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Deep transfer learning for reducing health care
disparities arising from biomedical data inequality
Yan Gao1,2 & Yan Cui 1,2,3✉

As artificial intelligence (AI) is increasingly applied to biomedical research and clinical

decisions, developing unbiased AI models that work equally well for all ethnic groups is of

crucial importance to health disparity prevention and reduction. However, the biomedical

data inequality between different ethnic groups is set to generate new health care disparities

through data-driven, algorithm-based biomedical research and clinical decisions. Using an

extensive set of machine learning experiments on cancer omics data, we find that current

prevalent schemes of multiethnic machine learning are prone to generating significant model

performance disparities between ethnic groups. We show that these performance disparities

are caused by data inequality and data distribution discrepancies between ethnic groups. We

also find that transfer learning can improve machine learning model performance for data-

disadvantaged ethnic groups, and thus provides an effective approach to reduce health care

disparities arising from data inequality among ethnic groups.
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Artificial intelligence (AI) is fundamentally transforming
biomedical research and health care systems are increas-
ingly reliant on AI-based predictive analytics to make

better diagnosis, prognosis, and therapeutic decisions1–3. Since
data are the most important resources for developing high-quality
AI models, data inequality among ethnic groups is becoming a
global health problem in the AI era. Recent statistics showed that
samples from cancer genomics research projects, including the
TCGA4, TARGET5, OncoArray6, and 416 cancer-related gen-
ome-wide association studies, were collected primarily from
Caucasians (91.1%), distantly followed by Asians (5.6%), African
Americans (1.7%), Hispanics (0.5%), and other populations
(0.5%)7. Most clinical genetics and genomics data have been
collected from individuals of European ancestry and ethnic
diversity of studied cohorts has largely remained the same or even
declined in recent years8,9. As a result, non-Caucasians, which
constitute about 84% of the world’s population, have a long-term
cumulative data disadvantage. Inadequate training data may lead
to nonoptimal AI models with low prediction accuracy and
robustness, which may have profound negative impacts on health
care for the data-disadvantaged ethnic groups9,10. Thus, data
inequality between ethnic groups is set to generate new health
care disparities.

The current prevalent scheme of machine learning with mul-
tiethnic data is the mixture learning scheme in which data for all
ethnic groups are mixed and used indistinctly in model training
and testing (Fig. 1). Under this scheme, it is unclear whether the
machine learning model works well for all ethnic groups involved.
An alternative approach is the independent learning scheme in
which data from different ethnic groups are used separately to
train independent models for each ethnic group (Fig. 1). This
learning scheme also tends to produce models with low predic-
tion accuracy for data-disadvantaged minority groups due to
inadequate training data.

Here, we show that the mixture learning scheme tends to
produce models with relatively low prediction accuracy for data-
disadvantaged minority groups, due to data distribution mis-
matches between ethnic groups. Therefore, the mixture learning
scheme often leads to unintentional and even unnoticed model
performance gaps between ethnic groups. We find that the
transfer learning11–13 scheme (Fig. 1), in many cases, can provide
machine learning models with improved performance for data-
disadvantaged ethnic groups. Our results from machine learning
experiments on synthetic data indicate that data inequality and

data distribution discrepancy between different ethnic groups are
the key factors underlying the model performance disparities. We
anticipate that this work will provide a starting point for an
unbiased multiethnic machine learning paradigm that imple-
ments regular tests of the performance of machine learning
models on all ethnic groups to identify model performance dis-
parities between ethnic groups, and that uses transfer learning or
other techniques to reduce performance disparities. Such a
paradigm is essential for reducing health care disparities arising
from the long-standing biomedical data inequality among ethnic
groups.

Results
Clinical omics data inequalities among ethnic groups. Inter-
related multi-omics factors including genetic polymorphisms,
somatic mutations, epigenetic modifications, and alterations in
expression of RNAs and proteins collectively contribute to cancer
pathogenesis and progression. Clinical omics data from large
cancer cohorts provide an unprecedented opportunity to eluci-
date the complex molecular basis of cancers14–16 and to develop
machine learning-based predictive analytics for precision oncol-
ogy17–22. However, data inequality among ethnic groups con-
tinues to be conspicuous in recent large-scale genomics-focused
biomedical research programs7,23,24. The TCGA cohort consists
of 80.5% European Americans (EAs), 9.2% African Americans
(AAs), 6.1% East Asian Americans (EAAs), 3.6% Native Amer-
icans (NAs), and 0.7% others, based on genetic ancestry
analysis25,26. The TARGET5 and MMRF CoMMpass27 cohorts
have similar ethnic compositions28, which are typical for current
clinical omics datasets7. The data inequality among ethnic groups
is ubiquitous across almost all cancer types in the TCGA and
MMRF CoMMpass cohorts (see Supplementary Fig. 1); therefore,
its negative impacts would be broad and not limited to the cancer
types or subtypes for which ethnic disparities have already been
reported.

Disparities in machine learning model performance. We
assembled machine learning tasks using the cancer omics data
and clinical outcome endpoints29 from the TCGA data of two
ethnic groups: AA and EA groups, assigned by genetic ancestry
analysis25,26. A total of 1600 machine learning tasks were
assembled using combinations of four factors: (1) 40 types of
cancers and pan-cancers15; (2) two types of omics features:
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Fig. 1 Multiethnic machine learning schemes. In the mixture learning scheme, a model is trained and tested on the data for all ethnic groups. In the
independent learning scheme, a model is trained and tested for each ethnic group using its own data. In the transfer learning scheme, a model is trained on
the majority group data, then the knowledge learned is transferred to assist the development of a model for each minority group.
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mRNA and protein expression; (3) four clinical outcome end-
points: overall survival (OS), disease-specific survival (DSS),
progression-free interval (PFI), and disease-free interval (DFI)29;
and (4) five thresholds for the event time associated with the
clinical outcome endpoints (Supplementary Fig. 2). For each
learning task, each patient is assigned to a positive (or a negative)
prognosis category based on whether the patient’s event time for
the clinical outcome endpoint of the learning task is no less than
(or less than) a certain threshold.

Since the AA patients consist of less than 10% of the TCGA
cohort, there were only very small numbers of AA cases in many
learning tasks. We filtered out the learning tasks having too few
cases to permit reliable machine learning experiments. We then
performed machine learning experiments on the remaining 447
learning tasks that had at least five AA cases and five EA cases in
each of the positive and negative prognosis categories. For each
machine learning task, we trained a deep neural network (DNN)
model for classification between the two prognosis categories
using the mixture learning scheme. The mixture learning models
achieved reasonably good baseline performance (AUROC > 0.65)
for 224 learning tasks. A total of 21 types of cancers and pan-
cancers and all four clinical outcome endpoints were represented
in these learning tasks. The proportion of AA patients ranged
from 0.06 to 0.25 in these learning tasks with a median of 0.12
(Supplementary Fig. 3a). For each of the 224 learning tasks
(Supplementary Data 1), we performed six machine learning
experiments (Table 1) to compare the performance of the three
multiethnic machine learning schemes on the AA and EA groups
(Fig. 2).

In the machine learning experiments, we observed that the
mixture learning scheme was prone to produce biased models
with a lower prediction performance for the data-disadvantaged
AA group. The model performance differences between the EA
and AA groups were statistically significant with a p value of
6.72 × 10−11 (Fig. 2, Mixture 1 & 2). The average EA–AA model
performance gap over the 224 learning tasks was 0.06 (AUROC,
Table 1). Without testing the model performance of the machine
learning models on each ethnic group separately, the performance
differences would be concealed by the overall good performance
for the entire multiethnic cohort (Fig. 2, Mixture 0). The
independent learning scheme produced even larger EA–AA
performance differences with a p value of 1.29 × 10−26 and the
average performance gap was 0.13 (Table 1, Fig. 2, Independent 1
& 2).

Transfer learning for improving machine learning model
performance for data-disadvantaged ethnic groups. We com-
pared machine learning schemes on performance for the data-
disadvantaged AA group and found that transfer learning pro-
duced models with significantly better performance for the AA

group compared to the models from mixture learning (p= 6.79 ×
10−5) and independent learning (p= 6.0.5 × 10−35) (Fig. 2). The
machine learning experiment results for four learning tasks with
different cancer types and clinical outcome endpoints are shown
in Fig. 3 (more results in Supplementary Fig. 4). We used
threefold cross-validation and performed 20 independent runs for
each experiment using different random partitions of training
and testing data to assess machine learning model performance.
The median AUROC of the six experiments are denoted as
AMixture0, AMixture1, AMixture2, AIndependent1, AIndependent2, and
ATransfer. The results of these experiments showed a consistent
pattern:

(1) Both mixture learning and independent learning schemes
produced models with relatively high and stable performance

Table 1 The machine learning experiments.

Multiethnic machine learning scheme Experiment Training data ethnic composition Testing data ethnic composition AUROCa

Median Mean

Mixture learning Mixture 0 AA+ EA AA+ EA 0.71 0.72
Mixture 1 EA 0.71 0.73
Mixture 2 AA 0.68 0.67

Independent learning Independent 1 EA EA 0.70 0.71
Independent 2 AA AA 0.59 0.58

Transfer learning Transfer learning EA (source domain)
AA (target domain)

AA 0.70 0.69

aMedian and mean AUROC (area under ROC curve) for each machine learning experiments on the 224 tasks.
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Fig. 2 Performance index values for the multiethnic machine learning
experiments. Each box plot shows the AUROC (area under ROC curve)
values for the 224 learning tasks for a machine learning experiment listed in
Table 1. Each circle represents the mean AUROC of 20 independent runs
with different random partitions of training and testing data. The gray color
represents performance for the whole cohort, blue represents performance
for the EA group, and red represents performance for the AA group. Box-
plot elements are: center line, median; box limits, 25 and 75 percentiles;
whiskers, the minimum and maximum values. The p values were calculated
using one-sided Wilcoxon signed-rank test.
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for the EA group but low and unstable performance for the
data-disadvantaged ethnic group (AA). We defined the
performance disparity gap as G ¼ AUROCEA � AUROCAA,
where AUROCEA ¼ ðAMixture1 þ AIndependent1Þ=2, and
AUROCAA ¼ ðAMixture2 þ AIndependent2Þ=2. G is represented
by the distance between the blue and red dash lines in Fig. 3
and Supplementary Fig. 4.

(2) The transfer learning scheme produced models with
improved performance for the data-disadvantaged AA
group, and thus reduced the model performance gap. The
reduced model performance disparity gap is
~G ¼ AUROCEA � ATransfer , which is represented by the
distance between the blue and green dash lines in Fig. 3 and
Supplementary Fig. 4.

Among the 224 learning tasks, 142 had a performance gap G >
0.05 and 88.7% (125/142) of these performance gaps were
reduced by transfer learning.

We also performed the machine learning experiments on two
additional learning tasks that involved either another ethnic
group or non-TCGA data: (1) Stomach Adenocarcinoma
(STAD)-EAA/EA-PFI-2YR assembled using the TCGA STAD
data of EAA and EA patients; and (2) MM-AA/EA-mRNA-OS-
3YR assembled using the MMRF CoMMpass27 data of AA and
EA patients (Supplementary Data 1). For both learning tasks,
machine learning experiments showed the same pattern of
performance as described above (Supplementary Fig. 4a, b).

Key factors underlying ethnic disparities in machine
learning model performance. A machine learning task T ¼

X ;Y; f : X ! Yf g consists of a feature space X , a label space Y,
and a predictive function f learned from feature-label pairs. From
a probabilistic perspective, f can be written as13 P(Y|X), where
X 2 X , and Y 2 Y. It is generally assumed that each feature-label
pair is drawn from a single distribution30 P(X, Y). However, this
assumption needs to be tested for multiethnic omics data. Given
P X;Yð Þ ¼ P YjXð ÞPðXÞ, both marginal distribution P(X) and the
conditional distribution P(Y|X) may contribute to the data dis-
tribution discrepancy among ethnic groups. We used t-test to
identify differentially expressed mRNAs or proteins between the
AA and EA groups. The median percentage of differentially
expressed mRNA or protein features in the 224 learning tasks was
10%, and 70% of the learning tasks had at least 5% differentially
expressed mRNA or protein features (Supplementary Fig. 3b). We
used logistic regression to model the conditional distribution f=
P(Y|X), and calculated the Pearson correlation coefficient between
the logistic regression parameters for the AA and EA groups. The
Pearson correlation coefficients ranged from −0.14 to 0.26 in the
learning tasks, with a median of 0.04 (Supplementary Fig. 3c).
These results indicate that various degrees of marginal and con-
ditional distribution discrepancies between the AA and EA
groups exist in most of the 224 learning tasks.

We hypothesized that the data inequality represented by cohort
ethnic composition and data distribution discrepancy between
ethnic groups are the key factors underlying the ethnic disparity
in machine learning model performance and that both factors can
be addressed by transfer learning. To test this hypothesis, we
performed the six machine learning experiments (Table 1) on
synthetic data generated using a mathematical model whose
parameters represent these hypothetical key factors (Methods).
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Fig. 3 Comparison of multiethnic machine learning schemes. The machine learning tasks are: a GBMLGG-AA/EA-Protein-OS-3YR, b PRAD-AA/EA-
mRNA-PFI-3YR, c KIPAN-AA/EA-Protein-DSS-3YR, d PanGyn-AA/EA-mRNA-DFI-5YR. In each panel, the box plots show AUROC values for the six
experiments (20 independent runs for each experiment). The red, blue, and green vertical dash lines represent AUROCAA, AUROCEA , and ATransfer

respectively. Box-plot elements are: center line, median; box limits, 25 and 75 percentiles; whiskers, 10–90 percentiles; points, outliers. Abbreviations for
cancer types are explained in Supplementary Data 1.
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Synthetic Data 1 was generated using parameters estimated from
the data for the learning task PanGyn-AA/EA-mRNA-DFI-5YR
(Fig. 3d), which simulated data inequality and distribution
discrepancy between the ethnic groups in the real data (Table 2).
For this synthetic dataset, the six machine learning experiments
showed a performance pattern (Fig. 4a) similar to that of the real
data (Fig. 3), which was characterized by performance gaps from
the mixture and independent learning schemes and by transfer
learning reduction of the performance gaps. Synthetic Data 2 has
no distribution difference between the two ethnic groups
(Table 2). For this dataset, there is no performance gap from
the mixture learning scheme, however, the performance gap from
the independent learning scheme remains (Fig. 4b). Synthetic
Data 3 has equal numbers of cases from the two ethnic groups

(no data inequality) but has a distribution discrepancy between
the two ethnic groups. Synthetic Data 4 has equal numbers of
cases from the two ethnic groups (no data inequality) and does
not have a distribution difference between the two ethnic groups.
For these two datasets, there is no significant performance gap
from any learning scheme (Fig. 4c, d). These results confirm that
the performance gap from the mixture learning scheme is caused
by both data inequality and data distribution discrepancy between
ethnic groups while the performance gap from the independent
learning scheme is caused by inadequate data for the disadvan-
taged ethnic group, and transfer learning may reduce these
performance gaps (Fig. 1).

Discussion
In this work, we show that the current prevalent scheme for
machine learning with multiethnic data, the mixture learning
scheme, and its main alternative, the independent learning
scheme, tend to generate machine learning models with relatively
low performance for data-disadvantaged ethnic groups due to
inadequate training data and data distribution discrepancies
among ethnic groups. We also find that transfer learning can
provide improved machine learning models for data-
disadvantaged ethnic groups by leveraging knowledge learned
from other groups having more abundant data. These results
indicate that transfer learning can provide an effective approach
to reduce health care disparities arising from data inequality
among ethnic groups. Our simulation experiments show that the
machine learning performance disparity gaps would be elimi-
nated completely if there was no data inequality regardless of data
distribution discrepancies (Table 2, Fig. 4c, d). Algorithm-based

Table 2 Multiethnic machine learning experiments on
synthetic data.

Synthetic data Data
inequality

Distribution
discrepancy

Machine learning model
performance gap

Mixture
learning

Independent
learning

1 Yes Yes Yesa Yesa

2 Yes No No Yesa

3 No Yes No No
4 No No No No

aPerformance gap > 0.05 (AUROC).
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Fig. 4 Comparison of multiethnic machine learning schemes on synthetic data. a Synthetic Data 1, b Synthetic Data 2, c Synthetic Data 3, d Synthetic
Data 4. We used threefold cross-validation and performed 20 independent runs for each experiment with different random partitions of training and
testing data to assess machine learning model performance. In each panel, box plots show the AUROC values for the six experiments (20 independent runs
for each experiment). Box-plot elements are: center line, median; box limits, 25 and 75 percentiles; whiskers, 10–90 percentiles; points, outliers.
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methods may mitigate health care disparities arising from long-
standing data inequality among ethnic groups; however, the
ultimate solution to this challenge would be to increase the
number of minority participants in clinical studies.

Many factors, including ethnic composition of the cohort,
omics data type, cancer type, and clinical outcome endpoint, may
potentially affect the performance of multiethnic machine
learning schemes. At this point, it is not clear how these factors
affect the performance of transfer learning and other learning
schemes. One possible direction for future research is to discover
how the performance pattern of multiethnic learning schemes
changes as a function of these factors.

Methods
Data source and data preprocessing. The TCGA and MMRF CoMMpass data
used in this work were downloaded from the Genome Data Commons (GDC,
https://gdc.cancer.gov). The ethnic groups of TCGA patients were determined
based on the genetic ancestry data downloaded from The Cancer Genetic Ancestry
Atlas25 (TCGAA, http://52.25.87.215/TCGAA). The ethnic groups of MMRF
CoMMpass patients were based on the self-reported information in the clinical
data file downloaded from the GDC Data Portal (https://portal.gdc.cancer.gov).

For the TCGA data, we used all the 189 protein expression features, and the
17176 mRNA features without missing values. We further removed samples with
more than 20% missing values. We also filtered out samples missing genetic
ancestry or clinical endpoint data. The data matrix was standardized such that each
feature has a zero mean and unit standard deviation. The ANOVA F value for each
mRNA was calculated for the training samples to select 200 mRNAs as the input
features for machine learning. The feature mask, ANOVA F value, and p values
were calculated using the SelectKBest function (with the f_classif score function
and k= 200) of the python sklearn package31. For the MMRF CoMMpass data, we
selected 600 mRNA features with the highest mean absolute deviation as the input
features for machine learning.

Deep neural network modeling. We used the Lasagne (https://lasagne.
readthedocs.io/en/latest/) and Theano python packages (http://deeplearning.net/
software/theano/) to train the DNN. We used a pyramid architecture32 with 6
layers: an input layer with 200 nodes for mRNA features or 189 nodes for protein
features, 4 hidden layers including a fully connected layer with 128 nodes followed
by a dropout layer33, a fully connected layer with 64 nodes followed by a dropout
layer, and a logistic regression output layer. To fit a DNN model, we used the
stochastic gradient descent method with a learning rate of 0.01 (lr= 0.01) to find
the weights that minimized a loss function consisting of a cross-entropy and two
regularization terms: l Wð Þ ¼ �

Pm
i¼1 ðyilog ŷið Þ þ 1� yið Þlogð1� ŷiÞÞ þ λ1 Wj jþ

λ2kWk2, where yi is the observed label of patient i, ŷi is the predicted label for
patient i, and W represents the weights in the DNN. Traditional activation func-
tions such as the sigmoid and hyperbolic tangent functions have a gradient vanish
problem in training a deep-learning model, which may lead to gradient decreasing
quickly and training error propagating to forward layers. Here, we use the ReLU
function f(x)=max(0, x), which is widely used in deep learning to avoid the
gradient vanish problem. For each dropout layer, we set the dropout probability p
= 0.5 to randomly omit half of the weights during the training to reduce the
collinearity between feature detectors. To speed up the computation, we split the
data into multiple mini-batches during training. We used a batch size of 20
(batch_size= 20) for two basic learning schemes (mixture learning and indepen-
dent learning for the EA group) as there were relatively large numbers of cases
available for training. For the independent learning for the AA group, we set the
batch size to 4 because the number of cases available for training was limited. We
set the maximum number of iterations at 100 (max_iter= 100) and applied the
Nesterov momemtum34 method (with momentum= 0.9 for each DNN model) to
avoid premature stopping. We set the learning rate decay factor at 0.03 (lr_decay=
0.03) for the learning task BRCA-AA/EA-Protein-OS-4YR to avoid non-
convergence during training. For all other tasks, we set lr_decay= 0. The two
regularization terms λ1 and λ2 were set at 0.001.

Transfer learning. For transfer learning11–13,35–37, we set the EA group as the
source domain and the AA or EAA group as the target domain. We applied three
transfer learning methods to each learning task and selected the best AUROC as
the performance index for the transfer learning scheme. The three transfer learning
methods include two fine-tuning algorithms and a domain adaptation algorithm:

(1) Fine-tuning algorithm 1
Recent studies have shown that fine-turning of DNN often leads to better
performance and generalization in transfer learning38. We first pretrained a
DNN model using source domain data:M � f ðYSourcejXSourceÞ, which has the
same architecture as described in the previous section. The training
parameters were set as lr= 0.01, batch_size= 20, p= 0.5, max_iter= 100,
and momentum= 0.9. After the initial training, the DNN model was then

fine-tuned using backpropagation on the target domain data: M′=
fine_tuning (M|YTarget, XTarget), where M′ was the final model. In the fine
tuning, the learning rate was set at 0.002 and the batch size was set at 10 as
the model had been partially fitted and the target dataset was small.

(2) Fine-tuning algorithm 2
In the second fine-tuning algorithm, the source domain data were used as
unlabeled data to pretrain a stacked denoising autoencoder37,39,40. The
stacked denoising autoencoder has 5 layers: the input layer, a coding layer
with 128 nodes, a bottleneck layer with 64 nodes, a decoding layer with 128
nodes, and an output layer that has the same number of nodes with the
input layer to reconstruct the input data. We used the source and target
domain data to train the stacked autoencoder with the parameters: learning
rate= 0.01, corruption level= 0.3, batch size= 32, and maximum iteration
= 500. After pretraining the autoencoder, we removed the decoder and
added a dropout layer (with p= 0.5) after each hidden layer, and then added
a fine-tune (logistic regression) layer. The final DNN model had the same
architecture as described in the previous section and was fine-tuned on
target domain data with training parameters lr= 0.002, batch_size= 10 and
max_iter= 100.

(3) Domain adaptation
Domain adaptation is a class of transfer learning methods that improve
machine learning performance on the target domain by adjusting the
distribution discrepancy across domains41,42. We adopted the Contrastive
Classification Semantic Alignment (CCSA) method43 for domain adapta-
tion. The CCSA method is particularly suitable for our transfer learning
tasks because: (1) this method can significantly improve target domain
prediction accuracy by using very few labeled target samples for training; (2)
this method includes semantic alignment in training and therefore can
handle the domain discrepancy in both marginal and conditional
distributions. To use the CCSA method which calculates the pairwise
Euclidean distance between samples in the embedding space, we applied a
L2 norm transformation to the features of each patient such that for patient
i,
Pn

j¼1 x
2
ij ¼ 1, where n is the number of features. The CCSA minimizes the

loss function LCCSA fð Þ ¼ ð1� γÞLC h o gð Þ þ γ LSA hð Þ þ LS gð Þð Þ, where f= h
o g is the target function, g is an embedding function that maps the input X
to an embedding space Z, and h is a function to predict the output labels
from Z, LC(f) denotes the classification loss (binary cross-entropy) of
function f, LSA(h) refers to the semantic alignment loss of function h, LS(g) is
the separation loss of function g, γ is the weight used to balance the
classification loss versus the contrastive semantic alignment loss LSA(h)+
LS(g), LSA hð Þ ¼ 1

n

P
ysi¼ytj

1
2 kgðxsi Þ; gðxtj Þk

2 and LS gð Þ ¼ 1
n

P
ysi≠y

t
j

1
2 maxð0;m�

kgðxsi Þ; gðxtj ÞkÞ
2, k:k is the Euclidean distance, while m is the margin that

specifies the separability of the two domain features in the embedding
space43. During the training, we set the parameters m= 0.3, momentum=
0.9, batch_size= 20, learning_rate= 0.01, and max_iter= 100. We used one
hidden layer with 100 nodes for semantic alignment and added a dropout
layer (p= 0.5) after the hidden layer for classification.

Differential expression analysis. For each learning task, we performed a
permutation-based t-test on the input features to select the proteins or mRNAs that
were differentially expressed between the AA and EA groups. The mRNAs and
proteins with a feature-wise p value < 0.05 were selected as differentially expressed
features between the two ethnic groups.

Logistic regression. For each learning task, we fit two multivariate logistic
regression models: YAA ¼ 1=ð1þ e�βAA �XAA Þ, YEA ¼ 1=ð1þ e�βEA �XEA Þ, for the AA
group and the EA group, respectively, to calculate the regression parameters for
each ethnic group.

Stratified cross-validation and training/testing data for machine learning
experiments. For each learning task, we applied a threefold stratified cross-
validation44. For mixture learning, samples were stratified by the clinical outcome
and genetic ancestry in the process of threefold data splitting. Samples of each fold
had the same distribution over clinical outcome classes (positive and negative) and
ethnic groups (EA and AA). Both AA and EA samples in the training set were used
to train a deep-learning model and the performance of Mixture 0 was measured
using the whole testing set, the performance of Mixture 1 was measured on the EA
samples in the testing set, and the performance of Mixture 2 was measured on the
AA samples in the testing set. For Independent learning, EA (Independent 1) and
AA (Independent 2) samples were separated and then stratified by the clinical
outcome in the threefold data splitting. The cross-validation was performed for the
two ethnic groups separately. For transfer learning, EA and AA samples were
separated and AA samples were stratified by the clinical outcome (same as Inde-
pendent 2), and we used all the EA (source domain) samples for initial model
training and then used AA training samples for fine-tuning or domain adaptation,
and finally, the performance was evaluated on AA testing samples. The ethnic
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compositions for the training and testing data of the six types of machine learning
experiments are shown in Table 1.

Machine learning performance evaluation. The main utility of performance
metric in this work is to compare the relative performance of multiethnic machine
learning schemes. We used the area under ROC curve45 (AUROC) to evaluate
performance of machine learning models. Another widely used machine learning
performance metric is the area under precision–recall curve46 (AUPR). It has been
mathematically proven that the performance ranks of two models remain same in
the ROC space and the PR space47. However, linear interpolation in the
precision–recall space is problematic, which may lead to inaccurate calculation of
AUPR for datasets of small sample sizes47. AUROC is a more robust metric for
evaluating machine learning performance on the minority ethnic groups that have
less cases.

Synthetic data generator. We developed a mathematical model to generate
synthetic data for the multiethnic machine learning experiments. The simulated
cohort consists of two ethnic groups. The degree of data inequality is controlled by
the parameters: n1 and n2, which represent the numbers of individuals in the two
ethnic groups. We used the ssizeRNA package48 to generate the feature matrix xij.
The number of differentially expressed features (nde) is the parameter controlling
marginal distribution (P(X)) discrepancy between the two ethnic groups. For
individual i in ethnic group k, the label yki was generated using the logistic

regression function: yki ¼
1 if zki > ck

�1 otherwise

�
, where zki ¼ 1

1þe
�
Pn

j¼1
βk
j
xij
, xij is the jth

feature of individual i, and βkj ϵf�1; 1g represents the effect of feature j on the label
of ethnic group k, and ck is the threshold for assigning a sample to the positive or
negative category. A pair of β1j and β2j have four possible combinations representing
the difference and similarity of the effect of feature j on the clinical outcome for the
patients in the two ethnic groups. The number of features associated with each of
the four combinations is denoted as n−1,−1, n−1,1, n1,−1, and n1,1 respectively. These
parameters control the conditional distribution (P(Y|X)) discrepancy between the
two ethnic groups. Using this model, we can generate synthetic datasets with or
without data inequality and/or distribution discrepancy between two ethnic groups
by setting the parameter values. These parameters can also be estimated from a real
dataset. For example, we generated Synthetic Data 1 using the parameters esti-
mated from the data for the learning task PanGyn-AA/EA-mRNA-DFI-5YR. We
set n1 and n2 to be equal to the number of EA and AA patients in the real data,
respectively. We estimated the parameters nde using permutation-based t-tests
(feature-wise p value < 0.05). The total number of features for the learning task
PanGyn-AA/EA-mRNA-DFI-5YR was 200. We used multivariate logistic regres-

sion to calculate the regression parameters βAA and βEA. We let β1j ¼

1 if βEAj >median βEA
� �

�1 otherwise

�
and β2j ¼

1 if βAAj >median βAA
� �

�1 otherwise

�
, and then

calculated n−1,−1, n−1,1, n1,−1, and n1,1. The parameters used to generate Synthetic
Data 1–4 are shown in Table 3.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The TCGA and MMRF CoMMpass datasets are publicly available at the Genome Data
Commons (https://gdc.cancer.gov/about-data/publications/pancanatlas and https://gdc.
cancer.gov/about-gdc/contributed-genomic-data-cancer-research/foundation-medicine/
multiple-myeloma-research-foundation-mmrf). The processed datasets that were used as
the input files for the machine learning experiments are available at https://doi.org/
10.6084/m9.figshare.12811574.

Code availability
Source code is available at https://github.com/ai4pm/TL4HDR.
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