43]. Regulation of HLA expression on cell surface is involved in natural killer
cell-medicated lysis of tumor cells [44]. A role of HLA genes was investigated in cervical
cancer. HLA-C group 1 was significantly more transmitted with invasive cervical can-
cer [60]. PRKAG2 encodes a subunit of AMP-activated protein kinase (AMPK), which is a
cellular homeostasis sensor. Sakabe et al. reported that PRKAG2 expression was correlated
with survival in liver cancer patients with IFN-a/5-FU treatment [46]. Similar results were
observed in liver and lung cancer patients [61,62]. TMEM108 may have a role in IFN signal-
ing through the Wnt-b-catenin pathway. eQTL analyses suggested that the mechanism of
THEM108 is through the immune infiltrating cells and adjacent non-involved tissue around
the tumor [45].

This study has strengths and limitations. The first strength is that it is the largest study
of epigenome-wide DNA methylation profiles of PR PCa patients. We previously reported
results of epigenome-wide methylation analysis based on 24 PR PCa cases [26]. The second
strength is that the identification of DNA methylation profiles associated with risk and
aggressiveness of PCa in PR H/L men will provide a potential mechanism for studying PCa
disparities in the PR population and to generate hypotheses for future studies. Apprey et al.
(2019) reported significant different methylation profiles between racial groups [18]. We
are currently investigating whether the ancestry proportions influence the methylation
patterns in PR H/L men with PCa. As limitations, the sample size of this study, especially
for the aggressive PCa phenotype, was small. Therefore, this study lacked enough statistical
power for broad generalizations. In addition, the lack of an independent validation set
for confirmation of our findings is another limitation factor. In future, we plan to confirm
our findings in cfDNA or DNA from urine or blood of PCa patients. This approach
with minimal invasive methods may represent an important contribution in the clinical
management of these patients.

In summary, we identified 141 differentially methylated genes in tumor tissues from
PR PCa patients with the aggressive phenotype. Although our findings still need further
validation, they provide an important insight into the epigenetic landscape of prostate
cancer in the PR H/L patient population. Some of the genes identified in this study were
associated with various cancers, including PCa, and affect various biological processes,
such as immune pathways, cell signaling, metabolism, DNA repair, proliferation, and
cell cycle.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biom12010002/s1, Table S1: Differentially methylated genes between aggressive (high-risk)
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