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Abstract

The Proviral Integration site of Moloney murine leukemia virus (PIM) serine/threonine pro-

tein kinases are overexpressed in many hematologic and solid tumor malignancies and play

central roles in intracellular signaling networks important in tumorigenesis, including the

Janus kinase–signal transducer and activator of transcription (JAK/STAT) and phosphatidy-

linositol 3-kinase (PI3K)/AKT pathways. The three PIM kinase isozymes (PIM1, PIM2, and

PIM3) share similar downstream substrates with other key oncogenic kinases and have dif-

fering but mutually compensatory functions across tumors. This supports the therapeutic

potential of pan-PIM kinase inhibitors, especially in combination with other anticancer

agents chosen based on their role in overlapping signaling networks. Reported here is a pre-

clinical characterization of INCB053914, a novel, potent, and selective adenosine triphos-

phate-competitive pan-PIM kinase inhibitor. In vitro, INCB053914 inhibited proliferation and

the phosphorylation of downstream substrates in cell lines from multiple hematologic malig-

nancies. Effects were confirmed in primary bone marrow blasts from patients with acute

myeloid leukemia treated ex vivo and in blood samples from patients receiving INCB053914

in an ongoing phase 1 dose-escalation study. In vivo, single-agent INCB053914 inhibited

Bcl-2–associated death promoter protein phosphorylation and dose-dependently inhibited

tumor growth in acute myeloid leukemia and multiple myeloma xenografts. Additive or syn-

ergistic inhibition of tumor growth was observed when INCB053914 was combined with

selective PI3Kδ inhibition, selective JAK1 or JAK1/2 inhibition, or cytarabine. Based on

these data, pan-PIM kinase inhibitors, including INCB053914, may have therapeutic utility

in hematologic malignancies when combined with other inhibitors of oncogenic kinases or

standard chemotherapeutics.

PLOS ONE | https://doi.org/10.1371/journal.pone.0199108 June 21, 2018 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Koblish H, Li Y-l, Shin N, Hall L, Wang Q,

Wang K, et al. (2018) Preclinical characterization of

INCB053914, a novel pan-PIM kinase inhibitor,

alone and in combination with anticancer agents, in

models of hematologic malignancies. PLoS ONE

13(6): e0199108. https://doi.org/10.1371/journal.

pone.0199108

Editor: Kevin D. Bunting, Emory University,

UNITED STATES

Received: February 28, 2018

Accepted: May 31, 2018

Published: June 21, 2018

Copyright: © 2018 Koblish et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The study was funded, sponsored and

designed by Incyte Corporation (Wilmington, DE).

The data were analyzed and interpreted by the

sponsors in collaboration with all the authors.

Medical writing assistance was provided by Simon

J. Slater, PhD, and was funded by Incyte

Corporation. The lead author (Holly Koblish, PhD)

https://doi.org/10.1371/journal.pone.0199108
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0199108&domain=pdf&date_stamp=2018-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0199108&domain=pdf&date_stamp=2018-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0199108&domain=pdf&date_stamp=2018-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0199108&domain=pdf&date_stamp=2018-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0199108&domain=pdf&date_stamp=2018-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0199108&domain=pdf&date_stamp=2018-06-21
https://doi.org/10.1371/journal.pone.0199108
https://doi.org/10.1371/journal.pone.0199108
http://creativecommons.org/licenses/by/4.0/


Introduction

The Proviral Integration site of Moloney murine leukemia virus (PIM) family of intracellular

serine/threonine kinases consists of three highly homologous isozymes (PIM1, PIM2, and

PIM3), each of which has been implicated in many hematologic and solid tumor malignancies

[1]. PIM isozyme expression is elevated by cytokines and growth factors (eg, interleukin-6,

interleukin-10, and granulocyte-macrophage colony-stimulating factor) that mediate signaling

networks, which are themselves dysregulated in a wide range of cancers [1, 2]. For example,

many of these cytokines signal through the Janus kinase (JAK and signal transducer and acti-

vator of transcription (STAT) pathway, which is both critical for normal hematopoiesis and

associated with myeloproliferative neoplasms (MPNs) [3].

The PIM kinases are constitutively active and transcriptionally regulated by STAT1,

STAT3, STAT5A, and STAT5B, which, in addition to tyrosine phosphorylation by JAK, are

regulated by upstream serine-threonine kinases including extracellular signal-regulated

kinases 1/2 [4], cyclin-dependent kinase 8 [5], p21-activated kinase 1 [6], and focal adhesion

kinase (FAK) [6]. Of note, PIM kinase expression is regulated via a negative feedback loop

involving phosphorylation of suppressors of cytokine signaling (SOCS) 1 and SOCS3 with sub-

sequent inhibition of STAT5 [7, 8]. PIM kinases phosphorylate downstream substrates that are

regulators of apoptosis, proliferation, migration, and cellular metabolism [1, 2]. Signaling net-

works mediated by PIM kinases share common nodes with other networks important for cell

survival and proliferation [1, 2]. For example, Bcl-2–associated death promoter protein

(BAD), 4E-BP1, and p70S6K are downstream substrates for both PIM kinases and phosphati-

dylinositol 3-kinase (PI3K) isozymes, including PI3Kδ, resulting in crosstalk between PIM

kinase and PI3K/AKT/mammalian target of rapamycin complex 1 (mTORC1) signaling [1, 2,

9]. Notably, attenuation of PI3K/AKT/mTORC1 signaling via inhibition of AKT has been

demonstrated to upregulate PIM1 expression [10].

The PIM kinase isozymes are expressed across cancers, but are primarily seen at elevated

levels in hematologic malignancies. Importantly, the isozymes are differentially expressed;

therefore, different isozymes or combinations thereof are active in different histologies [11–

13]. For example, expression of both PIM1 and PIM2 is elevated in diffuse large B-cell lym-

phoma (DLBCL), whereas PIM2 alone is more highly expressed in B-cell chronic lymphocytic

leukemia, acute myeloid leukemia (AML), and multiple myeloma (MM) [1, 12, 14–17]. Con-

trasting with PIM1 and PIM2, PIM3 is ubiquitously and uniformly expressed across hemato-

logic malignancies, and is also more highly expressed in solid tumors (eg, pancreatic, gastric,

and colon cancers) [1, 12]. PIM3 is also expressed in endothelial cells, where it colocalizes with

FAK and is central in cell spreading and migration, suggesting a potential role in angiogenesis

[18]. PIM1 overexpression is associated with a poor prognosis in various hematologic cancers

and solid tumors (eg, mantle cell lymphoma [MCL], triple-negative breast, colorectal, pancre-

atic, gastroesophageal, and head and neck cancers) [19–26], PIM2 overexpression is associated

with an aggressive clinical course in patients with DLBCL [27], and PIM3 overexpression is a

risk factor for prostate cancer [28]. Of note, PIM kinase overexpression confers resistance to

traditional chemotherapeutic agents and radiation therapy across several tumor types, includ-

ing AML and MPNs [15, 25, 29–32].

Based on these observations, the PIM kinases have been proposed to be therapeutic targets

in a variety of cancers [2]. The PIM isozymes have overlapping functions that are mutually

compensatory, such that genetic or pharmacologic inhibition of one isozyme can lead to upre-

gulation of one or both of the other two isozymes [33, 34]. Given this and the differential

expression of individual PIM isozymes across tumors [11, 12], pan-PIM isozyme inhibition

would appear to be most desirable for optimal efficacy [33, 35–38]. However, many of the
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pharmacologic PIM kinase adenosine triphosphate (ATP)-competitive inhibitors that have

appeared in the literature thus far have been rationally designed to target PIM1 [39, 40]; PIM2

has displayed reduced susceptibility to these PIM1 inhibitors owing to secondary structure dif-

ferences in the ATP-binding pocket [41]. Mice deficient in all three PIM kinases exhibit phe-

notypic abnormalities, including smaller overall size at maturity, decreased cellular responses

to cytokines, and impaired hematopoiesis [42]. Of note, the phenotypic effects of PIM kinase

deletion on hematopoiesis are similar to those observed upon STAT5 gene deletion [43], and

to the dominant-negative effects of the expression of inactive, N-terminal truncated forms of

STAT5 in mice [44–46]. Although these abnormalities are not trivial, mice in which PIM1,

PIM2, and PIM3 gene expression has been ablated remain viable and fertile, unlike phenotypes

resulting from other gene deletions, which are typically embryonically lethal (eg, MET, BRD4,

FGFR1, JAK2, LSD1,MDM2) [47–52]. Taken together, this suggests that pharmacologic pan-

PIM isozyme inhibition as a therapeutic paradigm might result in relatively fewer concomitant

toxicities.

The substantial interconnectivity between signaling networks mediated by PIM kinases and

those targeted by other anticancer agents raises the potential for combined additive or syner-

gistic therapeutic effects. We hypothesized that pan-PIM isozyme inhibition alone or in com-

bination with other anticancer agents might provide therapeutic benefit in patients with

hematologic malignancies or solid tumors. A rational medicinal chemistry approach was

undertaken to yield a compound that inhibits all three PIM isozymes, inhibits phosphorylation

of downstream substrates both in vitro and in vivo, displays broad antiproliferative activity in

multiple histologies, inhibits tumor growth, and meets pharmacokinetic and safety criteria to

enable safe dosing in humans. Reported here is the first chemical disclosure and initial preclin-

ical characterization of INCB053914 (Fig 1) [53], a novel, ATP-competitive, small-molecule,

pan-inhibitor of PIM isozymes, alone or as part of combination regimens that include other

anticancer agents chosen based on overlapping signaling networks.

Materials and methods

INCB053914 (N-((R)-4-((3R,4R,5S)-3-amino-4-hydroxy-5-methylpiperidin-1-yl)-7-hydroxy-

6,7-dihydro-5H-cyclopenta[b]pyridin-3-yl)-6-(2,6-difluorophenyl)-5-fluoropicolinamide

phosphate), INCB050465, itacitinib (formerly INCB039110), and ruxolitinib (formerly

INCB018424) were synthesized at Incyte Corporation (Wilmington, Delaware). Cytarabine was

from Hanna Pharmaceutical Supply (Wilmington, Delaware). All tumor cell lines (MM, n = 11;

AML, n = 15; B-cell malignancies, n = 13 [DLBCL, n = 9; MCL, n = 4]; T-cell acute lymphoblas-

tic leukemia [T-ALL], n = 4; Hodgkin lymphoma, n = 1) were from ATCC1 (Rockville, Mary-

land) or DSMZ (Braunschweig, Germany), except for INA-6 (MM) cells, which were kindly

provided by Dr. R. Burger (University Hospital Schleswig-Holstein, Kiel, Germany). Cultures

were maintained according to supplier recommendations. Data plots and statistics were gener-

ated using GraphPad Prism version 5.0 (GraphPad Software, La Jolla, California).

Biochemical PIM kinase activity

The activity of INCB053914 against the PIM1 and PIM3 kinases was measured using AlphaSc-

reen1 assays (PerkinElmer, Inc., Shelton, Connecticut), and against PIM2 kinase using a time-

resolved fluorescence resonance energy transfer assay (see Supporting Information, S1 File)

Cell-based activity of INCB053914

The antiproliferative effects of INCB053914 on hematologic tumor cells were investigated

using assays described in the Supporting Information (S2 File).
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Inhibition of PIM kinase substrate phosphorylation (BAD, S6, p70S6K, and 4E-BP1) and

the upregulation of PIM2 (chosen because of its reduced susceptibility to in vitro kinase inhibi-

tion) by INCB053914 was determined by incubating 106 MOLM-16 (AML), Pfeiffer (DLBCL),

KMS-12-PE (MM), and KMS-12-BM (MM) cells with INCB053914 at concentrations ranging

from 0 (phosphate-buffered saline [PBS]) to 1 μM for 2 hours in Roswell Park Memorial Insti-

tute (RPMI) medium. Cells were centrifuged at 1,000 rpm for 10 minutes and lysed with 1×
lysis buffer (Cell Signaling Technology, Danvers, Massachusetts) supplemented with 1 mM

phenylmethane sulfonyl fluoride (Sigma-Aldrich, St Louis, Missouri) and proteinase inhibitor

cocktail (CalBiochem, San Diego, California). Cell lysates were stored at –80˚C before deter-

mining phosphoprotein and PIM2 levels by Western blotting using anti-pBAD (S112), anti-

p4E-BP1 (S65), pp70S6K (T389), pS6 (S285/S286), and anti-PIM2 antibodies (Cell Signaling

Technology).

The effect of INCB053914 on the level of pBAD was further investigated in KMS-12-BM

and MOLM-16 cells, which were suspended in RPMI + 10% fetal bovine serum (FBS) and

seeded into 96-well v-bottom polypropylene plates (Greiner, Munroe, North Carolina; 4 × 105

cells/well/100 μl) in the presence of 5 μl INCB053914 at a final concentration range of 0.1 nM

to 1,000 nM. After 2.5 hours at 37˚C and 5% CO2, the cells were lysed in 100 μl of cell extrac-

tion buffer (Cell Signaling Technology) containing phenylmethane sulfonyl fluoride, HaltTM

phosphatase, and protease inhibitors (Thermo Fisher Scientific, Waltham, Massachusetts;

Calbiochem). The concentration of pBAD protein in the cell lysates was quantified using a

Human pBAD S112 ELISA Kit (Cell Signaling Technology).

The effects of INCB053914 on pBAD, pp70S6K, and p4E-BP1 levels and on the expression

of PIM isozymes also were assessed ex vivo in primary bone marrow blasts (Stem Cell and
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Fig 1. Structure of INCB053914 and IC50 values for the inhibition of PIM isozymes by INCB053914 in

biochemical assays.

https://doi.org/10.1371/journal.pone.0199108.g001
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Xenograft Core, University of Pennsylvania, Philadelphia, Pennsylvania) or in peripheral

blood mononuclear cells (PBMCs) derived from whole blood samples obtained with informed

written consent from adult patients with AML enrolled in an ongoing phase 1/2 dose-escala-

tion trial, which was conducted in accordance with the study protocol approved by the respec-

tive institutional review boards or independent ethics committees. Only samples initially

containing >90% viable cells were used (assessed by Trypan Blue staining). Immediately after

thawing, the blasts were cultured in RPMI + 10% FBS with INCB053914 for 2 hours at 37˚C,

before lysis. For determinations of PIM2 expression in PBMCs, whole blood samples were

treated overnight with increasing concentrations of INCB053914; total PBMCs were isolated

by Ficoll-Paque density gradient centrifugation before lysis. The levels of PIM isozymes and

phosphoproteins in cell lysates were detected by Western blotting using the same primary anti-

bodies as above.

Erythroid colony formation assays were performed using primary cultures obtained from

peripheral blood samples from patients with JAK2 V216F MPNs, as previously described [54].

Samples were obtained with informed written consent from adult patients through the Moffitt

Cancer Center Total Cancer Care protocol (MCC 14690/ Liberty IRB #12.11.0023) approved

by the Moffitt Cancer Center Scientific Review Committee.

In vivo studies

Non- GLP studies intended to characterize the pharmacology of INCB053914 were conducted

in accordance with Incyte Corporation’s Animal Use Protocols and DuPont Stine-Haskell

SOPs. Animals were housed in barrier facilities fully accredited by the Association for Assess-

ment and Accreditation of Laboratory Animal Care, International. All of the procedures were

conducted under the supervision of a veterinarian and in accordance with the U.S. Public

Health Service Policy on Humane Care and Use of Laboratory Animals. In accordance with the

study protocol approved by the Haskell Animal Welfare Committee (Protocol: HAWC008),

animals were humanely euthanized (by carbon dioxide exposure) if they showed severe signs of

pain or distress, if there was evidence of tumor necrosis or ulceration, if tumor growth impeded

movement, if tumor weight exceeded 10% of body weight for 2 consecutive measurements, or if

body weight loss exceeded 20% of baseline values. Analgesics and anesthetics could be used to

minimize animal suffering and distress; neither were required during these studies. Animals on

study were monitored twice daily and there were no unexpected deaths.

Female immune compromised (severe combined immunodeficiency [SCID]) mice (5–9

weeks of age; Charles River Laboratories, Wilmington, Massachusetts) were inoculated with

MOLM-16, KG-1, or KMS-12-BM cells. A cell suspension in Dulbecco’s phosphate-buffered

saline (DPBS) (1 × 108 cells/ml) was mixed 1:1 (v/v) with matrigel, and 200 μl was injected sub-

cutaneously into the flank of each mouse. Studies of INCB053914 combination regimens used

xenograft models derived from INA-6 (MM) cells or Pfeiffer (DLBCL) cells. INA-6 tumor

fragments were injected subcutaneously as brei (100 μl in Hank’s balanced salt solution

[HBSS, 1:10 v/v]) into the flank of each mouse; Pfeiffer tumor fragments (1 cm × 1 cm) were

directly implanted. The treatment of tumor-bearing mice started 7 to 24 days after tumor inoc-

ulation for efficacy studies and approximately 14 to 27 days after tumor inoculation for phar-

macodynamic studies.

For efficacy studies, mice were sorted to obtain approximately equivalent mean tumor vol-

umes in each group. The starting mean tumor volume in efficacy studies for all groups ranged

from 158 mm3 to 249 mm3, and groups consisted of eight or nine animals. The mean tumor

volume in pharmacodynamic studies for all groups ranged from 114 mm3 to 833 mm3, and

groups consisted of three to eight animals. INCB053914 was administered by oral gavage twice

INCB053914, a pan-PIM kinase inhibitor
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a day for 7 to 19 days (suspension in 5% dimethylacetamide with 0.5% w/v methylcellulose

[Sigma-Aldrich]) or by subcutaneous continuous infusion (Alzet osmotic pumps; flow rate

0.5 μl/h for efficacy studies and 1.0 μl/h for pharmacodynamic studies).

INCB053914 single-agent therapy in xenograft models

Human MOLM-16 (AML) and KMS-12-BM (MM) xenografts were established in SCID mice.

For the evaluation of intratumoral pBAD inhibition, tumor-bearing mice (three to eight mice/

group) were treated with a single oral dose of INCB053914 at doses ranging from 0 (vehicle) to

100 mg/kg. In one representative experiment, mice were sacrificed 4 hours after a single dose,

and tumors were collected to analyze the levels of pBAD relative to those of vehicle-adminis-

tered controls. Plasma samples were collected for pharmacokinetic analysis.

For the evaluation of the effects of INCB053914 on tumor growth, tumor-bearing mice

(MOLM-16 xenograft, eight mice/group; KMS-12-BM xenograft, nine mice/group) were

dosed orally twice a day with INCB053914 at doses ranging from 0 (vehicle) to 100 mg/kg for

15 days.

Tumor volume was calculated in two dimensions using the equation: volume = [length ×
(width2)] / 2, where the larger number was length and the smaller number was width. Effects

on tumor growth were reported as percent tumor growth inhibition calculated as (1 − [treat-

ment volume / control volume]) × 100, where control volume was the vehicle/untreated tumor

volume on a given day and treatment volume was any treatment group tumor volume on that

same day. Statistical significance of differences between treatment and vehicle controls was

assessed using analysis of variance single factor test.

INCB053914 combination therapy in xenograft models

The PI3Kδ inhibitor INCB050465 (10 mg/kg once a day orally) was evaluated in combination

with INCB053914 (30 mg/kg once a day orally) in mice bearing Pfeiffer (DLBCL) xenografts, a

model sensitive to PI3Kδ inhibition (eight mice/group). Cytarabine was administered via

intraperitoneal injection at a standard dose of 20 mg/kg twice a week, in combination with

oral INCB053914 at a submaximally efficacious dose of 20 mg/kg twice a day for 12 days in

mice bearing human KG-1 AML xenografts, a cytarabine-sensitive model (eight mice/group).

The oral JAK1-selective inhibitor itacitinib (60 mg/kg twice a day orally) was assessed in com-

bination with INCB053914 (100 mg/kg twice a day orally) after 8 days of administration to

SCID mice bearing INA-6 (MM) xenografts (eight mice/group), a model sensitive to JAK inhi-

bition [55].

Synergistic effects of INCB053914 in combination with INCB050465, cytarabine, or itaciti-

nib, were assessed based on the Bliss independence model [56, 57]. In this model, the expected

additive effect, with the assumption that concentration dependent effects of 2 drugs (A and B)

are independent, is given by the equation EIND = EA + EB – EA •EB, where 0� EIND� 1; EA and

EB are the magnitudes of effects of A and B alone at given concentrations.

The interaction between effects of A and B can be described by the equation Combination
Index = EIND/ EOBS, where EOBS is the observed combined effect of A + B expressed as a proba-

bility (0� EOBS� 1). If the point estimate of Combination Index and its upper 97.5% confi-

dence limit are <1 then the combined effect is synergistic; if the 2-sided 95% confidence

intervals (CI) encompass 1 then the combined effect is additive (ie, independent); if the point

estimate of Combination Index and the lower 2.5% confidence limit are>1 then the combined

effect of A + B are antagonistic.

Combined effects of INCB053914 with those of other anticancer agents on cell viability

were assessed as described in Supporting Information.
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Bioanalysis of INCB053914 in mouse plasma

Concentrations of INCB053914 in plasma were analyzed using liquid chromatography tandem–

mass spectrometry at 2, 4, 8, and 16 hours postdose (see Supporting Information, S3 File).

Results

Biochemical characterization of INCB053914

In vitro assays demonstrated that INCB053914 potently inhibits the activities of all three PIM

isozymes with half maximal inhibitory concentration (IC50) values in the order of PIM1�

PIM3 < PIM2 (Fig 1). Because of the reduced inhibitory potency towards PIM2 versus PIM1

and PIM3, PIM2 was chosen as the benchmark isozyme to ensure target coverage in subse-

quent experiments. INCB053914 was shown to be highly selective against a panel of more than

50 kinases (>475-fold selectivity; see Supporting Information S1 Table), except for RSK2 for

which INCB053914 had modest potency (IC50 = 7.1 μM). Subsequent profiling against a

broader panel of 192 kinases (PerkinElmer, Akron, Ohio; results not shown) confirmed this

high selectivity; no kinase other than Per-Arnt-Sim (PAS) kinase was significantly inhibited by

INCB053914 (100 nM). Further evaluation showed that INCB053914 had approximately equi-

potent effects on PIM2 and PAS kinase activities. Taken together, these results indicate that

INCB053914 is a potent and highly specific pan-PIM inhibitor.

INCB053914 inhibits tumor cell proliferation

The effects of INCB053914 on cellular proliferation were assessed in a panel of cell lines

derived from hematologic malignancies including AML, MM, DLBCL, MCL, and T-ALL (Fig

2A). The mean growth inhibitory (GI50) values were<100 nM in 50% of cell lines tested (see

Supporting Information S2 Table). Of note, INCB053914 inhibited proliferation in all MM cell

lines tested, with mean GI50 values ranging from 13.2 nM to 230.0 nM. Mean GI50 values were

<100 nM in eight of 15 (53%) AML cell lines tested; in particular, MOLM-16 and Kasumi-3

cells were extremely sensitive to inhibition by INCB053914 (mean GI50, 3.3 nM and 4.9 nM,

respectively). Among DLBCL cell lines tested, the proliferation of Pfeiffer cells was the most

sensitive to inhibition by INCB053914 (mean GI50, 19.5 nM). Taken together, these results

show that INCB053914 has broad anti-proliferative activity against a variety of hematologic

tumor cell lines. Based on their increased sensitivity to INCB053914MOLM-16, Pfeiffer, and

KMS-12-PE/BM cell lines were selected for further study as models for AML, DLBCL, and

MM, respectively.

Decreased PIM kinase substrate phosphorylation and increased PIM2

expression as markers of INCB053914 activity

To confirm that the observed antiproliferative effects of INCB053914 in hematologic tumor

cell lines were due to PIM inhibition, the effects of INCB053914 on PIM kinase-mediated sig-

naling networks were investigated. Treatment with INCB053914 inhibited the phosphoryla-

tion of downstream PIM kinase substrates (p70S6K/S6 and 4E-BP1) in a dose-dependent

manner in MOLM-16 (AML), Pfeiffer (DLBCL), and KMS-12-PE/BM (MM) cell lines (Fig

2B). PIM kinase-mediated phosphorylation of BAD in MOLM-16 and KMS-12-BM cells was

particularly sensitive to inhibition by INCB053914 (mean IC50, 4 nM and 27 nM, respectively;

Fig 2C). INCB053914 also increased PIM2 expression in KG-1a (AML), Pfeiffer, and KMS-

12-PE cells (Fig 2D). The similar inhibitory potencies of the effects of INCB053914 on sub-

strate phosphorylation and on proliferation in these cell lines provides evidence that PIM

kinase inhibition is central to the antiproliferative effects of INCB053914.
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Ex vivo treatment of primary bone marrow blasts from patients with AML with INCB053914

also decreased phosphorylation of p70S6K and 4E-BP1 and increased PIM2 expression (Fig

3A). Decreases in BAD phosphorylation were only seen in blasts from two of four patients. A

concentration-dependent increase in PIM2 expression also was observed in PBMCs treated ex
vivowith INCB053914 (Fig 3B). In addition, a pharmacodynamic assessment of 4 blood samples

obtained from two separate patients with AML receiving INCB053914 100 mg twice a day in

the ongoing phase 1/2 trial also demonstrated an increase in PIM2 expression levels and a

decrease in 4E-BP1 phosphorylation (Fig 3C). These results indicate that inhibition of PIM

kinases by INCB053914 elicits similar effects on downstream signaling in hematologic tumor

cell lines to those in patient-derived primary blood cells.

Ex vivo effects of INCB053914 on erythroid colony formation in cell

cultures from patients with JAK2 V617F-positive MPNs

PIM kinases are downstream mediators of JAK/STAT signaling, aberrant activation of which

can lead to MPNs [3]. We therefore assessed the ex vivo effects of INCB053914 on neoplastic

erythroid colony formation in primary cell cultures obtained from patients with polycythemia

vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (MF) who possess the
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Information S4 File.
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activating JAK2 V617F mutation. In each case, a significant dose-dependent inhibition of col-

ony formation was noted at INCB053914 concentrations as low as 0.5 nM (p< 0.05; Fig 4).

These data indicate that downstream PIM kinase inhibition by INCB053914 blocks aberrant

JAK/STAT activation, resulting in inhibited erythroid colony formation in patients with

MPNs.
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INCB053914 inhibits PIM kinase-mediated signaling and tumor growth in vivo
It was hypothesized that the inhibitory effects of INCB053914 on PIM kinase activities and cell pro-

liferation in vitrowould translate to inhibited PIM kinase-mediated signaling and tumor growth in
vivo. Assessment of mice bearing MOLM-16 (AML) and KMS-12-BM (MM) tumors treated with

INCB053914 demonstrated a dose-dependent inhibition of BAD phosphorylation relative to vehi-

cle at 4 hours post dose (MOLM-16 tumors, IC50 = 70 nM; KMS-12-BM tumors, IC50 = 145 nM;

Fig 5A and 5B). The potencies of these effects were similar to those observed for BAD phosphoryla-

tion in whole blood samples spiked with MOLM-16 or KMS-12-BM cells, when treated ex vivo
with INCB053914 (MOLM-16 cells, IC50 = 76 nM; KMS-12-BM cells, IC50 = 134 nM).

Consistent with the observed pharmacodynamic effects, INCB053914 inhibited tumor

growth in a dose-dependent manner in mice bearing MOLM-16 (AML) or KMS-12-BM

(MM) (Fig 5C and 5D) tumors; in the MOLM-16 model, tumor growth inhibition was appar-

ent at doses as low as 1 mg/kg. Maximal growth inhibition in MOLM-16 tumors (96%) was

observed at 30 mg/kg twice a day where six of eight mice had a partial regression (PR; defined

as a�50% decrease in tumor volume vs. that at treatment start). INCB053914-mediated KMS-

12-BM tumor growth inhibition was 43%, 71%, 77%, and 88% at doses of 25, 50, 75, and 100

mg/kg twice a day, respectively. INCB053914 was tolerated at all doses tested. A pharmacoki-

netic analysis of INCB053914 plasma concentrations up to 16 hours post oral administration

in MOLM-16 and KMS-12-BM tumor-bearing mice suggested dose proportionality (Fig 5E

and 5F). Maximal antitumor activity was observed in these models when the trough plasma

concentration of INCB053914 exceeded the IC50 for pBAD inhibition determined in whole

blood samples spiked with MOLM-16 or KMS-12-BM cells.

Synergistic effects of INCB053914 in combination with other anticancer

agents

Because PIM kinases integrate signals from multiple intracellular signaling networks [1, 2],

rational combinations of INCB053914 with anticancer agents that target other signaling path-

ways important in cell proliferation and survival were investigated.

Combination with PI3Kδ inhibition. PIM kinases and PI3K/AKT/mTORC1 share simi-

lar downstream substrates, including BAD, 4E-BP1, and p70S6K, and both upregulate PIM2

expression [1, 2, 9, 10]. This suggests that inhibition of PIM kinases may modulate the inter-

connectivity between these two networks. Consistent with this, synergistic effects of PIM

kinase inhibitors with pan-PI3K and PI3Kα selective inhibitors have been shown [10, 58–60].

We therefore assessed the effects of INCB053914 in combination with INCB050465, a highly

selective and highly potent PI3Kδ inhibitor currently being assessed in phase 2 trials for the

treatment of hematologic malignancies. In an in vitro assay, INCB050465 elicited concentra-

tion-dependent increases in the expression of all three PIM isozymes in Pfeiffer DLBCL cells

relative to baseline, with PIM2 expression being increased the most (~2.5-fold; Fig 6A). The

proliferation of Pfeiffer cells was inhibited by both INCB053914 and INCB050465 as single

agents; the two agents combined had synergistic antiproliferative effects (point estimate of

Bliss Combination Index [2-sided 95% CI] = 0.923 [0.845, 0.979]; Fig 6B). Notably, the com-

bined administration of INCB053914 with INCB050465 in Pfeiffer cell xenografts resulted in

synergistic tumor growth inhibition compared with either agent alone. Among eight treated

mice receiving the combination, seven had a PR and one had a complete regression (defined

as�50% and 100% decreases in tumor volume vs that at treatment start, respectively; Fig 6C).

Combination with cytarabine. Cytarabine induces the expression of CD25 via activation

of STAT5 [61], which then leads to transcriptional activation of PIM kinases [62]. Therefore,

the effects of INCB053914 on the antitumor activity of cytarabine were assessed in SCID mice

INCB053914, a pan-PIM kinase inhibitor
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bearing KG-1 (AML) tumors (Fig 6D). Tumor growth was inhibited by administration of

either INCB053914 or cytarabine alone, and combined administration of INCB053914 with

cytarabine resulted in additive inhibition (point estimate of Bliss Combination Index [2-sided

95% CI] = 0.967 [0.495, 1.205]; Fig 6D). All regimens were well tolerated.

Combination with JAK inhibition. Cytokines and growth factors elicit hematopoietic

cell proliferation and differentiation via the JAK/STAT signaling pathway [63]. Cellular PIM

kinase activity also is regulated by cytokines via JAK/STAT5 signaling at the level of transcrip-

tion and translation [1, 2]. In addition, PIM2 in part regulates IL-6 gene expression [64], which

is also induced by STAT5 [65]. Based on this, it has been hypothesized that PIM2 might potenti-

ate STAT5 activation via a feed-forward mechanism leading to sustained STAT-mediated cellu-

lar proliferation [61]. Therefore, we investigated whether combined PIM kinase and JAK

inhibition might have synergistic/additive antitumor effects. In mice bearing JAK-dependent

INA-6 (MM) tumors, administration of INCB053914 or itacitinib as single-agents led to a

decrease in the level of pBAD and pSTAT3, respectively, as expected. Administration of

INCB053914 plus itacitinib in combination reduced pBAD and pSTAT3 levels to a similar

extent as single-agent INCB053914 and single-agent itacitinib, respectively (Fig 6E). Notably,

administration of either INCB053914 or itacitinib alone resulted in decreased MYC levels, with

slightly stronger effects observed with the combination regimen. In a separate experiment,

INCB053914 had negligible effects on pSTAT3(Y705) levels, and PIM kinase substrate phos-

phorylation was unaffected by ruxolitinib (JAK1/2 selective inhibitor), and itacitinib (JAK1

selective inhibitor; Supplementary Information S1 Fig). A synergistic inhibition of tumor

growth was observed with INCB053914 plus itacitinib compared with either agent alone in

INA-6 xenografts (agents were administered at doses lower than required for full efficacy; point

estimate of Bliss Combination Index [2-sided 95% CI] = 0.720 [0.256, 0.924]; Fig 6F). Partial

responses were seen in four of eight mice tested. In a separate experiment, similar effects on

tumor growth were obtained for a combination of INCB053914 with ruxolitinib, showing that

JAK1-selective and JAK1/2 dual inhibitors behave similarly in these models (data not shown).

In addition to the above rational combinations, the ability of INCB053914 to potentiate the

inhibitory effects of a panel of 65 anticancer agents on the viability of MM cells (KMS-11,

KMS-12-BM, MM1.S) also was assessed. Among these agents, 19 showed varying degrees of

additivity/synergy with INCB053914 (Supplementary Information S2 Fig). Particularly potent

were combinations of INCB053914 with PI3K/AKT pathway inhibitors, chemotherapeutic

agents including azacitidine, and small-molecule inhibitors including ibrutinib, that have util-

ity in treating patients with hematologic malignancies.

Discussion

PIM kinases function in cells as integrators of several signaling networks that overlap with

those that can be targeted by other anticancer agents and that share common downstream sub-

strates [1, 2]. For example, signaling networks mediated by PIM kinases overlap substantially

with the PI3K/AKT/mTORC1 pathway [1, 2, 9]; PIM kinases and mTORC1 both block the

anti-apoptotic function of BAD [2]. In addition, both PIM2 and mTORC1 phosphorylate

4E-BP1 via parallel signaling pathways, which then upregulates cap-dependent protein transla-

tion [1, 17]. We therefore hypothesized that along with potential single-agent activity, there

also could be synergy between the in vitro and in vivo antitumor effects of INCB053914 and

those of other rationally chosen anticancer agents.

In this study, single-agent INCB053914 potently inhibited the activity of all three PIM

kinase isozymes and displayed high selectivity for these kinases. Single-agent INCB053914

upregulated PIM2 and inhibited phosphorylation of multiple substrates in hematologic cancer
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cell lines as well as in patient-derived primary AML cells. These included the pro-apoptotic

protein, BAD, in MM (KMS-12-BM) and AML (MOLM-16) cell lines, as well as other down-

stream signaling proteins important in cell survival, growth, and migration. In keeping with a

common role of PIM kinases across hematologic malignancies, single-agent INCB053914

inhibited proliferation in a diverse panel of hematologic tumor cell lines, and inhibited tumor

growth in vivo in both AML and MM xenograft models at tolerated doses.

Consistent with the interplay between PIM kinase- and PI3K/AKT/mTORC1-mediated sig-

naling pathways, INCB053914 enhanced the inhibitory effects of INCB050465, a highly selec-

tive PI3Kδ inhibitor, on tumor growth in a xenograft model of DLBCL. Of note, inhibition of

the AKT has been shown to upregulate the PIM1 [10], which may confer resistance to PI3K

inhibitor therapy in breast cancer [66]. Consistent with this, it is shown here that INCB050465

increased expression of all three PIM isozymes. These data indicate that combining PIM

kinase inhibition by INCB053914 and PI3Kδ inhibition by INCB050465 may provide a poten-

tial therapeutic approach for ameliorating this compensatory mechanism of resistance.

Cytarabine has been shown to upregulate the expression of CD25 via STAT5 activation in

the AML cell line, KG-1 [61]. pSTAT5 and CD25 are negative prognostic biomarkers in AML

[67–69], and the presence of CD25+ blasts has been suggested to be associated with chemo-

therapy relapse [67, 70, 71]. Notably, although PIM kinase expression is regulated by STAT5,

PIM kinase inhibition suppressed CD25 expression, a surrogate of STAT5 activity, in AML

cells [61]. Moreover, KG-1 (AML) cells selected for cytarabine resistance displayed increased

sensitivity to PIM inhibition versus unselected cells [61]. Experiments performed previously in

our laboratory also have demonstrated that among a panel of AML cell lines including KG-1

cells, those expressing CD25 were more sensitive to inhibition by INCB053914 [72]. In keeping

with these observations, it is shown here that INCB053914 synergistically increased the inhibi-

tory effects of cytarabine on tumor growth in KG-1 xenografts.

The observation that PIM kinases are downstream regulators of JAK/STAT signaling [2, 62]

supports the potential utility of PIM kinase inhibition in combination with JAK inhibition. Thus,

INCB053914 synergistically enhanced the inhibitory potency of the JAK1-selective inhibitor, itaci-

tinib, and the JAK1/2-selective inhibitor, ruxolitinib, on tumor growth in xenograft models of

MM. Of note, PIM kinase inhibition alone did not impact on STAT3 activity, based on the obser-

vation that pSTAT3(Y705) levels were unaffected by INCB053914; also JAK inhibition alone did

not affect downstream PIM kinase substrate phosphorylation. The demonstrated activity of ruxo-

litinib in patients with MPNs also led us to assess the activity of INCB053914 in primary cultures

from patients with JAK2 V617F-positive PV, ET, and MF. INCB053914 concentrations as low as

1 nM to 5 nM were effective at inhibiting the formation of neoplastic erythroid colonies. Further

studies exploring the activity of INCB053914 in combination with ruxolitinib in additional sam-

ples suggest enhanced activity (G.W. Reuther, manuscript in preparation).

Although there have been several other PIM kinase-targeted agents described in the literature

[33, 35–38], most are specific for PIM1 and few inhibit all three PIM isozymes. In particular, the

development of an ATP-competitive inhibitor of PIM2 has been hindered by the relatively high

binding affinity of PIM2 for ATP versus the other two isozymes [33]. INCB053914 potently inhib-

ited the activities of all three PIM isozymes, which is important for avoiding compensatory activity

and for maximizing therapeutic efficacy [33, 34, 73]. PIM447 and AZD1208 are also potent and

selective pan-PIM inhibitors that show similar activity in vitro and in vivo to INCB053914 [35, 37,

54]. For example, as observed for INCB053914, AZD1208 displayed antiproliferative effects in sev-

eral AML cell lines, which were relatively more potent for MOLM-16 and Kasumi-3 cells [74, 75].

The effects of AZD1208 were predominantly cytostatic versus apoptotic; similar to INCB053914,

the growth inhibitory effects of AZD1208 reflected a dose-dependent inhibition of downstream

mTOR signaling, including a reduction in mTOR, 4E-BP1, and p70S6K/S6 phosphorylation [74,

INCB053914, a pan-PIM kinase inhibitor
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75]. PIM447 is currently being evaluated in combination with ruxolitinib and LEE011 for the

treatment of patients with myelofibrosis in a phase 1 clinical trial (ClinicalTrials.gov identifier:

NCT02370706).

In summary, the present data, obtained using in vitro and in vivomodel systems, support

the potential therapeutic benefit of targeting PIM kinase-mediated signaling networks, par-

ticularly when these overlap with networks mediated by other anticancer agents. Thus, con-

sistent with a common role of PIM kinases across hematologic malignancies, single-agent

INCB053914 inhibited constitutive PIM kinase-mediated signaling and proliferation in multi-

ple hematologic tumor cell lines and in primary tumor cells and demonstrated notable inhibi-

tory effects on tumor growth. These effects were additively or synergistically enhanced by

coadministration with standard chemotherapy, including cytarabine, and targeted therapies,

suggesting that INCB053914 may have particular utility in combination regimens. Moreover,

the observation that among a panel of 65 anticancer agents, 19 showed additive/synergistic

antitumor effects with INCB053914 indicates considerable latitude in tailoring combination

regimens for the treatment of different cancers. Based on these results, a phase 1/2 dose-escala-

tion trial is currently recruiting patients to assess the safety and preliminary efficacy of

INCB053914 alone or combined with the PI3Kδ inhibitor INCB050465, azacitidine, interme-

diate-dose cytarabine, or ruxolitinib, for the treatment of advanced malignancies (Clinical-

Trials.gov identifier: NCT02587598).
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