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INTRODUCTION

The ways through which grassland communities control 
primary productivity, the amount of photosynthesised 
carbon per area and time, remain imbricated and poorly 

understood (Chapin et al., 2000). Species can act through 
their numbers (Wardle, 2002) and their functional traits 
(Cadotte et al., 2011), and they act differently depending 
on the environmental context (Baert et al., 2018; Brun 
et al., 2019). In addition, the contribution of individual 
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Abstract

Outside controlled experimental plots, the impact of community attributes on pri-

mary productivity has rarely been compared to that of individual species. Here, we 

identified plant species of high importance for productivity (key species) in >29,000 

diverse grassland communities in the European Alps, and compared their effects 

with those of community-level measures of functional composition (weighted 

means, variances, skewness and kurtosis). After accounting for the environment, 

the five most important key species jointly explained more deviance of productiv-

ity than any measure of functional composition alone. Key species were generally 

tall with high specific leaf areas. By dividing the observations according to dis-

tinct habitats, the explanatory power of key species and functional composition 

increased and key-species plant types and functional composition-productivity 

relationships varied systematically, presumably because of changing interactions 

and trade-offs between traits. Our results advocate for a careful consideration of 

species’ individual effects on ecosystem functioning in complement to community-

level measures.
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species to productivity can be significant (Gotelli et al., 
2011; Vitousek & Hooper, 1994). Understanding these 
relationships, however, is pivotal for assessing the im-
pacts of biodiversity loss (Cardinale et al., 2012) and for 
global vegetation modelling (Prentice & Cowling, 2013). 
Comparably few studies have jointly studied the contri-
butions of community-level properties and individual 
species to ecosystem productivity, and if they have (e.g. 
Loreau & Hector, 2001), not in real-world ecosystems 
and without systematically accounting for environmen-
tal context. Here, we followed the call for more such 
integrative approaches (Mahaut et al., 2020) and inves-
tigated how community-level properties and individual-
species abundances contribute to explain productivity in 
the diverse environments of the European Alps.

While there are many concepts of biotic control in 
terms of community properties and individual species, we 
focus on two that have sound theoretical links to produc-
tivity (Box 1): the Trait Driver Theory (Enquist et al., 2015) 
for community-level functional properties and the key and 
keystone species concepts for individual species (Maire 

et al., 2018; Power et al., 1996), summarised as ‘key(stone)’ 
species in the following. For completeness, however, we 
also provide results for classical multivariate measures of 
functional diversity such as the Rao's quadratic entropy 
(Botta-Dukát, 2005; Villéger et al., 2008) and functional 
rarity such as functional distinctiveness (Violle et al., 2017).

Biotic control of community productivity cannot be un-
derstood without considering environmental conditions. 
Environmental conditions define which ecological strate-
gies are successful at a given location and thus which spe-
cies may thrive (Enquist et al., 2015; Garnier et al., 2016; 
Weiher et al., 2011). Similarly, they set the limit of achiev-
able productivity (Brun et al., 2019). Environmental condi-
tions should therefore be controlled for, when identifying 
the relationships of individual species and community-
level properties with productivity (Maire et al., 2018). 
Furthermore, in order to understand the dependency of 
biotic control of productivity on environmental context, it 
can be assessed for different, more or less narrowly defined, 
types of environments (hereafter referred to as habitats). To 
this end, however, extensive empirical data are necessary.

BOX 1  Definitions of Trait Driver Theory and key and keystone species

TRAIT DRIVER THEORY

Trait Driver Theory states that the moments of the functional trait distribution (mean, variance, skewness and kur-
tosis) of a given community serve as proxies for several ecosystem processes. Community-weighted means (CWMs) 
represent the traits of the dominant phenotype, which indicate the potential productivity of the individuals, accord-
ing to the Mass-Ratio Hypothesis (Garnier et al., 2004; Grime, 1998). Community-weighted variance (CWV) and 
kurtosis (CWK) are expected to capture different aspects of the diversity of ecological strategies, which increases 
the average deviation of individuals from the optimal strategy, and thus reduces productivity (Enquist et al., 2015). 
Community-weighted skewness (CWS) depicts the asymmetric nature of the trait distribution, and thus the imbal-
ance of ecological strategies present in an ecosystem. Imbalances result, for example from rapid environmental 
change, and they tend to have negative effects on productivity (Enquist et al., 2015). There is growing evidence that 
these different moments are useful to better understand the functional structure of plant communities and to pre-
dict their implications on ecosystem functioning (Garnier et al., 2016; Gross et al., 2017; Wieczynski et al., 2019).

KEY AND KEYSTONE SPECIES

If the presence or abundance of a species is linked to distinctly higher levels of ecosystem function, for example 
primary productivity, across a studied region, it is a ‘key’ species with respect to this function (Maire et al., 2018). 
The common surgeonfish Acanthurus albipectoralis, for instance is a key species to fish biomass and coral cover 
in the reefs of the Indo-Pacific (Maire et al., 2018). Across the study system, key species occurrence is therefore 
linked to a high overall contribution to an ecosystem function. According to Power et al. (1996) ‘keystone’ spe-
cies are species whose effects on ecosystem function are large, and disproportionally large relative to their abun-
dance. A conspicuous example for a keystone species is the North American beaver, with its capacity to change 
the structure of riverine ecosystems (Naiman et al., 1988). As key species, keystone species occurrence is thus 
associated with a high overall contribution to an ecosystem function. But there is a second condition: keystone 
species need to have a high per-abundance effect, that is a large statistical effect size. Here, we investigate key and 
keystone species in a relative fashion, by identifying those species whose abundance contributes most to explain 
productivity and—in case of keystone species—also shows the strongest per-abundance effects on productivity 
(see Methods). While the key and keystone plant species identified this way likely play crucial roles, they are not 
selected based on their absolute impact which may be smaller than that of more iconic keystone species.
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Here, we tested and compared the power of established 
community-based and species-based theories to explain 
differences in the remotely-sensed productivity of diverse 
real-world ecosystems. We focused on the moments of func-
tional trait distributions and species cover abundance as 
key indicators for Trait Driver Theory and the key(stone) 
species concept respectively (Box 1). We employed a multi-
model-comparison approach and >29,000 grassland com-
munity plots covering the French Alps and Switzerland 
(Figure S1), accounting for key environmental factors and 
considering the productivity-related traits specific leaf area 
(SLA), leaf nitrogen content (LNC) and reproductive height 
(HGT) (Lavorel & Garnier, 2002; Wright et al., 2004; Wright 
& Westoby, 2002). Specifically, we addressed the follow-
ing questions (1) to which extent do community-weighted 
moments contribute to explain productivity compared to 
key(stone) species cover abundance? (2) do the relationships 
between community-weighted moments and productivity in 
the grasslands of the European Alps match the expectations 
postulated by Trait Driver Theory (formulated in Box 1)? 
and (3) how do the traits of key, keystone and the remain-
ing, ordinary species differ from each other? Our analysis 
demonstrates that the cover abundance of few species can 
contribute more to explain productivity than estimates of 
functional community properties and that the relationships 
of productivity with species cover abundance and functional 
composition vary systematically across habitats, revealing a 
multitude of clues about the underlying processes.

M ATERI A L A N D M ETHODS

Data

Community data

Plant community observations originated from two sources 
covering the French Alps and Switzerland respectively 
(Figure S1). Data for the French Alps was provided by the 
French National Alpine Botanical Conservatory (Thuiller 
et al., 2014) and included about 43,000 observations of vas-
cular plant communities from diverse ecosystem types. 
Data for Switzerland were collected by the dry meadows 
and pastures initiative run by the Swiss Federal Office for 
Environment and consisted of almost 24,000 observations 
of grassland communities. Both datasets contained semi-
quantitative dominance information resolved in six cover-
abundance classes (as defined by Braun-Blanquet (1946)). 
We applied a series of preprocessing and filtering steps to 
these data (Supplementary Methods), after which 29’091 
community observations remained.

Environmental data

Environmental data included the remotely sensed soil 
adjusted vegetation index as a proxy for productivity, 

as well as predictors representing climate, soil, topog-
raphy and land cover, mostly with spatial resolutions 
of 100 m or higher. Satellite-derived vegetation indices 
have been shown to be accurate proxies of gross primary 
productivity (GPP), the rate at which vegetation cano-
pies fix carbon through photosynthesis (Bannari et al., 
1995; Zhou et al., 2014). Over the past decades, dozens of 
vegetation indices have been introduced, which are op-
timised for various ecosystem types (Xue & Su, 2017). 
For grasslands, in particular when including sparsely 
vegetated, high-alpine sites, the soil adjusted vegetation 
index (SAVI, Huete, 1988) has shown tight associations 
with GPP (Zhou et al., 2014). We calculated annual means 
of SAVI based on 18 years of observations made by the 
Landsat project (landsat.gsfc.nasa.gov; Figure S2). The 
environmental predictors included mean temperature, 
mean humidity (potential evapotranspiration minus 
precipitation), soil moisture and soil fertility proxies (de-
rived from plant indicator values), terrain wetness index, 
exposition and whether or not a site was sparsely veg-
etated (vegetation sparsity). See Supplementary Methods 
for a description of data sources and preparations steps.

Trait data

Trait data included specific leaf area (SLA), leaf nitro-
gen content (LNC) and reproductive height (HGT). LNC 
and SLA are key traits of the leaf economics spectrum 
(Wright et al., 2004), and HGT is a central trait related to 
competitive ability (Violle et al., 2009) and avoidance of 
environmental stress (Körner, 2003). Furthermore, these 
traits are related to photosynthetic capacity (Wright & 
Westoby, 2002) and primary productivity (Lavorel & 
Garnier, 2002). We also used information on plant life 
form to exclude communities with trees, large shrubs or 
aquatic plants, which were not the focus of this study 
(Supplementary Methods). Trait data mostly originated 
from in-house measurements that were taken within or 
close to the study region (now available in the TRY da-
tabase; Kattge et al., 2020). For 0.4%, 5.8% and 20.4% 
of the 500 species with an occurrence frequency >1%, 
HGT, SLA and LNC measurements, respectively, were 
taken from the TRY database, originating from various 
sources (see Table S1 for detailed references). When mul-
tiple measurements were available per species, we aver-
aged them. Full trait information was available for 412 
species.

Analyses

Creating environmental clusters

In addition to running the analysis on the full data set, 
we ran it on five, 25 and 50 clusters of similar environ-
mental conditions (hereafter referred to as ‘habitats’). 
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Splitting the data this way allowed us to assess how the 
relationships were affected by environmental context. We 
assumed mean annual temperature, water availability 
(humidity) and nutrient availability (soil fertility index) 
to be the most important factors constraining productiv-
ity. In order to facilitate the interpretability of the envi-
ronmental space, we further summarised these factors 
by the first two first axes of a principal component anal-
ysis (PCA) that was run on the scaled and centred values. 
In this space, we then ran partitioning around medoids 
clustering to identify five, 25 and 50 clusters of similar 
size (Figure S3). Finally, we classified environmental 
clusters by their average SAVI into classes of ‘low’ for 
annual mean SAVI <0.23; ‘medium’ for mean SAVI ≥0.23 
and <0.3; and ‘high’ for mean SAVI ≥0.3. Analyses were 
run in the R environment (R Development Core Team, 
2008), with packages ade4 (Dray & Dufour, 2007) and 
cluster (Maechler et al., 2018). Resulting environmental 
clusters are described in the Supplementary Results.

Fitting reference models

We defined reference models (M0) to identify the asso-
ciation between SAVI and environmental variables. We 
used generalised additive models (Hastie & Tibshirani, 
1990) to fit these relationships for each set of communi-
ties associated with a habitat. M0 included smooth terms 
for humidity, temperature, soil fertility, soil moisture, 
the north/south component of exposition and terrain 
wetness index, as well as a binary factor for vegetation 
sparsity. Furthermore, we added a binary factor to 
correct for potential, systematic differences between 
the two community datasets (for the French Alps and 
Switzerland respectively). In a few habitats, binary fac-
tors were only represented with one level, and thus their 
terms were removed from the model equation. We fixed 
all smooth terms at three degrees of freedom and as-
sumed SAVI to follow a Gaussian error distribution. 
Even though SAVI values are bounded between −1 and 
1, annual means never approached these boundaries and 
showed a frequency distribution that was in agreement 
with the Gaussian error assumption. Once fitted, we cal-
culated goodness of fit of all models based on adjusted 
explained deviance (referred to as explained deviance 
hereafter) using the R package ecospat (Broennimann 
et al., 2018).

While the formulation of M0 was identical to analyse 
the impact of community-level predictors and individual-
species cover, 39% fewer observations were available for 
the analysis of community-level predictors (Table S2). 
This was because in order to have representative esti-
mates of community-level predictors, we discarded ob-
servations with trait data available for <80% of the total 
vegetation cover. For the key(stone)-species analysis, on 
the other hand, we only considered species that were 

present in ≥1% of the observations in a given habitat, 
leading to 0–33% fewer species considered (Table S2). We 
used the R package gam (Hastie, 2018) to fit generalised 
additive models.

Investigating community-level predictors

Community-level predictors included the moments 
of the distributions of SLA, LNC and HGT (Enquist 
et al., 2015), that is community-weighted mean (CWM), 
community-weighted variance (CWV), community-
weighted skewness (CWS) and community-weighted 
kurtosis (CWK). CWM was estimated it as

where w
i
 is the dominance of species i and x

i
 is its trait 

value; CWV was calculated as

and CWS was calculated as

Since we were not interested in the direction of 
skewness, we only considered absolute values of CWS. 
Finally, we estimated CWK as

In order to obtain predictors with approximately 
Gaussian frequency distributions, we log-transformed 
all CWV, CWK and absolute CWS values, as well as 
CWM of HGT.

We assessed the relevance of community-level pre-
dictors by adding them to reference models, one at a 
time. We fitted the partial response of productivity to 
community-level predictors as smooth terms of three de-
grees of freedom. For each of the 12 resulting models, we 
assessed how much their explained deviance increased 
compared to M0 and derived partial response plots of 
SAVI between the 2.5th and the 97.5th percentiles of the 
observed values of each community-level predictor. The 
description of how partial response curves were classi-
fied into response types is provided in the Supplementary 
Methods.
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Identifying key and keystone species

We identified key species, which were tightly and posi-
tively linked to SAVI (strong predictors), and keystone 
species, which were strong predictors too but also consid-
erably increased SAVI, where they were present (strong 
per-abundance effect, see Box 1). Within each habitat 
we added linear terms for the cover percentages of all 
species, one at a time, to the environmental reference 
model (M0), fitting a model Mi for each species. For each 
of these Mi, we assessed how much explained deviance 
increased compared to M0 (Maire et al., 2018). Then, we 
set the added explained deviance of species with nega-
tive coefficients to zero (as by definition key species are 
positively associated with productivity) and defined 
those species with added deviance in the top 7.5% as key 
species. For keystone species, we additionally expected 
linear coefficients to be in the top 7.5%. Note, that while 
keystone species may also have negative effects on pro-
ductivity (Power et al., 1996), for simplicity we only fo-
cused on those with positive effects. In order to assess 
the sensitivity of the resulting key(stone)-species sets 
on this 7.5% threshold, we also investigated key(stone)-
species sets defined by the 5% and 10% thresholds.

Testing for differences in added 
explained deviance

We used Tukey honest significant difference (HSD) 
to test for differences in explained deviance added by 
community-level predictors and key(stone) species cover. 
Across the full dataset, we estimated explained deviance 
added by each community-level predictor individually, 
and by different groups of key species (top, top five, full 
set) and keystone species (full set). For each predictor or 
predictor group, we fitted 100 models based on 1000 ran-
domly drawn observations from the full dataset. Based 
on these replicates, we tested for significant differences 
at the p  ≤  0.05 level, for all pair-wise predictor combi-
nations. Furthermore, we used these model replicates to 
deduce medians and 95%-confidence intervals of partial 
productivity responses to community-level predictors.

Comparing key and keystone species 
with ordinary species in trait space

We compared key(stone) species to ordinary species in 
trait space, focusing on distances and distinctiveness. 
Trait space was defined by the scaled and centred val-
ues of SLA, LNC and HGT. Before scaling, HGT meas-
urements were log-transformed so that their frequency 
distribution assumed an approximately Gaussian shape. 
For visualisation, we ran one PCA on the trait space of 
all species and examined species scores on the first two 
principal components. For greater readability, we also 

fitted Gaussian mixture density functions to the point 
sets of key(stone) and ordinary species by using the R 
package mclust (Scrucca et al., 2016). The algorithm, 
based on the Bayesian information criterion, thereby de-
fined a number of mixture components for ordinary spe-
cies (1–9) and for key(stone) species (1–3). Next, within 
each habitat, we summarised the differences between 
key(stone) and ordinary species in terms of functional 
distances, and functional distinctiveness sensu Violle 
et al. (2017). We tested whether key(stone)-species traits 
were different from ordinary-species traits by conduct-
ing permutational multivariate analyses of variance from 
distance matrices (using the R package vegan (Oksanen 
et al., 2019)). We derived the Euclidean distance matrices 
of our trait space and tested based on 999 permutations. 
Finally, we assessed whether key(stone) species occupied 
eccentric positions in trait space by first calculating func-
tional distinctiveness of each species and then testing for 
significant differences between key(stone) and ordinary 
species, using two-sided Wilcoxon tests. The workflow 
of the analysis is illustrated in Figure S4.

RESU LTS

Explanatory power of environmental and biotic 
controls

Across the full dataset that covered steep environmental 
gradients, the seven environmental predictors of the ref-
erence model explained 70.3% of the deviance of SAVI. 
The explained deviance added by biotic predictors was 
comparably small (Figure 1). Community-weighted mo-
ments added between 0.2% (CWS of LNC) and 1.3% 
(CWM of SLA) of explained deviance. Similarly, multi-
variate measures of functional diversity added between 
0.2% and 0.6% explained deviance (Figure S5). The cover 
values of key species, on the other hand, contributed be-
tween 0.5% and 3.3% when the top, the top five and the 
full set (38 species) were added jointly to M0. The full set 
of keystone species (11 species) explained 1.2% of devi-
ance, when added jointly to M0. According to a Tukey 
HSD test, the contributions to explained deviance by the 
cover values of the full key-species set but also only the 
top five key species were significantly higher than the 
explained deviance added by any community-level pre-
dictor. The explained deviance added by the cover val-
ues of the top key species alone was only significantly 
lower than one community-level predictor, CWM of 
SLA. However, when community-weighted moments 
were modelled jointly (all community-weighted moments 
of one trait or one community-weighed moment of all 
traits) the full set of CWMs and all moments of SLA 
added significantly more explained deviance to M0 than 
the top five key species, while the other combinations 
added significantly less (Figure S5). Also the summed 
cover abundance of rare species made a comparably high 
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contribution to explained deviance (2.0%, Figure S5), 
but rare-species cover abundance was negatively related 
to SAVI (Figure S6).

Community-weighted moments

Community-weighted means and variances mostly had 
positive associations with SAVI across the full dataset 
while relationships of community-weighted skewness 
and kurtosis with SAVI tended to be negative (Figure 
S6). SAVI showed the most positive partial response to 
CWM of SLA. The response to CWM of HGT was simi-
lar, except for the uppermost part of the range, where 
SAVI levelled off. The positive SAVI responses to CWVs 
were fairly consistent for all traits. They started to in-
crease linearly with a moderate slope and then levelled 
off in the upper third of the range. CWS (absolute val-
ues) and CWK negatively influenced SAVI for all traits, 
indicating that SAVI tends to decrease when trait distri-
butions are skewed or sharply peaked. However, these 
latter relationships were comparably weak.

Keystone and key species

Key species primarily included grasses and forbs, 
while keystone species consisted of forbs and legumes 
(Figure 2a). The 38 key species across all environments 
(Table S3) individually added ≥0.10% explained devi-
ance to M0 (Figure 2a). Among them, eleven species 
also showed high per-abundance effects and thus were 

keystone species. However, there seemed to be an upper 
limit to the combination of overall contribution and 
effect size, with no species dominating in both. Many 
species also had negative linear coefficients and thus a 
negative association with SAVI (Figure 2a). Yet, these 
species generally added little explained deviance.

Keystone and particularly key species differed 
from ordinary species when compared in trait space 
(Figure 2b, c). Functional distances within both, key 
and keystone species, were significantly shorter than dis-
tances between them and ordinary species (p = 0.001 and 
p = 0.048, respectively, Adonis test). Key species gener-
ally were taller than average and had higher specific leaf 
areas, while keystone species were only slightly taller and 
stood out mainly through high SLA. Furthermore, key(-
stone) species did not show atypical positions in the trait 
space: key species were even significantly less function-
ally distinct than ordinary species, while no difference 
was found for keystone species (p = 0.048 and p = 0.194, 
respectively, two-sided Wilcoxon test). Key(stone) spe-
cies similarly differed from ordinary species when de-
fined more strictly based on the 95th percentiles of 
overall contribution and effect size, but differences 
began to erode when the 90th percentiles were used as 
thresholds (Figure S7).

Relationships by habitat

Explained deviance added by both community-weighted 
moments and key species-cover was higher under warm 
conditions with high soil fertility and low humidity than 
under cool and humid conditions (Figure 3). Among 
community-level predictors, community-weighted means 
most frequently ranked highest (Figure 3a). This was par-
ticularly true for CWM of SLA, which dominated under 
warm conditions. Among key species, the top-ranked ones 
were often forbs when conditions were cold and humid, or 
grasses and legumes when conditions were warmer and 
less humid (Figure 3b).

Not only did the strength of the relationships between 
community-level predictors and SAVI vary across hab-
itats, but so did their shape (Figure 4). SAVI increased 
with CWM of SLA when conditions were moderately 
warm, whereas the relationships were mostly unimodal 
under warm-dry conditions (Figure 4a). In colder en-
vironments with low soil fertility, SAVI was often neg-
atively related to CWM of LNC, whereas unimodal 
relationships prevailed under low humidity (Figure 4b). 
SAVI showed increasing partial responses to CWM of 
HGT in particular in the cooler half of environmental 
space with lower soil fertility, and unimodal responses 
in the warmer part (Figure 4c). For CWVs, relationships 
were similarly variable: partial SAVI responses to CWV 
of LNC were particularly positive under warm conditions 
(Figure 4e), where partial relationships between CWV of 
plant height and SAVI were most distinctly unimodal 

F I G U R E  1   Explained deviance added by community-level 
predictors and individual-species cover. Shown are contributions 
of community-weighted moments, key-species cover, and keystone-
species cover to explained deviance of model fits explaining 
productivity (soil adjusted vegetation index) with environmental 
conditions. Community-weighted moments were represented with 
smooth terms of three degrees of freedom while linear coefficients 
were used to model the effect of the cover values of individual 
species. Bars represent medians and error bars are interquartile 
ranges of 100 models fitted on resampled data. Letters on top of bars 
indicate groups according to a Tukey HSD test: if two bars share any 
letter, they are not significantly different from each other
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(Figure 4f). Partial relationships were also variable be-
tween SAVI and CWS and CWK of traits, although in 
these cases relationships were more often classified as 
non-significant (Figure S8).

Most of the key species found across all habitats were 
forbs, but grass and legume species were more often iden-
tified repeatedly in several habitats (Figure 5a). Forbs 
were typically key species only in one to few habitats, 
and within them their added explained deviance was 
comparably low. Among the key species with compara-
bly high average explained deviance added, several spe-
cies, often grasses and legumes, were in the key-species 
sets of many habitats. This was particularly true for 
the legume Trifolium pratense that was among key spe-
cies in 23 of 25 habitats (Figure 5b), but also the grasses 
Anthoxanthum odoratum and Trisetum flavescens, and 
the forb Plantago lanceolata were identified in 16, 15 and 
15  habitats respectively. For A. odoratum this was the 
case for environments of moderate humidity (Figure 5c) 
and for T. flavescens and P. lanceolata it was mostly, al-
though not as strictly, in moderately warm environments 
of rather low humidity (Figure 5d, e). Keystone species 
similarly included several species that were identified in 
multiple habitats. These were mainly forbs, for example 

Rumex acetosa which was identified in nine habitats of 
mostly warm conditions (Figure S9).

Key species tended to be taller and to have higher 
SLA than ordinary species in habitats of intermediate 
and high SAVI, but not when SAVI was low (Figure 5f). 
Both, key-species and ordinary-species sets, showed vari-
able centroids in trait space across habitats. Generally, 
these centroids were defined by greater plant height 
and higher SLA when SAVI of the habitat increased. 
Moreover, the shifts between key-species centroids and 
ordinary-species centroids more often pointed toward 
higher SLA and HGT in habitats of moderate to high 
SAVI (Figure 5f), and temperature and soil fertility 
(Figure 5g). In low-SAVI habitats, trait shifts pointed in 
various directions and functional distances within key 
species did not significantly differ from functional dis-
tances between key and ordinary species (Adonis test, 
Figure 5g). In environments of intermediate and high 
SAVI, on the other hand, trait shifts were significant at 
the p ≤ 0.05 level in 67% and 64% of cases respectively. 
When five or 50 instead of 25  habitats were distin-
guished, the strength and the shape of relationships of 
community-weighted moments and key(stone) species 
with SAVI remained similar (Figures S10–S15).

F I G U R E  2   Importance and traits of key and keystone species. (a) productivity improvement per percent cover (effect size) and explained 
deviance added to the reference model (overall contribution) of all species considered. Key species are shown as squares and coloured according 
to plant type (see legend), their subset of keystone species is shown as triangles, and ordinary species are shown as grey circles. (b and c) key 
species and keystone species, respectively, in a two-dimensional representation of trait space (PCA axes with explained variance in brackets, see 
Methods). Isolines are Gaussian mixture density functions of the distributions of key species (black) and ordinary species (grey) respectively. 
Note that for one key species trait information was not available (see Table S1)
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DISCUSSION

We investigated the associations of community-level 
functional properties and key(stone)-species cover with 
grassland productivity across the French Alps and 
Switzerland and found them to be similarly influent and 
heavily modulated by the environment. In our full-data 
analysis, the explained deviance added by biological pre-
dictors was relatively low (e.g. 0.7% for the top key spe-
cies). This is because the steep environmental gradients 
in our study area primarily constrained productivity 
and the quantification of biological contributions were 
accounted for only after environmental effects (Maire 
et al., 2018), rather than because biotic predictors were 
unimportant: key-species contributions were still two 
orders of magnitude higher than random expectation 
(Figure S16). Moreover, when the data was grouped by 
habitats, explained deviance added by biotic predictors 
increased markedly (e.g. 0.5–6.7% for the top key species 
in 25 habitats). When environmental conditions were not 
corrected for, biotic predictors explained up to 41% of 
deviance in the full-data analysis, highlighting that en-
vironmental and biotic predictors are entwined (Grace 
et al., 2016).

Key species were generally tall and had high SLA—
traits that are associated with high competitive ability 
(Körner, 2003; Violle et al., 2009) and high growth rates 

(Poorter et al., 2009; Wright et al., 2004). The lower func-
tional distinctiveness of key species compared to ordi-
nary species indicates that grassland species associated 
with unexpectedly high productivity tend to converge 
to one particularly successful phenotype (Enquist et al., 
2015; Grime, 2006). Advantages from fast growing and 
competitive strategies may be reinforced by additional 
traits such as mowing-tolerance, which may be why sev-
eral key species are important forage crops (Table S3). 
These include, for example the cross-habitat top key spe-
cies Trifolium pratense and Trisetum flavescens (Figure 5). 
Moreover, high ability to disperse may be important for 
key species: six of the 38 key species of the full dataset 
are listed among the 468 globally most noxious neo-
phytes (Table S3) and others are known to be regionally 
invasive (e.g. Ranunculus acris; Lamoureaux & Bourdôt, 
2007). The traits of keystone species, on the other hand, 
were less distinct, apart from high SLA. The lack of spe-
cies that ranked very high in overall contribution and 
per-abundance effect indicates that keystone plants, 
with respect to productivity, tend to be specialised to a 
restricted range of conditions. The required adaptations 
and traits may therefore be more context-specific and 
variable.

With respect to community-level predictors, we found 
the strongest associations between community-weighted 
means and productivity. This is consistent with the 

F I G U R E  3   Explained deviance added by community-level predictors and key-species cover across 25 habitats. (a) identity and added 
explained deviance of smooth terms of best-performing community-level predictors. (b) plant type and added explained deviance of best-
performing key species. Axes are a rotation of the first two principal components of environmental space (see Methods) with arrows 
representing loadings for increasing temperature, soil fertility and humidity. Surface depicts inverse-squared-distance interpolation of 
productivity (soil adjusted vegetation index, SAVI) levels and superimposed isolines represent the density of observations
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assumption of Trait Driver Theory (TDT) that produc-
tivity is primarily determined by the effect of the traits 
that lead to the highest fitness in a given environment, 
which are reflected by CWMs (Enquist et al., 2015; 
Garnier et al., 2004). Unlike the predictions of TDT, 
however, productivity increased with trait variance and 
decreased with kurtosis. It seems that in the diverse 
grasslands of the European Alps, deviations from the 
optimal ecological strategy are compensated by benefits 
from niche differentiation, resource-use complemen-
tarity and mutualistic effects like nitrogen fertilisation 
(Barneze et al., 2020; Pacala & Tilman, 1994). Finally, 
as expected by TDT, we found productivity to decline 
with absolute trait skewness, indicating that skewness 
may mainly arise from disequilibria with the local en-
vironment, rather than from the presence of function-
ally distinct key species (Enquist et al., 2015). A deeper 
understanding of how different predictors at the com-
munity level determine productivity may be obtained by 
considering the environmental context.

Environmental conditions shape the relationships 
between community-level predictors and productivity 
by governing which ecological strategies are capable 
to thrive, how trade-offs between traits play out, and 
how species interact. The range of thriving ecological 

strategies is particularly constrained in cold environ-
ments with poor soils, which only support small plants 
(Körner, 2003). In these environments, productivity in-
creases especially steeply with CWMs of plant height 
(Figure 4). Additional height among small plants may di-
rectly translate into higher biomass produced per season, 
and thus higher productivity. Only when environmental 
stress is lower, the growth benefits from greater height 
are eventually offset by costs for increased maintenance 
of stems (Falster & Westoby, 2003) and higher vulnerabil-
ity to mowing and grazing (Diaz et al., 2001), leading to 
unimodal relationships between height and productivity 
(Figure 4). Variations in the relationship between produc-
tivity and CWM of SLA may be driven by environmen-
tal control of the growth rate-longevity trade-off (Borgy 
et al., 2017; Wright et al., 2004). Productivity increased 
with CWM of SLA when conditions were moderately 
warm and humid, while under warm and dry conditions 
relationships were mostly unimodal. In principle, growth 
rate (and thus productivity) increase with SLA, as mate-
rial costs per photosynthetically active leaf area decrease 
(Poorter et al., 2009; Wright et al., 2004). Yet, this advan-
tage comes with shorter leaf life spans and higher water 
loss through transpiration (Wright et al., 2004). When 
water stress is low and growing season comparably 

F I G U R E  4   Partial responses of productivity to community-weighted means and variances across 25 habitats. Partial responses of 
productivity (soil adjusted vegetation index, SAVI) to community-weighted means (a–c) and community-weighted variances (d–f) of SLA (a, d), 
LNC (b, e) and HGT (c, f) across 25 subsampled datasets from similar environments. Curve types are classified as increasing (blue), decreasing 
(red), concave positive (purple), unimodal (yellow) and non-significant (grey, see Supplementary Methods). Axes are a rotation of the first two 
principal components of environmental space with arrows representing loadings for increasing temperature, soil fertility and humidity. Surface 
depicts inverse-squared-distance interpolation of productivity levels and superimposed isolines represent the density of observations
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short, these disadvantages are of little consequence, but 
they can be detrimental in warm and dry environments. 
Finally, environmental control of interactions may have 
driven the variations in productivity response to CWV 
of LNC, which was particularly positive under warm 

and dry conditions. CWV of LNC was more associated 
with legume abundance than with any community-
level predictor (Spearman r  =  0.57, Figure S17), indi-
cating that the positive effect of CWV of LNC may be 
linked to increased biological nitrogen fertilisation from 

F I G U R E  5   Importance and traits of key species across 25 habitats. (a) increase in productivity per percent cover (effect size), and explained 
deviance added to the reference model (overall contribution) of key species of all habitats. Key species are coloured according to plant type 
(see legend); ring size represents the number of habitats in which a species belongs to the key-species set; the four most global key species are 
highlighted with semi-transparent filling. (b–e) added explained deviance across environmental space for the four most global key species. 
Circles are only shown for habitats where the species are in the set of key species. (f) centroids of key-species sets (coloured circles) and 
ordinary-species sets (grey rings) from each habitat in a two-dimensional representation of trait space (PCA axes with explained variance in 
brackets). Point pairs are connected by grey lines. (g) magnitude and direction of shifts between the centroids of keystone and ordinary species, 
with directions corresponding to the axes in panel (f). Significant shifts are highlighted in dark red. Axes in panels (b–e) and (g) are a rotation 
of the first two principal components of environmental space with arrows representing loadings for increasing temperature, soil fertility and 
humidity. Surface depicts inverse-squared-distance interpolation of productivity levels and superimposed isolines represent the density of 
observations
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more legumes in the community (Barneze et al., 2020). 
Legumes are known for fixing atmospheric nitrogen via 
symbiosis with root bacteria and making it available to 
themselves as well as to neighbouring plants (Pirhofer-
Walzl et al., 2012). However, fixing atmospheric nitrogen 
is energy-intensive and reaction rates of nitrogenase, the 
enzyme responsible, quickly decrease when tempera-
tures fall below 22°C (Vitousek et al., 2013). Biological 
nitrogen fixation is, therefore, less efficient in cold than 
in warm environments (Cleveland et al., 1999).

To gain insight on how community-level properties and 
individual species are associated with productivity in di-
verse habitats, we relied on large observational datasets 
and had to make several assumptions. First, we only con-
sidered three traits and did not account for intraspecific 
trait variation. Although SLA, LNC and HGT are key 
determinants of productivity (Lavorel & Garnier, 2002; 
Wright et al., 2004; Wright & Westoby, 2002), additional 
traits such as mowing tolerance, as discussed above, or 
physiological rates are important too. Moreover, while in-
traspecific trait variation may be smaller than interspecific 
variation (Kichenin et al., 2013), they interact in complex 
ways with implications that can be significant (Des Roches 
et al., 2018). Especially in the full-data analysis with its steep 
environmental gradients, this may have limited the predic-
tive power of the functional community metrics. Second, 
with our empirical approach, we have no certainty that 
the identified associations between biotic predictors and 
productivity are causal. Although our results generally are 
plausible and correspond to ecological theory, key(stone)-
species effects, for example could also arise from species 
associations with unmeasured environmental conditions. 
Finally, we focused on vascular plants and ignored pterido-
phytes and mosses which, in a few cool and moist habitats, 
may distinctly contribute to productivity.

The nature and importance of processes linking biotic 
properties to grassland productivity are known to vary 
greatly depending on the environmental context (Grace 
et al., 2016). In this study, we have demonstrated that the 
effect of environmental context can be quantified when 
data set and approach are chosen appropriately. This, 
in turn, sets the scene for deeper insights and a better 
process understanding. For global vegetation modelling 
(Prentice & Cowling, 2013), for example formulations 
of trade-offs may be improved (Peaucelle et al., 2019). 
Moreover, we have shown that, beside community-level 
trait attributes, the cover values of key(stone) species may 
be used as indicators of productivity in real-world ecosys-
tems—a useful finding for ecosystem management, given 
that species cover is readily quantified. While our ap-
proach did not allow us to identify the mechanisms that 
underlie these associations, it indicates that in addition to 
established properties of productive species, such as high 
SLA (Lavorel & Garnier, 2002) or membership of certain 
functional groups (Jaillard et al., 2018), the effect of key(-
stone) species may be linked to other factors, including 
ability to disperse. Future studies will be necessary to 

comprehensively identify the roles and properties of im-
portant key(stone) species and establish a more complete 
picture of the biotic control of productivity.
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