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Endoxylanases active under extreme conditions of temperature and alkalinity can replace the use of
highly pollutant chemicals in the pulp and paper industry. Searching for enzymes with these properties,
we carried out a comprehensive bioinformatics study of the GH10 family. The phylogenetic analysis
allowed the construction of a radial cladogram in which protein sequences putatively ascribed as ther-
mophilic and alkaliphilic appeared grouped in a well-defined region of the cladogram, designated TAK
Cluster. One among five TAK sequences selected for experimental analysis (Xyn11) showed extraordinary
xylanolytic activity under simultaneous conditions of high temperature (90 �C) and alkalinity (pH 10.5).
Addition of a carbohydrate binding domain (CBM2) at the C-terminus of the protein sequence further
improved the activity of the enzyme at high pH. Xyn11 structure, which has been solved at 1.8 Å resolu-
tion by X-ray crystallography, reveals an unusually high number of hydrophobic, ionic and hydrogen
bond atomic interactions that could account for the enzyme’s extremophilic nature.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Enzymes play a fundamental role in the transformation of the
traditional chemical industry into a future, more sustainable, green
alternative. The great diversity of enzymes existing in Nature can
supply suitable catalysts to any type of biochemical reaction.
Although most enzymes are labile material, unable to stand the
harsh physicochemical conditions used in industry, life shows a
surprising plasticity, being able to generate organisms that thrive
under harsh conditions of temperature, pH, pressure, salinity,
etc., which a priori would be unimaginable. Extremophilic organ-
isms, mainly archaea and bacteria, adapted to such extreme condi-
tions become a source of enzymes that widen the range of
processes and operational conditions in which enzymes can be
applied [1,2].

Use of xylanases by the paper industry, for pulp bleaching, offer
a challenging case for stretching the enzyme capability to the limit.
Xylanases facilitate the removal of residual lignin that causes the
dark color of the pulp and can be a total or partial replacement
to the use of hazardous chemical agents [3,4]. The predominant
method used by the paper industry, the kraft process, requires
harsh conditions. Therefore, the availability of xylanases active
under extreme environments of temperature and alkalinity repre-
sents an economic bonus.

Enzymes with xylanolytic activity appear in at least nine fami-
lies of the CAZY database [5]. However, most true xylanases (EC
3.2.1.8), considered as such because of their high substrate speci-
ficity, are classified in families GH10 and GH11 [6,7]. Family
GH10 enzymes are characterized by the presence of a catalytic
domain of ca. 40 kD, with (a/b)8-barrel structure. Family GH11
enzymes contain a smaller (ca. 30 k Da) catalytic domain with b-
jelly roll structure. There is abundant published information about
enzymes from both families. Up to the present the number of
annotated protein sequences and resolved atomic structures is
about 5000 and 50 for GH10, respectively and 2000 and 30 for
GH11 (CAZY database, accessed on January 2021). Although only
a relatively small fraction of the sequences corresponds to
enzymes whose activity has been characterized experimentally,
the available data provide very useful information to predict the
enzymatic properties of an uncharacterized sequence. Several
bioinformatic approaches to this end have been reported.
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Conventional strategies used to identify enzymes with extre-
mophilic properties relied on their isolation from microorganisms
with such properties, for instance, Thermotoga and Thermoascus [8].
However, this approach is too limited to yield enzymes with opti-
mal physicochemical and catalytic properties that fulfill industry.
Protein engineering techniques provide a complementary tool for
obtaining enzymes with enhanced thermostability or alkalinity
[9–11]. In silico screening of protein sequences from databases,
often derived from genomic and metagenomic analysis, has been
shown to be a powerful methodology that has been successfully
applied to identify extremophilic xylanases in GH11 family [12]
and for discovery of hidden properties of carbohydrate active
enzymes [13–15].

In this communication we describe an in silico analysis of GH10
family, searching for xylanases with extreme thermophilic and
alkalophilic properties, and the functional and structural charac-
terization of the enzyme with best characteristics. Additionally,
we show that the modification of the protein structure by the addi-
tion of carbohydrate binding domains improves the enzyme per-
formance, which is relevant for biotechnological applications.
2. Materials and methods

2.1. Phylogenetic analysis of GH10 sequences

Accession numbers of GH10 protein sequences were obtained
from the CAZy database [5]. The amino acid sequences were
obtained from the NCBI database, using the Batch Entrez Tool
(https://www.ncbi.nlm.nih.gov/sites/batchentrez). Pfam [16] pro-
vided protein domain composition and coordinates for each
sequence.

The linear composition of domains of a given sequence in N-
terminal to C-terminal order, defined what has been called domain
architecture (DA). The assignment of specific DA from the
sequences of the GH10 family was performed following the
methodology previously described for the GH2 family [13]. Only
sequences containing a catalytic domain Glyco_hydro_10 (GH10)
matching at least 80% with the Pfam consensus were included in
this study.

Sequence alignment of GH10 catalytic domains was performed
with CLC sequence viewer (Quiagen), using ClustalO MSA algo-
rithm [17]. Trees were built using W-IQ-TREE Maximum Likehood
algorithm with JTT matrix [15] and a bootstrap of 1000 replicates.
Results were analyzed on Dendroscope Software [18] and repre-
sented using FigTree (http://tree.bio.ed.ac.uk/software/figtree/)
and MESQUITE software (https://www.mesquiteproject.org).
2.2. Molecular biology

DNA sequences and amino acid selected for experimental anal-
ysis were edited before cloning. Signal peptide sequences were
detected using the Phobius Tool [19] and removed. The coding
sequences were optimized for E. coli expression by using the Inte-
grated DNA Technologies (IDT) Codon Optimization Tool (www.
idtdna.com). Native restriction sites were eliminated and SacI
and SalI restriction sites were added in 50 and 30 respectively, to
facilitate the cloning in vector pQE80L (Quiagen).

Synthetic genes (codon-optimized) of sequences encoding five
selected putative xylanases (Xyn10-14) were purchased from IDT
(Supplementary Table S3). The DNA fragments (except Xyn10
and Xyn14) were digested with endonucleases SacI and SalI and
cloned into pQE80L plasmid cut with the same enzymes. Xyn10
and Xyn14 could not be synthesized as a single piece and were
therefore assembled by joining two fragments (F1 and F2).
Xyn10-F1 and Xyn14-F1 were cut with SacI and EcoRI, whereas
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Xyn10-F2 and Xyn14-F2 were cut with EcoRI and SalI. The
corresponding fragments were then cloned as one piece in pQE80L.
Fast Digest enzymes and T4 ligase were purchased from
ThermoScientific.

The xylanase encoding plasmids were used for transforming
E. coli XL1 Blue. Selection of E. coli clones expressing xylanase genes
was performed as described in (Talens-Perales et al., 2020). The
cloned sequences were confirmed by sequencing. Once checked,
the plasmids were transferred to E. coli Rosetta (Stratagene) for
protein production. Hybrid enzymes Xyn11-CBM2 and Xyn11-
CBM9 were constructed from plasmids Xyn5-CBM2 PQE80L and
Xyn5-CBM9, respectively [12], replacing the Xyn5 gene by the
Xyn11 gene.

2.3. Protein purification

Cell crude extracts were obtained from E. coli cultures grown at
37 �C until reaching OD600 of 0.6 and then were induced with 1 mM
IPTG, either at 37 �C for 5 h or 16 �C overnight. Buffer A (20 mM
phosphate buffer, pH 7.4, 10 mM imidazole, 500 mM NaCl) was
used to disrupt the cells by sonication. Protein extracts were
obtained by centrifugation at 12,000 g during 25 min. Protein
purification was performed using nickel affinity chromatography
with 1 mL HisTrap FF crude column (GE Healthcare) mounted in
AKTA-Purifier (GE). Buffer B (20 mM phosphate buffer, pH 7.4,
500 mM imidazole, 500 mM NaCl) was used for elution. Eluted
fractions with xylanase activity were dialyzed against buffer C
(20 mM Tris-HCl, pH 7.0, 50 mM NaCl). Protein concentration in
the eluted fractions was determined in a NanoDrop spectropho-
tometer (Thermo Fisher). The purity of the protein recovered was
analyzed by SDS-PAGE, using Blue Safe staining (Nzytech). An
image of the gel was taken with a Proxima AQ-4 gel documentation
system (Isogen) and the amount of protein in the gel bands was
quantified using FIJI software [20].

2.4. Evaluation of xylanase activity at different conditions of
temperature and pH

Xylanase activity of purified enzymes was assayed at range of
temperature and pH. Enzyme reactions for temperature assays
were prepared by mixing 180 lL of substrate (1% oat spelt xylan,
in Tris-HCl 50 mM buffer pH 9.0) and 20 lL of purified protein
(protein concentrations were adjusted to assure linear enzyme
response) and then incubated at 60 �C, 70 �C, 80 �C or 90 �C, for
10 min. The reaction was stopped by putting the tubes on ice.

Activity at different pH was determined using 50 mM buffered
solutions, at the following pH values: 5.0 (acetate), 6.0 and 7.0
(phosphate), 8.0, 9.0 and 10.0 (Tris-HCl). The enzyme reactions
were prepared as above described, using the appropriate buffer.
The reactions were incubated at 65 �C during 10 min and then
stopped on ice. Control reactions, without enzyme, were carried
out for each assay condition.

Measurement of reducing sugars was carried out by adding
100 lL of DNS reactive to the reaction tubes that were then boiled
for 10 min. Next, 900 lL of miliQ H2O were added and the tubes
were centrifuged. Measurements were done at OD540 in 96-well
plates by transferring 300 lL of the supernatant using PowerWave
HT equipment, from BioTek Instruments (Winooski, VT, USA).

Cleavage pattern of xylooligosaccharides was analyzed by using
500 lL of 2 mM of the corresponding substrate, from 2 to 6 units
(Megazyme), dissolved in 50 mM Tris-HCl buffer pH 9.0. To each
tube, 20 lL of enzyme solution were added. The amount of enzyme
used was estimated to obtain 1 lmol of reducing sugars min�1

mg�1 of enzyme. The reactions were carried for 5 h at 90 �C and
stopped on ice. Analysis of reaction products was carried out by
ion exchange chromatography using a Dionex (Thermo Fisher Sci-
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entific) with CarbonPac PA100 column and a pulsed amperometric
detector.

2.5. Protein crystallization, data collection and structure
determination

Firstly, different crystallization screens were explored, using the
sitting-drop vapor-diffusion method. A wide variety of crystals
grew in several commercial kits such as Index (Hamptom
Research), JBScreen JCSG++ (Jena Bioscience), JBScreen Classic (Jena
Bioscience). Different manuals grids were used in order to optimize
the quality of the crystals. Finally, the best crystals were obtained
with 10% PEG 3350, 0.2 M Proline, 0.1 M Hepes pH 7.5. Each drop
presented the same proportion of protein (6.47 mg/mL) and reser-
voir solution (250 nl). Mother liquor solution was supplemented
with 25% of glycerol to cryoprotect the crystal during the data col-
lection. Diffraction data were collected at the ALBA synchrotron
station of Barcelona (Spain). The X-ray images were processed with
XDS [21], and merged using Aimless from CCP4 suite package [22].
P 21 21 21 space group was obtained with cell parameters 91.45 �
95.27 � 100.53 Å3 and two molecules in the asymmetric unit.

The structure was solved by molecular replacement using MOL-
REP from CCP4 [23]. The xylanase CbXyn10C from Caldicellulosirup-
tor bescii [24], with the Protein Data Bank code 5OFJ (56.5%
sequence homology) was selected as a template. Restraint refine-
ment was carried out using REFMAC5 from CCP4 with local non-
crystallographic symmetry (NCS) [25]. This was combined with
several rounds of model building in COOT [26]. Figures were pre-
pared with PyMOL [27]. Final crystallography results are given in
Supplementary Table 4.

2.6. Analysis of protein stability

Different web servers were employed to analyze the structure
and thermostability of the protein. Protein Blast [28] and END-
script server [29] were used to compare protein sequence and
the tridimensional structures were inspected in Dali server [30].
ProtParam tool (ExPASy) [31] was used to compute amino acid
composition. Intraprotein hydrophobic and ionic interactions,
hydrogen bonds, aromatic and cation-p interactions were deter-
mined by PIC server (Protein Interactions Calculator) [32]. The
accessible surfaced area (ASA) and the exposed charged accessible
area were both calculated with VADAR server [33]. The formula for
compactness was: ASA/number of total residues, and for % exposed
charged accessible surface area was: exposed charged accessible
area /ASA *100.
3. Results and discussion

3.1. In silico screening of GH10 sequences for thermophilic alkaliphilic
xylanases

The nearly 5000 entries currently available in the CAZy data-
base were expurgated discarding repetitions, incomplete
sequences and those having less than 20% matching with the Pfam
Glyco_Hydro_10 domain (GH10). This yielded a total of 2309
sequences that were further processed (Supplementary material,
Table S1). About 80% of these sequences (1848) corresponded to
bacteria whereas the remaining 20% (461) were from eukaryotes.
No archaeal sequences matched the established requirements.
GH10 protein sequences showed a great variety of domain archi-
tectures. Up to 197 different domain architectures (DA) could be
distinguished (Supplementary material, Table S2), in contrast with
the lesser diversity (69 DA) described for functionally related GH11
family [12]. About one half of the bacterial sequences and one
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tenth of the eukaryotic, showed the simplest possible DA, consisted
of just the catalytic GH10 domain. Regarding more complex DA,
the presence of CBM4-9, which binds amorphous cellulose and sol-
uble oligosaccharides [34,35], was ubiquitous and detected in 14%
of the sequences, in some cases in tandem repeats at N-terminal
position. CBM2 which binds cellulose and chitin [36], or Ricin-B-
lectin domains that mediate sugar recognition [37], were quite
abundant, present in more than 5% of the sequences. A small frac-
tion of the sequences (1–2%) contained C-terminal extensions not
corresponding with identified motifs. These tails were labeled by
their length, as Ct1 (50–150), Ct2 (150–200), Ct3 (200–300), Ct4
(300–400) and Ct5 (400–500) (Supplementary material, Table S2).

Fig. 1A shows a schematic representation of the cladogram
resulting from the phylogenetic analysis of the Glyco_Hydro_10
domain of the 2309 selected sequences. A detailed version of the
cladogram is presented as supplementary material (Fig. S1). In
Fig. 1 and S1 and in Table S2, different DA with common domains
are represented by the same color code. In the cladogram, eukary-
otic sequences appear in three groups, generated by different evo-
lutionary events, at a late stage in the evolutionary process. The
simplest DA, a single GH10 domain, appears in some instances
mingled with composed DA, but most sequences with additional,
non-catalytic domains, emerge from separate nodes. Sequences
putatively identified as thermoresistant, are marked by a gray label
in Fig. 1A. Among these, a cluster (hereinafter designated as TAK)
marked by a triangle, corresponds to sequences that putatively
are thermostable and alkaliphilic. The sequences included in the
TAK cluster, belong to genera the Caldicellulosiruptor, Thermotoga,
Pseudothermotoga, Petrotoga and Defluviitoga, and are listed in
Fig. 1B. Most of these sequences contain a multidomain DA, with
CBM4-9 present in ca. 70% of them. Another domains present are
CBM9, CBM3 and the catalytic domain GH48 with cellulase activity
[38]. CBM9 and CBM3 have been described to have xylan-binding
activity [38,39]. Five of these sequences, representing different
DA, were selected for experimental analysis: Xyn10 from Dyc-
tioglomus turgidum, Xyn11 from Pseudothermotoga thermarum,
Xyn12 and Xyn13 from Caldicellulosiruptor bescii and Caldicellu-
losiruptor owensensis, respectively and Xyn14 from Thermotoga sp.

3.2. Production, purification and functional characterization of
selected enzymes

Synthetic, codon-optimized gene sequences encoding the
selected putative xylanases were cloned and expressed in E. coli.
Synthetic DNA coding sequences could be obtained as a single frag-
ment, except for Xyn10 and Xyn14, which had to be reconstructed
from two fragments (Xyn10-F1, Xyn14-F1 and Xyn10-F2, Xyn14-
F2). Proteins were purified from bacterial crude cell extracts by
thermal treatment and nickel affinity chromatography. Xyn12
was discarded at this point because no substantial amount of pro-
tein could be recovered from the recombinant E. coli cultures.
Semiquantitative evaluation of Xyn14 showed very low level of
xylanase activity (results not shown) and therefore was also dis-
carded. The other three enzymes were purified and analyzed by
SDS-PAGE (Fig. 2). In all three cases, electrophoretical mobility
was in accordance with the expected molecular mass of the
polypeptides, predicted by ProtParam [40].

Oat spelt xylan hydrolysis by Xyn10, Xyn11, and Xyn13 was
measured at different pH and temperature. Assays at different val-
ues of pH were carried out at 90 �C (Fig. 3A). Xyn10 and Xyn11
showed the expected profile for alkaliphilic enzymes, with optimal
activity at pH between 8.0 and 9.0. Xyn13 showed maximal activ-
ity at pH between 6.0 and 7.0, but retained high activity at pH 9.0.
In buffered solution at pH 9.0, the three xylanases showed a ther-
mophilic profile, with optimal temperature 70 �C and 90 �C. The
highest activity measured corresponded to Xyn11 at 90 �C



Fig. 1. (A) Cladogram of the GH10 family. The gray triangle marks the TAK cluster. (B) Phylogenetic tree of the TAK cluster sequences. Asterisks mark the sequences that were
selected for experimental analysis.

Fig. 2. SDS-PAGE analysis and domain architecture of selected enzymes. Protein ladder mass in kDa.
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(Fig. 3B). These results are remarkably different from a report by
Shi et al., [41], describing the properties of a xylanase encoded
by the Xyn10B gene of T. thermarum (now Pseudothermotoga ther-
marum), same sequence as Xyn11, but optimal activity at 80 �C,
and weak activity at pH > 8.0. A different xylanase from the
GH10 family from P. thermarum has also been described. This
one displays a complex DA, which three tandem CBM4-9 at N-
terminal position and two CBM9 at C-terminal position. Despite
of the differences in DA, the catalytic domain of this enzyme,
named Xyn10A, is very similar to Xyn11 being located very close
in the phylogenetic tree (Figs. 1 and S1). Xyn10A, was reported
to be optimally active at 95 �C and pH 7.0 [8]. Other thermostable
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xylanases (from GH10 and GH11 families) have been characterized
but their optimal temperatures are around 70 �C and their opti-
mum pH ranged from 6.5 to 9.0. Only Bacillus halodurans TSEV
xylanase combines thermostability and alkaliphility, with optimal
values of pH of 9.0 and temperature 80 �C [42], but still below the
score of Xyn11. Xylanases from Geobacillus, Caldicellusiruptor [43]
and Thermotoga, showed high optimum temperatures. Remarkably,
Thermotoga naphthophila RKU-10 and Thermotoga petrophila RKU-1
(95 �C) or Thermotoga maritimaMSB8, (90 �C), but optimum pH val-
ues for these enzymes were between 5.0 and 6.0 [44–46]. Xyn11
represented an extraordinary performance under simultaneous
conditions of high temperature and alkalinity, showing at pH



Fig. 3. Activity of selected enzymes at different values of pH (A) and temperatures
(B). Activity values correspond to lmol of reducing sugars min�1 mg-1 of enzyme.
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10.5 and 90 �C, an activity value of 600 mmol min�1 mg�1 of
enzyme.

A previous study carried out with GH11 xylanases showed that
in some instances, the addition of a Carbohydrate Binding Domain
(CBM2, CBM9) to the protein structure has a positive effect on
enzyme performance [12]. Therefore, we undertook the construc-
tion of hybrid enzymes derived from Xyn11, by fusing this enzyme
with CBM2 and CBM9. The SDS-PAGE profile and DA of the hybrids
are shown in Fig. 4A. Addition of CBM9 caused a decrease of Xyn11
activity at different pH (Fig. 4B). This result was unexpected as it is
the opposite to what was observed by the addition of CBM9 to a
Fig. 4. (A) Physical characterization (DA and SDS-PAGE analysis) of hybrid xylanases. (B
correspond to activity expressed as lmol of reducing sugars min�1 mmol�1 of enzyme.
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GH11 xylanase [12]. However, the addition of CBM2 improved
the activity of the enzyme at high pH. Hybrid Xyn11-CBM2 showed
an activity two times higher than Xyn11 at 90 �C and pH 10.5
(Fig. 4B).

The cleavage pattern of xylanases was analyzed using as sub-
strate oligoxylosides from 2 to 6 units. Enzyme reactions were car-
ried out for 5 h at pH 9.0 and 90 �C. The products released from the
reactions were analyzed chromatographically. As expected, the
enzymes showed characteristic behavior of endoxylanases, but
with some interesting differences. Xyn10 and Xyn13 were unable
to hydrolyze xylobiose and xylotriose. Xyn10 hydrolyzed xylote-
traose, xylopentaose and xylohexaose, yielding mainly xylobiose
and xylotriose (Fig. 5A). Xyn13 was inactive towards xylotetraose,
but excised xylopentaose and xylohexose, yielding mainly xylo-
biose and xylotriose (Fig. 5C). Xyn11, as well as its hybrids
Xyn11-CBM9 and Xyn11-CBM2, were unable to cut xylobiose,
but were active against xylotriose, xylotetraose, xylopentaose
and xylohexaose yielding mainly xylose and xylobiose (Fig. 5B).
These results agree with previous studies on GH10 xylanases
[42]. The observed differences in the cleavage pattern of Xyn10,
Xyn11 and Xyn13 is relevant from a biotechnological point of view,
as it can be used to produce short-chain oligoxylosides from xylan.
These oligosaccharides are compounds with recognized value as
prebiotics, whose administration confers a proven heath benefit
[47,48].
3.3. Crystallographic structure of Xyn11

The structure of Xyn11 was solved at 1.8 Å resolution by X-ray
crystallography. The protein folds into an (b/a)8 barrel (TIM-barrel)
architecture (Fig. 6A), typical of GH10 xylanases. From the loops
linking the C-terminal of each b-strand to the succeeding a-helix,
the long L4, L7 and L8 loops protrude markedly and define an
extended groove to accommodate the substrate. An additional b-
hairpin motif is present in the loop L2, linking b2 to a2.

According to its primary structure, the closest homologues of
Xyn11 are thermoresistant multidomain proteins from Caldicellu-
losiruptor species (N-terminal domain of CbXyn10C-Cel48B [24],
PDB code 5OFJ, and GH10 domain of WP_045175321 [49], PDB
code 6D5C, showing 55% sequence identity, both presenting the
) Activity of hybrid xylanases assayed at 90 �C and different pH. Displayed values
(C) Activity of hybrid xylanases at pH 9.0 and different temperatures.



Fig. 5. Cromatographic profile of reaction products obtained from the action of xylanases on xylooligosaccharides of different degree of polymerization.
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same b-hairpin observed in Xyn11. Next homologues are two
intracellular xylanases, IXT6 from Geobacillus stearothermophilus
[50], PDB code 1 N82, with 50% identity, and the mesophilic
Xyn10B from Paenibacillus barcinonensis [51], PDB code 3EMC,
showing 44% identity. These enzymes show very similar topology,
with equivalent L4, L7 and L8 loops both in length and position.

Despite fairly conserved topology, loops L7 and L8 are highly
variable in sequence (Fig. 7). Therefore, these loops shape very dif-
ferent active site crevices. To fully depict the Xyn11 active site, the
binding mode of an heptaxylose has been inferred from structural
superimposition of its complex from Caldicellulosiruptor bescii
Xyn10C [43], PDB code 5OFK, onto the Xyn11 coordinates
(Fig. 6B–D). As it is observed in Fig. 6, Xyn11 seems able to accom-
modate at least seven units of xylose spanning its catalytic tunnel.
The most peculiar feature of Xyn11 is the presence at the non-
reducing end of three consecutive Phe residues (Phe312, Phe313
and Phe314) at L8 (Fig. 7) that define a narrow entrance to the cat-
alytic channel. Only the central Phe313 is conserved in homo-
logues, which have Ser/Thr and Pro at the other two positions.
This feature places Phe313 in a more prominent position within
a narrower cavity and suggests a potential subsite �3, by
hydrophobic interaction to Phe312, not seen in the Xyn11 ana-
logues. Apart from this hydrophobic wall, subsite �2 is well-
characterized by the presence of a great amount of hydrogen bonds
at the opposite wall with a number of very conserved residues.
Thus, and according to the complex model, O2 for the xylose would
interact with Trp301 and Glu50, O3 with Glu50 and Asn51, O4
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would be stabilized by Trp301 and Lys54, which also form a hydro-
gen bond with O5. Furthermore, the xylose bound at subsite �1
would also present polar interactions to conserved residues at
the same wall of the active site, i.e. to Lys54 (O3), His91 (O2 and
O3), and Asn143 and Gln220, (O2).

The xylose bound at subsite + 1 is mainly fixed by stacking to
Tyr189 and hydrophobic interaction to Trp309 and Phe313, all con-
served residues, and lacking direct polar interactions as in other
xylanases. However, in Xyn11, the presence of the pair Phe313-
Phe314 narrow the cavity at this subsite + 1 and, more important,
fixes the conformation of the Arg260 side-chain in a very
restrained position pointing to the inner part of the cavity, in
which it could be hydrogen linked to O2 and O3 of xylose bound
at subsite + 2. As a consequence, Xyn11 does not present at this
subsite + 2 the pocket observed in its homologues that seems able
to allocate a putative xylan decoration [51]. Furthermore, Ser259, a
position in which most analogues present an aromatic residue with
a protruding side-chain that makes a more restricted subsite + 3,
precedes Arg260, unique to Xyn11 at loop L7 (Fig. 7). Thus, the
reducing-end of the Xyn11 tunnel exhibit rather open subsites
from + 3 that are markedly different to that observed in its homo-
logues. Only the bifurcated polar link from Asn190 to the xyloses
bound at subsite + 2 (O5) and + 3 (O3) is conserved.

A last interesting feature of the channel is the presence of a
small pocket created by a cluster of three aromatic residues located
at the end of the tunnel, Phe192, Phe193 and Trp231, only Phe193
being conserved (Fig. 6D). Interestingly, a glycerol molecule from



Fig. 6. Crystal structure of Xyn11. (A) Overall folding as an (b/a)8 barrel
(TIM-barrel) architecture, represented in green (helices) and violet (strands). The
most relevant loops that participate in the substrate binding and the catalytic
residues are colored in orange. (B) The active site tunnel with a heptaxylose
molecule, modelled from structural superimposition with its complex from
Caldicellulosiruptor bescii Xyn10C (PDB code 5OFK). (C) Proposed atomic interac-
tions of heptaxylose at Xyn11 active site. The catalytic residues are colored in
orange, while the non-conserved residues are colored in yellow. Polar interac-
tions are marked in dashed lines. (D) Detail of the reducing-end moiety of the
active site, showing two glycerol molecules (blue) trapped in the crystals, and
the three aromatic residues shaping a pocket in the tunnel. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)
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the cryoprotectant has been trapped within this pocket in our crys-
tals, suggesting a putative role in accommodating a potential O3
substituent at the succeeding xylose unit, which would represent
a putative subsite + 5. As it is shown in Fig. 6D, an additional glyc-
erol molecule has been trapped in a groove close to the free O2 and
O3 hydroxyls of xylose at subsite + 3. The particular shape of both
cavities might reflect a specific pattern of xylan decorations that
would be recognized and bound at subsite + 3 and + 5.

In summary,Xyn11, as its closest thermoresistanthomologues, is
able to degrade xylan, and presents 6–7 subsites (from�2 to + 4/+5)
for binding this polysaccharide.However, inspectionof its active site
crevice reveals that substitutions are not allowed at�2 and�1, nor
at + 2 and + 4. Therefore, two consecutive unsubstituted xylose units
are required tobindat positions�2,�1, forhydrolysis to occur, anda
subsequent sequence of alternate substituted/unsubstituted
xyloses is envisaged from subsite + 1. This result is in accordance
with the cleavage pattern observed in Fig. 5. The especial shape of
the cavities described above may match the chemical structure of
its natural substrate.
3.4. Structural basis of Xyn11 extremophilic properties

A great effort has been directed to disclose the molecular basis
of protein adaptability to extreme conditions [52–55]. The general
agreement is that this ability results from the cumulative effect of
multiple stabilizing factors that may be present to a different
degree in each extremophilic protein. Nevertheless, despite the
ample variation observed, some trends can be observed between
the sequences and structures of extremophilic vs their mesophilic
orthologues.

In order to explain the extremophilic properties of Xyn11, its
primary and tertiary structure was compared to other family
GH10 xylanases, including thermoresistant CbXyn10C (PDB code
5OFJ) [49] and three mesophiles: PbXynB from Paenibacillus barci-
nonensis; (3EMC) [51], CmXyn10B from Cellvibrio mixtus; (2CNC)
[53] and SoXyn10A from Streptomyces olivaceoviridis (1V6Y) [56].
Several features analyzed in Xyn11 and its homologues are sum-
marized in Tables 1 and 2.

As a general rule, extremophilic proteins contain low number of
residues that decompose easily, such as hydroxy amino acids: Ser
and Thr [57], amino acids with an amide terminal group: Asn,
Gln [58] or sulfur containing amino acids: Cys, Met [57]. Accord-
ingly, Xyn11 complies this rule (Table 1). On the other hand, the
relative abundance of Pro observed in Xyn11, compared with its
homologues, can been related to increased stabilization provided
by a higher chain rigidity that reduces fluctuation of the secondary
structure and helps to keep the proper folding at high temperature
[59]. Finally, an increased number of charged residues, meaning an
increment in the ion pair interactions, derive in thermostability
[58,60]. Thus, Xyn11 presents the highest value of Lys, Arg and
Glu compared with the homologues.

Considering the tertiary structure (Table 2), hydrophobic interac-
tions have been reported to play a key role in protein folding [53].
Thus, the buried hydrophobic interactions in the core of the protein
increase the van der Waals contacts, reducing the exposure of
hydrophobic residues to solventandpromoting rigidity [53]. Inaddi-
tion, aromatic clusters have also been commonly considered to con-
tribute to the extreme stability of the proteins, resulting in internal
stacking interactions that enhance the stability of the protein [61].
In this respect, Xyn11 presents the highest number of both,
hydrophobic and aromatic interactions. Whereas Xyn11 compact-
ness is similar to itsmesophilic analogues, its accessible surface area
(ASA) is higher. Hydrogen bonding is correlated with an increase in



Fig. 7. Sequence variability of loops L7 and L8. Sequences are of xylanases CbXynb10C from C. bescii (5OFJ), GH10 module from C. danielli (6D5C), IXT6 from G.
stearothermophilus (1N82), and Xyn10B from P. barcinonensis (3EMC). (ESPript - http://espript.ibcp.fr).

Table 2
Analysis of the atomic interactions and packing. Number of hydrophobic and aromatic interactions, main chain-main chain hydrogen bonds and ionic interactions in Xyn11,
CbXyn10C from Caldicellulosiruptor bescii (5OFJ), XynB from Paenibacillus barcinonensi (3EMC), CmXyn10B from Cellvibrio mixtus (2CNC) and SoXyn10A from Streptomyces
olivaceoviridis (1V6Y). Compactness and percentage of exposed residues in the accessible surface area are also computed and shown. In each column, the two first-ranked proteins
are shown in bold type, underlined number indicate the most favorable value.

Atomic Interactions and Packing

HYDROPHOBIC AROMATIC HYDROGEN BONDS (mch-mch) IONIC COMPACTNESS EXPOSED CHARGED ASA (%)

Xyn11 381 32 449 47 42.4 21.8

CbXyn10C 361 21 497 39 40.6 19.1

PbXynB 323 24 428 38 42.7 25.1
CmXyn10B 347 27 419 56 43.1 21.4

SoXyn10A 274 18 439 34 37.9 16.2

Table 1
Analysis of amino acid composition. Percentage of Asn, Gln, Ser, Thr, Pro, Met, Cys, Glu, Arg and Lys in Xyn11, CbXyn10C from Caldicellulosiruptor bescii (5OFJ), XynB from
Paenibacillus barcinonensi (3EMC), CmXyn10B from Cellvibrio mixtus (2CNC) and SoXyn10A from Streptomyces olivaceoviridis (1V6Y). In each column, the two first-ranked proteins
are shown in bold type, underlined number indicate the most favorable value.

AA Composition (%)

Asn + Gln Ser + Thr Pro Met + Cys Glu + Arg + Lys

Xyn11 7.4 10.0 4.9 3.0 19.0
CbXyn10C 10.0 13.0 4.1 3.3 17.1
PbXynB 9.0 10.8 3.3 3.0 18.4

CmXyn10B 7.2 9.6 3.4 3.1 18.6

SoXyn10A 10.8 11.8 2.8 4 13.9
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rigidity in the core of the protein [62] and is considered one of the
major contributors to extreme-stability, especially when consider-
ing the main chain-main chain interactions [53,63]. Theoretical
studies show the stabilizing effect of electrostatic interactions and
salt-bridges at high temperature [64]. Again, Xyn11 presents a high
number of hydrogen bonds and ionic interactions.

It is worth noting that, even when Xyn11 is first-ranked in only
5 out of 11 stabilizing parameters that we have analyzed (Tables 1
and 2), it is one of the two best proteins in all cases, revealing that
its molecular structure is well suited to stand denaturing condi-
tions. All the atomic interactions considered in this work have
been previously identified as molecular mechanism underlying
resistance in both, thermophilic and also alkaliphilic proteins
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[53], which explains not only Xyn11 thermal resistance but also
its activity at high pH. Furthermore, the increased number of
atomic interactions observed in Xyn11 must derive in protein
rigidity, which is the key to high-temperature adaptation by pre-
venting unfolding. In this context, Xyn11 presents a markedly
low chain flexibility, as deduced from the analysis of the atomic
B factors values along the polypeptide chain that is shown in
Fig. 8A.

Lastly, an interesting feature in Xyn11 structure is the long loop
L2 (Fig. 6A), connecting b2 to a2, also present in close homologues
from Caldicellulosiruptor species (xylanases from C. bescii, PDB code
5OFK and C. danielli, PDB code 6D5C). This loop is making a
b-hairpin which is protruding from the (a/b)8 barrel that,

http://espript.ibcp.fr


Fig. 8. Putative structural elements of Xyn11 thermoresistance. (A) Crystallo-
graphic atomic B factors in the polypeptide chain shown in rainbow code, from low
(blue) to high (red) values. (B) Cation- p interactions stabilizing the b-hairpin
present in loop L2. A relevant hydrogen bond is represented as dashed line. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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nevertheless is stabilized by two cation- p interactions keeping a
close packing of L2 (Fig. 8B). Thus, Arg61 is stacking to Trp102,
located at L3, while Arg131, at the end of helix a3, is stacking to
Tyr69. Only the last interaction is conserved in the other thermore-
sistant homologues. Cation-p interactions have been described as
another form of electrostatic interaction that make an important
contribution to protein stability, which appears to increase at
higher temperatures [65]. Thus, Xyn11might have developed addi-
tional local molecular mechanisms that combined to the above
parameters make a very resistant protein.
4. Conclusions

The comprehensive bioinformatics screening of the GH10 fam-
ily reported in this study represents a powerful methodological
approach that allowed the identification and characterization of
xylanases active at extreme conditions of pH and temperature.
The enzyme with best performance, Xyn11, corresponds to a xyla-
nase from the bacterium Pseudothermotoga thermarum. The
enzyme shows an exceptional level of activity at 90 �C and pH
10.5. Fusion of a carbohydrate binding module (CBM2) to Xyn11
further increased its activity at extreme conditions. In addition to
Xyn11, two other xylanases, Xyn10 and Xyn13 showed activity
high at extreme conditions. Interestingly, these enzymes differ in
their cleavage pattern on xylan derived substrates, yielding differ-
ent proportions of xylose, xylobiose and xylotriose as final prod-
ucts, which may have practical consequences from a
biotechnological point of view. The crystallographic resolution at
1.8 Å of Xyn11 structure provides an explanation of its function
at extreme conditions. Not surprisingly, qualitatively, the atomic
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interactions responsible for Xyn11 resistance are the same known
to sustains protein stability, namely hydrogen bonds, ion pairs,
hydrophobic and aromatic interactions. However, the number
and distribution in which these interactions appear and its extre-
mophilic enzyme properties makes Xyn11 an outstanding case
for study.
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