
R E V I EW

Stargardt disease: Multimodal imaging: A review

Rachael C. Heath Jeffery MChD, MPH1,2 | Fred K. Chen PhD, FRANZCO1,2,3,4

1Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, Western
Australia, Australia
2Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia, Australia
3Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth,
Western Australia, Australia
4Department of Ophthalmology, Perth Children's Hospital, Nedlands, Western Australia, Australia

Correspondence
Fred K. Chen, Lions Eye Institute,
2 Verdun Street, Nedlands, WA, Australia.
Email: fredchen@lei.org.au

Funding information
Miocevich Retina Fellowship; McCusker
Charitable Foundation; Telethon-Perth
Children's Hospital research fund;
Macular Disease Foundation Australia;
National Health & Medical Research
Council of Australia, Grant/Award
Numbers: MRF1142962, GNT1054712,
GNT1188694, GNT116360

Abstract

Stargardt disease (STGD1) is an autosomal recessive retinal dystrophy,

characterised by bilateral progressive central vision loss and subretinal deposi-

tion of lipofuscin-like substances. Recent advances in molecular diagnosis and

therapeutic options are complemented by the increasing recognition of new

multimodal imaging biomarkers that may predict genotype and disease pro-

gression. Unique non-invasive imaging features of STDG1 are useful for gene

variant interpretation and may even provide insight into the underlying molec-

ular pathophysiology. In addition, pathognomonic imaging features of STGD1

have been used to train neural networks to improve time efficiency in lesion

segmentation and disease progression measurements. This review will discuss

the role of key imaging modalities, correlate imaging signs across varied

STGD1 presentations and illustrate the use of multimodal imaging as an out-

come measure in determining the efficacy of emerging STGD1 specific

therapies.

KEYWORD S

fundus autofluorescence, inherited retinal diseases, ocular coherence tomography, retina,
retinal dystrophy

1 | INTRODUCTION

Stargardt disease (STGD1, OMIM #248200), caused by
biallelic mutations in the ATP-binding cassette trans-
porter subfamily A4 (ABCA4) gene,1 is one of the most
common genetic inherited retinal diseases (IRDs)2

accounting for 12% of IRD-related blindness.3 Initially
described as a juvenile macular dystrophy,4 the spectrum

of ABCA4-associated retinopathy has been expanded to
include childhood-onset cone-rod dystrophy,5 rapidly
progressive pan-retinal chorioretinal atrophy6 and the
late-onset pattern dystrophy-like disease with foveal spar-
ing macular atrophy.7,8 With the emergence of ABCA4-
specific molecular and genetic therapies, it is essential
that the clinical diagnosis of STGD1 is made promptly
through the appropriate use of multimodal imaging to
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guide timely and accurate genetic analysis, allowing for
the early enrolment of these patients into clinical trials of
novel therapies.9

A quarter of childhood-onset STGD1 do not have any
retinal lesions at presentation.10 Without multimodal
imaging, these children can be easily misdiagnosed as
functional visual loss, amblyopia and other forms of IRDs
given pattern electroretinography (ERG) may be normal
and full-field ERG may show electronegative waveform in
the early stages.11,12 The lack of signs on fundoscopy may
lead to unnecessary neuroimaging, lumbar punctures and
even psychiatric evaluation and years of inappropriate
occlusion therapy.13 Similarly, without multimodal imag-
ing late-onset STGD1 can often be misdiagnosed as age-
related macular degeneration (AMD) due to the similar
appearance of flecks and drusen on fundus examination,
and the similar sight-threatening complications of geo-
graphic atrophy and subretinal neovascular mem-
branes.8,14 Multimodal imaging is therefore essential in
the management of both children and adults with STGD1.
Furthermore, unique imaging signs in STGD1 may pre-
dict mutation severity15 and specific ABCA4 variants.16-20

In this era of personalised gene-based therapy, multi-
modal imaging can enhance our ability to precisely mea-
sure the natural disease progression and impact novel
therapies that arrest the disease progression.

Here, we review the specific multimodal imaging fea-
tures of STGD1 and correlate imaging signs across a
broad spectrum of disease presentations. Furthermore,
we discuss the use of multimodal imaging as an outcome
measure in determining the efficacy of emerging ABCA4-
specific therapies.

2 | MULTIMODAL IMAGING
TECHNIQUES

The typical fundus features of STGD1 are not always visi-
ble on clinical fundus examination at the initial presenta-
tion.10 Multimodal imaging is essential for detecting
(a) subtle outer retinal layer changes before the appear-
ance of a beaten bronze macula and (b) lipofuscin accu-
mulation in the retinal pigment epithelium (RPE) prior
to the formation of subretinal flecks. Detection of pre-
clinical lesion is particularly important in screening
younger asymptomatic siblings of a child with established
STGD1. It is also essential to perform multimodal imag-
ing in both parents to identify asymptomatic late-onset
STGD1 masquerading as AMD or a pattern dystrophy
with pseudodominant inheritance.21,22 There have been
important recent advances in the use of ocular coherence
tomography (OCT) for viewing the layers of the retina
and choroid and their respective vasculatures, and the

use of confocal scanning laser ophthalmoscopy for map-
ping fundus autofluorescence (FAF), incorporating an
internal reference for quantifying autofluorescence inten-
sity or an ellipsoid mirror for an ultra-widefield (UWF)
imaging.

2.1 | Ocular coherence tomography

OCT is an imaging technique that is capable of capturing
structural alterations by providing in vivo quasi-
histological sections of the retina and choroid. Choroidal
imaging with spectral domain OCT (SD-OCT) has gained
popularity since the introduction of the enhanced depth
imaging technique whereby the zero-phase delay line is
positioned at the choroidal side of the image frame,
inverting the image.23 Choroidal structure and visibility
of the sclerochoroidal junction was further enhanced
with the use of a swept source OCT device.24,25 Phase-
based26,27 and amplitude-based28,29 approaches have been
described for extracting flow signals from serial OCT
scans to re-create a retinal or choroidal vascular map
known as OCT angiography (OCTA).30 Both structural
and angiographic OCT modalities have been used exten-
sively to investigate STGD1.

2.1.1 | Outer retinal changes

Previous studies using time31 and spectral-domain32 OCT
devices confirmed the subretinal and intraretinal place-
ment of STGD1 flecks which were classified into type
1 (group A, B and C) or type 2 (group D) lesions respec-
tively (Figure 1). Atypical drusen-like lesions (group E)
have also been noted. Despite the lack of longitudinal
data and histopathological correlation, a multimodal
imaging study33 suggested these flecks originated from
degenerated photoreceptor inner and outer segments
leading to hyper-reflective debris on the apical surface of
the RPE that gradually disrupts the interdigitation and
ellipsoid zones as it reaches the external limiting mem-
brane (ELM) causing thinning of the adjacent outer
nuclear layer (ONL). The importance of multimodal
imaging in the recognition of STGD1 is further supported
by SD-OCT studies which revealed subtle outer retinal
layer changes that were not visible on fundoscopy.34,35

These include occult macular dystrophy-like features
evolving into a foveal cavitation defect due to an optical
gap in the subfoveal outer segment layer34,35 and thicken-
ing of the ELM36,37 which can be observed in pre-
symptomatic individuals (Figure 1). These OCT signs
may occur in the absence of any RPE changes on clinical
examination.
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2.1.2 | Choroidal features

In an early choroidal OCT imaging study, we described
focal choroidal thinning in 3–6 patients with STGD1.38

This reduction in total choroidal thickness was found to
be associated with preferential attenuation of the large
choroidal vessels. However, with the use of a swept source
OCT device, Ratra et al.39 showed no difference in choroi-
dal thickness between healthy controls and STGD1
whereby those with STGD1 had a reduced proportion of
the choroidal cross-sectional area occupied by a vascular
lumen (choroidal vascular index) in a single horizontal
OCT scan. More recently, Arrigo et al.40 demonstrated
reduced choroidal thickness in 100 eyes of 50 STGD1
patients as compared to controls. They proposed four pat-
terns of altered choroidal structure namely, normal cho-
roid (pattern 1, 15%), reduced Sattler or Haller layers
(pattern 2, 29%), reduced Sattler and Haller layers (pattern
3, 26%) and reduced Sattler and Haller layers with choroi-
dal caverns (pattern 4, 30%).40 In addition to altered vas-
cular structures, hyperreflective foci within the choroidal
stroma have also been described.41 These lesions have
been associated with more severe choroidal vascular
remodelling, retinal atrophy, visual loss and longer dis-
ease duration.40-42 Herniation of atrophic retinal tissue
into the choroid through a focal defect in the Bruch's
membrane has also been described as focal choroidal
excavation (Figure 1).43 However, it is worth noting that

the configuration of excavation in STGD1 differs mark-
edly from the original description of the focal choroidal
excavation, in which the RPE and photoreceptors were
intact in the setting of an otherwise normal eye.44 These
unique features of ABCA4-associated choroidopathy war-
rant further investigation.

2.1.3 | Ocular coherence tomography
angiography

In contrast to AMD, previous indocyanine green angiogra-
phy studies in STGD1 subjects have demonstrated a com-
plete loss of the choriocapillaris, known as dark atrophy, in
areas where RPE was absent.45,46 OCTA studies47,48 have
now confirmed these angiographic findings and shown that
this region of choriocapillaris loss was confined to within
the boundary of the RPE atrophy suggesting the latter was
the primary event (Figure 2).45,46,49 However, a compara-
tive study between AMD and STGD1 on the flow signal
texture in the choriocapillaris showed a reduced flow signal
beyond the area of RPE atrophy suggesting an inner cho-
roidal vascular pathology may precede the RPE loss in
AMD (Figure 2).50 One study51 reported attenuation of the
choriocapillaris vessel density beyond the region of RPE
atrophy, but this may be attributed to shadowing generated
by fleck lesions.50 It remains to be determined whether the
altered choriocapillaris flow signals outside the region of

FIGURE 1 Serial ocular coherence tomography (OCT) of the same region showed evolution of subretinal flecks with focal thickening of

the retinal pigment epithelium (A), the flecks subsequently pushed through the ellipsoid zone (B) and then migrated into the outer retinal

layers (C). This led to the formation of outer retinal atrophy (D) and further migration of the flecks into the retinal tissue (E). Unique OCT

features in Stargardt disease include an optically empty gap in the fovea in those presenting with a bull's eye maculopathy (F),

hyperreflective external limiting membrane (G), herniation of retinal tissue through breaks in Bruch's membrane (H) and choroidal

caverns (I)
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RPE atrophy are solely due to choroidal OCTA image arte-
fact we described previously.52 OCTA studies of the retinal
circulation have also demonstrated reduced superficial and
deep vessel densities,53 vessel tortuosity,40 vessel surface
area and vessel volume.54 Correlation of more extensive
retinal vessel losses in the presence of RPE atrophy sug-
gests the neurosensory retinal tissue loss leads to secondary
capillary loss.54 OCTA may be useful for the detection of
abnormal flow signal within a macular choroidal neo-
vascular membrane complicating late-onset STGD1
(Figure 2) or within a peripheral retinal pigmented lesion
or hypolipofuscinosis with subretinal fibrosis.55

2.2 | Fundus autofluorescence

FAF is a non-invasive technique for mapping the distri-
bution of RPE fluorophores.56 In STGD1, impaired
ABCA4 flippase function within the photoreceptors and

RPE leads to cellular dysfunction, formation of subretinal
clumps of lipofuscin-rich degenerate outer segments
(flecks) and subsequent RPE and photoreceptor cell
death.33,57 Upon exposure to blue light (λ = 488 nm),
lipofuscin fluorophores within the RPE and flecks are vis-
ualised through a barrier filter that eliminates reflected
light by blocking λ < 500 nm.58 Therefore, increased
lipofuscin within the RPE and focal subretinal accumula-
tion of lipofuscin-rich debris results in generalised and
focal hyperautofluorescence, respectively, on blue AF
(BAF) imaging.59 Subsequent RPE cell death59 or mas-
king by RPE hyperplasia60 and hyperlipofuscinosis with
subretinal fibrosis61 results in areas of hyp-
oautofluorescence. Near-infrared light (λ = 787 nm) has
also been used to elicit a FAF signal from melanin-
associated fluorophores.62 Since the description of a
uniquely altered IRAF pattern by Cideciyan et al.,63 BAF
and IRAF have both been incorporated into multimodal
imaging protocols for STGD1.64-67 FAF imaging using

FIGURE 2 Fundus autofluorescence (FAF) imaging of a 34 year old female (c.[3322C>T];[2588G>C;5603A>T]) showing macular flecks

(A) with a central area of questionable decreased autofluorescence (QDAF) on short-wavelength AF (B) and more extensive hypoAF and

‘dark flecks’ on near-infrared (IR) AF (C). The superficial retinal capillary map (D) was within normal limits. The choriocapillaris map

showed focal regions of flow void which corresponded to flecks and areas of QDAF (E). FAF imaging of an 82-year-old male (c.[4577C>T];

[5603A>T]) showing peripapillary flecks and central geographic atrophy (F). These regions of definite DAF had well defined borders on

SWAF (G). IRAF showed preservation of a foveal island not seen with SWAF (H). The superficial capillary map (I) was within normal limits.

The choriocapillaris map showed loss of capillaries in the region of DAF and increased visibility of choroidal vessel flow signals (J). A

91-year-old male (c.[2549A>G;4667+5G>T;4882G>A];[5603A>T]) with central macular atrophy as shown by the well-defined defect in

choriocapillaris on ocular coherence tomography angiography (OCTA) (K). Adjacent OCTA scans showed flow signals (red markings)

within the pigmented epithelial detachment temporal to the fovea and nasal intraretinal fluid indicating an active choroidal neovascular

membrane (L, M)
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a green excitation light (λ = 518 nm, GAF) has also
been used for the visualisation of small, central lesions
as this light is not absorbed by macular pigment
(meso-zeaxanthin, zeaxanthin and lutein) in contrast to
BAF.68 Given the elevated background BAF signal in

STGD1 a method for its quantification, developed by Del-
ori et al.,69 has enabled inter-individual comparison of
BAF to facilitate genotype–phenotype correlations.70-72

The extent of peripheral retinal involvement in STGD1
has been difficult to visualise and document without the

FIGURE 3 Short-wavelength (A) and near-infrared (IR) (B) fundus autofluorescence (AF) of a 60-year-old male with late-onset disease.

Magnified images of SWAF (C) and IRAF (D) showed progression of the flecks to large areas of atrophy sparing the fovea (*). Ultra-widefield

(UWF) image of a 20-year-old showing peripheral pigmented lesions (E) within the demarcation line between the speckled hyperAF zone

and the uniform peripheral region (F). ocular coherence tomography (OCT) through the peripheral region (G) (red line) showed a preserved

ellipsoid zone. OCT through the speckled hyperAF region (H) (green line) showed loss of the ellipsoid zone and focal pigment epithelial

detachments corresponding to the pigmented lesions. UWF image of a 26-year-old showing a large pigmented peripheral retinal lesion

typically seen in childhood-onset diseases (I). The pigmented lesion is hypoAF (J). OCT through the superior (red line) (K) and temporal

(green line) (L) portions showed diffuse hyperreflective subretinal and subretinal pigment epithelium deposits
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use of wide field FAF. The incorporation of an ellipsoid
mirror into a scanning laser ophthalmoscope (Optos
PLC, Dunfermline, UK) has enabled the capture of
pre-equatorial GAF (λ = 532 nm) alterations.73 This device
allows the coverage of 892 mm2 of retinal area (82% of
total retinal surface) with a 135� field angle.74,75

2.2.1 | Hyperautofluorescent and
hypoautofluorescent lesions

Hyperautofluorescent lesions are one of the earliest FAF
features, often seen before they are visible as flecks on
clinical examination or colour photography. These lesions
have varied shapes and sizes, and their natural life cycle
tends to progress to discrete areas of RPE atrophy
(Figure 3).76 Regions affected by flecks have reduced func-
tion77 but this imaging feature alone was not predictive of
future sensitivity loss.78 Nevertheless, changes in hyper-
autofluorescent lesion area have been proposed as a
potential clinical trial endpoint using an automated seg-
mentation algorithm to delineate the lesion bound-
aries.79,80 Another key FAF feature is the mapping of
regions with decreased autofluorescence (DAF). Varied
levels of darkness, as compared to the absent FAF signal
at blood vessels and the optic nerve head, have been used
to classify these lesions into definitely and questionably
DAF (DDAF, QDAF respectively).81 The evolution of
QDAF into DDAF may represent the clearance of residual
subretinal acellular lipofuscin material. The area of DDAF
has been used as an endpoint in natural history studies to
examine predictors of atrophy expansion rate (ER).15,82,83

Furthermore, DDAF area has been proposed as a trial
endpoint in emerging treatments for STGD1. However,
several publications have alluded to the difficulty in dis-
tinguishing the boundaries between QDAF and DDAF,
and inter-observer reliability was poor for the segmenta-
tion of DAF areas with poorly defined boundaries.67,81,84

In contrast to BAF, IRAF imaging tends to show more
widespread hypoautofluorescent lesions (Figure 3).65

Hyperautofluorescent flecks as seen on BAF are generally
hypoautofluorescent on IRAF.33 In STGD1 the area of
DAF on IRAF has been shown to be greater indicating
earlier loss of melanin-associated fluorophores in the
RPE.65,85,86 Lois et al.59 reported an absence of flecks
or RPE atrophy in the peripapillary region as a unique
feature of STGD1. Using IRAF, Nassisi et al.87 assessed
the integrity of the peripapillary RPE and correlated
the area spared with the degree of photoreceptor
impairment on ERG assessment. Although both peri-
papillary and foveal sparing have been reported as
unique FAF features of STGD1,14,88 there is not an
absolute association.71,89

2.2.2 | Utility of UWF-FAF

The role of UWF retinal imaging, in both colour and AF
modes, has gained increasing awareness in STGD1.90

UWF imaging should be incorporated into a standard
STGD1 phenotyping protocol as it enables visualization
of the centrifugal spread of hyperautofluorescent and
hypoautofluorescent flecks15 and unique peripheral reti-
nal pigmented lesions (Figure 3).55,60,61,91 Fernanda
Ablem et al.92 showed peripheral changes detected by
UWF-FAF imaging in STGD1 were correlated with ERG
and kinetic perimetry, thus supporting the use of this
more accessible and objective tool for evaluating periph-
eral retinal involvement. In addition, UWF-FAF utilises a
green wavelength (λ = 532 nm) which is not absorbed by
macular xanthophyll pigment. Depending on the extent
of peripheral retinal involvement and atrophy UWF-FAF
has been classified by Klufas et al.93 into three groups.
Arrigo et al.40 reported that each of these three groups
was associated with increasing severity of OCT abnormal-
ities. More recently, Chen et al.94 used UWF imaging to
examine lesion extent in STGD1. They found only 26% of
patients with STGD1 had lesions confined to the central
30� � 30� field. Similarly, Klufas et al.93 found the major-
ity of 29 STGD1 patients (76% of eyes) had peripheral
UWF-FAF-detected lesions.

2.2.3 | The emerging role of quantitative
autofluorescence

Quantitative AF (qAF) has been used as a surrogate
marker for lipofuscin accumulation within the retina.
Although lipofuscin within the RPE accumulates with
age in healthy eyes,69 Burke et al.95 found STGD1 eyes
had high qAF levels even in regions of the retina that did
not have hyperautofluorescence fleck lesions to confound
background qAF measurements (Figure 4). They reported
a repeatability of ±10% in the mean qAF which was simi-
lar to healthy subjects.90 The proportion of STGD1
patients with qAF values greater than the 95% confidence
interval of an age-matched control group varied from
84% to 86%.71,95 More recently, Muller et al.72 found a
lower proportion of STGD1 patients (77%) had qAF levels
greater than the 95% prediction interval of an age-
matched control group.72 In addition, nullizygous
patients with biallelic truncating or nonsense mutations
presented with extremely high qAF levels earlier in life
(Figure 4), which rapidly declined to low normal levels as
foveal atrophy and hypoautofluorescent ‘flecks’
encompassed the mid ring zone used for calculation.72 In
contrast, those with one mild variant in combination
with a severe variant or bull's eye maculopathy
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phenotype had a less extreme elevation of qAF
(Figure 4).70,72 Further studies have found ABCA4 muta-
tion carriers do not have an elevated qAF, while 50% of
those with a PRPH2-associated pattern dystrophy man-
ifesting flecks have qAF above the 95% confidence inter-
val for healthy eyes. Thus, the accumulation of lipofuscin
within the RPE beyond the level expected from aging, as
determined by qAF, is dependent upon the combined
severity of biallelic ABCA4 variants and this accumula-
tion precedes functional changes.72

3 | MULTIMODAL IMAGING
CHARACTERISTICS AND
GENOTYPE–PHENOTYPE
CORRELATIONS

Large case series of patients with genetically confirmed
STGD1 reported a wide spectrum in the age of symp-
tom onset and clinical manifestations.76,84,96-98 The age
of presentation can be divided into childhood-onset,
early adult-onset and late adult-onset. However, the
boundaries for these age brackets varied significantly
across publications. Therefore, it may be more useful
to consider multimodal imaging signs for specific
ABCA4 variants in light of the significant genetic vari-
ability and correlation between clinical phenotype and
residual ABCA4 protein function. Cremers et al.76 pro-
posed that specific mild, intermediate and severe or
null ABCA4 variants were associated with distinct clin-
ical phenotypes. The multimodal imaging findings of

specific genotype–phenotype groups are summarised
below.

3.1 | Cone-rod dystrophy: childhood
and adolescent onset

Biallelic deleterious ABCA4 variants result in a
childhood-onset cone-rod dystrophy (CORD3, OMIM
604116) or early-onset severe retinal dystrophy (OMIM
248200) with central vision loss developing from the age
of 5 to 11 years.6,10,13,99 Although there may be no initial
fundus abnormalities these early onset cases rapidly pro-
gress to advanced pan-retinal disease resulting in exten-
sive retinal degeneration and often pigment migration,
causing confusion with retinitis pigmentosa (Figure 5).100

In children with no abnormalities on clinical examina-
tion, FAF has demonstrated discrete hyper-
autofluorescent dots confined to the foveola and even
mild hyperautofluorescent in the perifoveal region
(Figure 5).11 One key imaging feature of the rapid-onset
chorioretinopathy phenotype includes the short interval
of markedly increasing AF signal in the macular region
early in the disease process.6 Over time RPE atrophy rap-
idly progresses throughout the fundus in a multifocal pat-
tern within the third decade of life (Figure 5).101 Khan
et al.11 described an increased reflectivity of the outer ret-
inal band, thought to represent the ELM and ONL, as a
highly reproducible finding that was present in all sub-
jects in their cohort. A thickened ELM as seen on SD-
OCT may provide an early marker for childhood-onset

FIGURE 4 Fundus autofluorescence (AF) images (A–G) and quantitative AF (qAF) mapping (H–N) in a 21-year-old healthy patient

(A, H), a 15-year-old girl (c.[2905G>A];[1922G>C]) with symptoms from the age of 9 (B, I), a 34-year-old female (c.[3322C>T];

[2588G>C;5603A>T]) with symptoms from the age of 32 (C, J), a 36-year-old female (c.[3323G>T];[5882G>A]) with symptoms from the age

of 25 (D, K), a 59-year-old female (c.[5603A>T];[4670A>G;6148G>C]) with symptoms from the age of 48 (E, L), a 78-year-old female

(c.[5603A>T[;[2894A>G]) with symptoms from the age of 76 (F, M), and a 70-year-old healthy patient (G, N). Healthy subjects have qAF

values increasing from 200 to 400 units between 20 and 70 years of age. Patients with Stargardt disease typically have qAF values ranging

from 400 to 800 units
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FIGURE 5 Fundus autoflluorescence (AF) of an 11-year-old boy (A) showing foveal hyperAF dots (insert) and perifoveal hyperaAF

flecks. These flecks later evolved into hypoAF patches (B). Optical coherence tomography at age 11 (C) and 14 (D) showed increased

reflectivity of the external limiting membrane and development of microcystoid changes in the inner nuclear layer and thinning of the outer

nuclear layers. Widefield AF of the same patient at age 7 (E) with no flecks. Flecks were then visible even beyond the vascular arcade at age

11 (F). A 35-year-old male with biallelic severe variants showing prominent bone spicules (G) and masking of the equatorial AF signal and

obscuration of the boundary of macular atrophy (H). A 51-year-old female with biallelic severe variants with extensive atrophy (I) and loss of

fundus AF (J). A 58-year-old male carrying c.[2588G>C;5603A>T] showing widespread flecks with atrophy limited to the posterior pole (K).

A 50-year-old male with the intermediate severity allele c.6079C>T showing widespread flecks with posterior pole atrophy (L)

HEATH JEFFERY AND CHEN 505



disease (Figure 5).11 Lee et al.37 also described a thick-
ened ELM in all of their 26 cases. This thickening dem-
onstrated a maximal prominence at the foveola that
decreased symmetrically with increasing eccentricity.
These changes may represent disruption of the ONL
within the cones and this is consistent with cone photore-
ceptor nuclei residing close to the ELM in the perifoveal
region.37 Conversely, Bax et al.13 only reported a thickened
ELM in two patients with normal fundi at 6 and
12 months after disease onset where all children showed
disorganisation and loss of the RPE on OCT scans.
Sequential OCT images have illustrated focal collapse of
the inner retinal layers, secondary to loss of the outer reti-
nal structures.13 These changes appear to preferentially
affect perifoveal areas. As the retinal degeneration expands
beyond the equator, peripheral pigmented retinal lesions
may develop in some patients. These lesions were initially
thought to resemble congenital hypertrophy of the RPE
however irregular elevations of the RPE are not consistent
with the known OCT features of congenital hypertrophy
of the RPE (Figure 3).102 Some have proposed massive
release of toxic bisretinoid from the RPE as the cause of
RPE hyperplasia and subretinal fibrosis.55,61 Patients with
an intermediate ABCA4 variant in trans with a null-like
allele tend to have a symptom onset in their second
decade. Although they may have a slower progression of
the lesion centrifugally, the extent of retinal involvement
may be similar to those with two null-like or severe alleles
albeit delayed by one decade (Figure 3).101

3.2 | Bull's eye and foveal disease:
c.5882G>A, p.(Gly1961Glu) variant

Patients harbouring the c.5882G>A, p.(Gly1961Glu) allele
have a markedly different clinical phenotype to those
described above, characterised by a bull's-eye maculopathy19

or localised foveal atrophy surrounded by parafoveal flecks
(Figure 6).103 These patients present with mild central vision
loss typically in their second or third decade of life.103 In
early disease stages, the localised ellipsoid zone loss, resulting
in an ‘optical gap’ or ‘foveal cavitation’ on OCT, may cause
confusion with a cone dysfunction syndrome (Figure 6).16,34

A typical early FAF feature is a diamond shaped region of
decreased AF without surrounding hyperautofluorescent or
the type B bull's-eye lesion.16,104 With age, the optical gap on
OCT is replaced by build-up of subretinal debris followed by
the complete loss of foveal tissue.16,105 FAF shows the devel-
opment of a hyperautofluorescent ring around a large oval
region of foveal hypoautofluorescent (type A bull's-eye
lesion).16,70,105 Some patients may have a speckled appear-
ance (type C bull's-eye lesion) evolving into a central hypo-
autofluorescent region surrounded by hyperautofluorescent
flecks. There is significant intra-familial variation even in the
OCT and FAF phenotype.16 On UWF-FAF imaging, there is
no abnormal AF signal beyond the affected fovea.15,101 The
mean ± standard deviation (range) qAF measurements in
the 7�–9� zone were 366 ± 72 (251–513) units in those youn-
ger than 30 years of age.70 While patients under 30 years
have qAF values consistently above the 95% confidence

FIGURE 6 Fundus

autofluorescence (AF) and ocular

coherence tomography (OCT) of patients

carrying the c.5882G>A variant. An

18-year-old male (A) followed for 9 years

(B) showing conversion of a central area

of questionable to definite decreased AF

surrounded by flecks. OCT showed an

optically empty gap at the fovea (C). A

27-year-old female (D) with foveal

atrophy which enlarged over a 6-year

period (E). OCT showed loss of outer

retinal layers and an absence of foveal

tissue (F). A 33-year-old male with a

ring of hyperAF (G) progressing to

perifoveal flecks and enlarging atrophy

7 years later (H). OCT showed severe

outer retinal layer loss. A 44-year-old

female with perifoveal flecks and

localised atrophy (J) progressing over

10 years (K). OCT showed large

choroidal caverns (L)
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interval for healthy eyes,70 those over 30 years may have
qAF values above68 or within105 the 95% confidence interval.

3.3 | Foveal sparing: late-onset and
asymptomatic disease

Large case series have reported a distinct foveal-sparing
phenotype defined by an age of symptom onset ranging
from ≥35 to ≥45 years.7,8,14,106 As half of these patients
had only one ABCA4 variant identified,8,14 some had
erroneously been labelled as AMD. The concept of a
unique late-onset STGD1 phenotype was founded by the
discovery of the c.5603A>T (p.Asn1868Ile) variant, previ-
ously considered benign, accounting for 80% of these sin-
gle ABCA4 mutation cases.107 Since 2017, this
hypomorphic variant has been recognised as pathogenic
in trans with a deleterious ABCA4 mutation and its non-
penetrance is enhanced by male gender.108 Similarly to
the c.5882G>A variant, patients with c.5603A>T mani-
fest a distinct clinical phenotype. In a case series of
27 patients with c.5603A>T in trans with a deleterious
variant, 3 were asymptomatic and the remaining cohort
had a median and mean (range) age of symptom onset of
41.5 and 39.7 (17–71) years, respectively. Initially flecks
and atrophy are absent, and OCT and FAF may be nor-
mal. The earliest abnormality seen on OCT is enhance-
ment of the parafoveal ELM with hyperreflective ONL
foci.17 Localised hyperautofluorescent subretinal flecks
may be seen in the macula with foveal sparing, nasal
peripapillary region (without peripapillary sparing) or

extend anteriorly beyond the equator.101 The subretinal
flecks tend to be larger and polymorphic.76 FAF imaging
shows enlarging hyperautofluorescent flecks evolving into
regions of paracentral RPE atrophy (Figure 7). As the dis-
ease progresses, these paracentral patches of RPE atrophy
coalesce circumferentially leaving a peninsula of RPE which
is eventually pinched off leaving a small central island of
RPE.14,106 Many of the asymptomatic late-onset cases are
identified during retinal screening for AMD or as part of
familial workup in parents of children presenting with child-
hood STGD1. Symptomatic late-onset cases may present with
secondary choroidal neovascularisation109,110 or encroach-
ment of RPE atrophy into the fovea. Consequently, patients
may be misdiagnosed with neovascular AMD if the unique
OCT and FAF imaging features of subretinal flecks and
foveal sparing are not recognised. Increased qAF values may
also be used to differentiate atrophy from late-onset STGD1
from AMD which has a reduced qAF measurement.72,111

Other mild ABCA4 mutations such as c.587C>T (p.Pro196-
Leu), c.3113C>T (p.Ala1038Val), c.5537T>C (p.Ile1846Asn),
c.5761G>A (p.Val1921Met) may share similar multimodal
imaging features with the c.5603A>T variant when found in
trans with a deleterious variant (Figure 7).14,101

4 | IMAGING ENDPOINTS FOR
STGD1 THERAPY TRIALS

Reliable imaging endpoints for determining STGD1 pro-
gression are vital given the variable disease course and
the large number of potential treatments being developed

FIGURE 7 Widefield fundus autofluorescence (FAF) images from patients with the c.5603A>T variant, in trans with a severe variant

(A–C) and patients with the c.3113C>T variant, in trans with a severe variant (D–F). Most patients had lesions confined to within the

vascular arcades except for patients B, E and F. Patients B and E were brothers. Their mother with the c.[5603A>T];[3113C>T] variant had

normal FAF imaging at age 67
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in clinical trials.76 Multimodal imaging using FAF and
SD-OCT is superior to conventional colour fundus pho-
tography or clinical examination in detecting disease
onset and progression.112

4.1 | Metabolic consequences of an
impaired visual cycle

ABCA4 flippase dysfunction accounts for the generalised
and focal lipofuscin deposition within the RPE and outer
segments of the photoreceptors, respectively. Prior to clini-
cally visible flecks or atrophic lesions, qAF values are
increased70 with thickening of the ELM in both child-
hood36,37 and late-onset17 STGD1. Muller et al.72 proposed
the use of qAF as an outcome measure but noted several
drawbacks including the slow annual increase (20–
50 units/year), discomfort, theoretical phototoxicity and the
large test–retest variability of ±9% even in healthy eyes.90

However, qAF monitoring may be particularly beneficial
for lipofuscin-targeted therapies. Degenerate photoreceptor
remnants in the subretinal space may also be tracked given
the dynamic temporal and spatial characteristics of these
lipofuscin-rich flecks.76 To date, time and ambiguity of
manual boundary segmentation have impeded the wide-
spread adoption of this technique in clinical trials. The
development of a deep learning-based segmentation algo-
rithm by Charng et al.80 may improve the accuracy and effi-
ciency of measuring hyperautofluorescent fleck area.

4.2 | Quantifying the extent and
progression of cell death

The excessive build-up of all-trans retinal from ABCA4
impairment leads to activation of an apoptosis pathway
and subsequent RPE and photoreceptor cell death.60 The
ideal method to quantify and monitor retinal cell death

FIGURE 8 A scatter plot showing the relationship between baseline area of definite decreased autofluorescence (DDAF) and total area

growth rate (A). Effective radius growth rates averaged around 0.1 mm/year (0.05–0.15 mm/year) and were not dependent on the baseline

DDAF total area (B). The square denotes the ProgStar study reports. Triangle denotes recalculated values from a meta-analysis by Shen et al.

Circles denote the remaining prospective and retrospective studies
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in STGD1 would be to visualise dying cells in real-time
in vivo with the use of a fluorescent biomarker.113 This
technique, called detection of apoptosing retinal cells, is
yet to be validated for the imaging of photoreceptor or
RPE cells.114 Currently, the extent of RPE loss is moni-
tored by measuring the growth of hypoautofluorescence
areas whilst the collective loss of photoreceptors and RPE
is indirectly measured by monitoring the residual retinal
volume or mean thickness with SD-OCT. Both tech-
niques are being explored as key structural endpoints in

the Progression of Atrophy Secondary to Stargardt Dis-
ease (ProgStar) studies (NCT019778465).115 It is worth
noting that over 50% of patients with STGD1 may not
have any areas of DDAF, while the median time to
develop DDAF lesions was 4.9 years.82

4.2.1 | Monitoring of definitely DAF

ER of DDAF area has been used as the primary outcome
measure in most STGD1 clinical trials and natural history
studies. The ER reflects directly the extent of RPE damage.116

However, similar to geographic atrophy in AMD,117 the area
growth rate in STGD1 is dependent on baseline lesion size.
Therefore (1) a logarithmic transformed growth rate (per-
centage DDAF area increase)79,118,119 and (2) a square-root
transformed DDAF15,117,120,121 area (SRA) or effective radius
(SRA=

ffiffiffi

π
p

) growth rate (ERGR),85,122 linearises the rela-
tionship between lesion size and time, enabling the use
of linear mixed modelling.123 The growth rate of DDAF
area has been reported to range from 0.39 to 2.45mm2

per year and this is highly dependent on the initial lesion
size (Figure 8).15,79,82-85,106,124-126 Subgroup analysis has
shown significant variability in growth rate related to
electrophysiology grouping,84,121,125,127 FAF pattern grad-
ing85 and baseline lesion size.82,83,126 More recently,
Georgiou et al.84 also reported a mean ER of 0.69, 0.78
and 0.40mm2/year for children, adults with childhood-
onset and adults with late-onset STGD1 suggesting the
importance of genotype in determining ER. Fujinami
et al.3 also assessed the effect of specific genotypes on
DDAF progression and found an atrophy ER of 0.45 and
0.39mm2/year in patients harbouring c.5461-10T>C
and c.6079C>T variants, respectively.127 In contrast,
those with c.5882G>A showed an ER of only 0.20mm2/
year. However, these studies did not take into consider-
ation the effect of baseline lesion size by square-root
transformation of the DDAF area,122 and they were
unable to examine larger lesions as they only used the
30� � 30� and 55� � 55� lenses on the Heidelberg system.
Shen et al. showed the overall ERGR was 0.104mm/year
across studies but also noted a bimodal distribution in
the individual ERGR suggesting genotype effect.122 By
using UWF-FAF imaging and controlling for baseline
lesion size (SRA ER) we showed those with biallelic
severe/null alleles had significantly higher SRA ER com-
pared to those patients with at least one mild or interme-
diate mutations in trans with a severe/null variant
(Figure 9).101 ER based on IRAF imaging has been shown
to be slightly greater than ER based on SWAF.85 Con-
versely, ERGF derived from en face OCT was 5.5 times
lower than ERGF derived from FAF.118,122,128

FIGURE 9 Images showing increasing areas of definite

decreased autofluorescence (DDAF) using the 30� � 30� (A, B) and
55� � 55� (C, D) Heidelberg and 200� (E, F) Optos device. A
53-year-old male (c.5603A>T) with an age of symptom onset of

50 years (A). His unifocal atrophy had enlarged by 0.29 mm2 over

the 5-year follow-up period (B). A 24-year-old female (c.[768G>T];

[67-1860A>G;6079C>T]) (C) with an age of symptom onset of

11 years. Her DDAF became multifocal and increased by

35.67 mm2 over 9 years (D). A 59-year-old female (c.[2915C>A];

[3041T>G]) (E) with an age of symptom onset of 10 years had

extensive atrophy. Her atrophy expanded by 23.44 mm2 over

2 years (F)
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4.2.2 | Monitoring of retinal thickness and
volume change

One longitudinal study that examined serial horizontal
cross-section SD-OCT scans demonstrated progressive
thinning of the ONL with inner nuclear layer
remodelling and thickening. Despite the inner retinal
layer remodelling, Strauss et al.129 reported a 0.118 mm3/
year (1.78%) decline in total macular volume. The
greatest decline in volume (% of baseline value) was
noted in the outer ring (0.079 mm3/year, 1.5%), followed
by the inner ring (0.032 mm3/year, 2.2%) and the central
1 mm subfield (0.004 mm3/year, 3.1%). More recently,

Whitmore et al.130 showed macular thinning was pre-
dominantly driven by the ONL with a decline in outer
retinal layer of 3.35 (7.7%), 3.39 (5.3%), 2.84 (3.4%) μm/
year in the central 1 mm subfield, inner ring and outer
ring respectively. There was also a statistically significant
increase in inner retinal thickness in the inner ring by
0.89 (0.6%) μm/year. The key limitation to OCT analysis
of STGD1 progression is the reproducibility and accuracy
of time consuming manual retinal sublayer boundary
segmentation.131 We132 and others133 have developed
automated algorithms for STGD1 OCT scans but these
have not been validated in OCT images from across a
range of SD-OCT devices. Although factors influencing

FIGURE 10 A 13-year-old girl (c.[4139C>T];[5461-10T>C;5603A>T] with perimacular hyperautofluorescent flecks which progressed to

a central region of questionable decreased autofluorescence (QDAF) over 7 years (A). Prior to the formation of QDAF, there was a reduction

in the retinal thickness in the macular region (B). The reduction was 2.11 mm3 over 7 years and was located predominantly in the outer ring

(C). A 31-year-old asymptomatic female (c.[5603A>T];[6088C>T]) presented with central QDAF which later developed a new ring of

hyperautofluorescence (D). The retinal thickness in the macular region declined over 4 years (E). The reduction of 0.10 mm3 was

predominantly seen in the inner ring (F)
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total and sublayer thinning of the STGD1 macula
remains to be investigated, genotype severity is likely to
be the most important determinant (Figure 10).

5 | CONCLUDING REMARKS AND
FUTURE PROSPECTS

Multimodal imaging reveals a range of pre-clinical
lesions and a wide spectrum of STGD1 phenotype. Longi-
tudinal studies have demonstrated the feasibility and
utility of FAF and OCT in monitoring disease progres-
sion predominantly in lesions limited to the macula.
Recognition of the unique imaging features related to
specific ABCA4 variants and mutation severity is impor-
tant in guiding genetic testing and genetic counselling
of patients. Emerging cellular and molecular therapies
are now paralleled by the development of high-
resolution cellular imaging using adaptive optics tech-
nology134-136 and metabolic imaging of all-trans retinal
and lipofuscin by measuring fluorescence decay
times.137 The future of multimodal imaging in STGD1
may incorporate real-time in vivo retinal imaging of sig-
nalling processes such as detection of apoptosing retinal
cell114 in cellular resolution.
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