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Abstract: Pathology results are central to modern medical practice, informing diagnosis and patient
management. To ensure high standards from pathology laboratories, regulators require compliance
with international and local standards. In Australia, the monitoring and regulation of medical
laboratories are achieved by conformance to ISO15189-National Pathology Accreditation Advisory
Council standards, as assessed by the National Association of Testing Authorities (NATA), and an
external quality assurance (EQA) assessment via the Royal College of Pathologists of Australasia
Quality Assurance Program (RCPAQAP). While effective individually, integration of data collected
by NATA and EQA testing promises advantages for the early detection of technical or management
problems in the laboratory, and enhanced ongoing quality assessment. Random forest (RF) machine
learning (ML) previously identified gamma-glutamyl transferase (GGT) as a leading predictor of
NATA compliance condition reporting. In addition to further RF investigations, this study also
deployed single decision trees and support vector machines (SVM) models that included creatinine,
electrolytes and liver function test (LFT) EQA results. Across all analyses, GGT was consistently
the top-ranked predictor variable, validating previous observations from Australian laboratories.
SVM revealed broad patterns of predictive EQA marker interactions with NATA outcomes, and the
distribution of GGT relative deviation suggested patterns by which to identify other strong EQA
predictors of NATA outcomes. An integrated model of pathology quality assessment was successfully
developed, via the prediction of NATA outcomes by EQA results. GGT consistently ranked as the
best predictor variable, identified by combining recursive partitioning and SVM ML strategies.

Keywords: ISO 15189; external quality assurance; pathology; machine learning and prediction

1. Introduction

The introduction of the ISO 15189 International Standard is regarded as an advance
for the maintenance of quality in laboratory medicine, providing a “Gold Standard” that
applies to technical and management performance, while emphasizing the value of the
duties undertaken by laboratory professionals [1,2]. Alongside these standards are addi-
tional discussions on quality improvement [3,4], suggesting a dynamic, ongoing process of
clinical laboratory quality assurance.

In Australia, National Pathology Accreditation Advisory Council (NPAAC) Standards
are the requirement for medical laboratories, with periodic assessment of compliance the
responsibility of NATA [5]. Complementing this approach, an external quality assurance
(EQA) scheme is run by the Royal College of Pathologists of Australasia-Quality Assurance
Programs (RCPAQAP). These two distinct processes are connected in the pursuit of the
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assessment of quality pathology performance, but traditionally have not been integrated
into a quantitative model of quality monitoring. Drawing upon integrated NATA and EQA
results will create opportunities for advances in the assessment of laboratory quality via
predictive modelling, and performance monitoring improvements.

The NPAAC standards and Guidelines are Australian legislated requirements for
medical laboratories to be accredited to obtain reimbursement for testing. The standards
encompass ISO 15189 and include requirements for governance, supervision, ethical prac-
tice, facilities, staffing and communication, which are assessed by NATA. The suite of
standards also includes technical requirements for retention of samples, molecular test-
ing, cytological screening, IVD validation and many other technical requirements. The
RCPAQAP EQA provider is accredited to ISO 17043, and uses ISO 13528 as an adjunct
standard for the statistical evaluations of EQA results.

We previously reported preliminary results on the integration of NATA and EQA
results, which included the results of a systematic scoping review of the clinical laboratory
quality literature [6]. Data modelling via machine learning algorithms was conducted on
NATA and EQA data provided by a state-wide, public pathology network. The aim of
the model was the prediction of NATA performance by EQA results, determined from the
number of NATA compliance conditions reports, linked to EQA marker relative deviation,
as determined by the extent of variation from specific target values [6]. It must be noted that
the investigation of EQA markers (e.g., ALT) in the context of this study did not concern
their physiological or diagnostic roles, but only their function as EQA accuracy indicators.

This study further explores the relationship between NATA and EQA results [6]
through a larger laboratory sample from a separate quality assurance cycle, and which
applied additional machine learning methods. Furthermore, the results confirmed gamma-
glutamyl transferase (GGT) as the leading predictor of NATA assessment outcome, and
proposes a method to detect similarly strong EQA predictive markers.

2. Methods
2.1. Data

Data provided for this research project were obtained directly from a pathology net-
work, covering hundreds of laboratories and collection centers within a specific Australian
state jurisdiction. Because of the confidentiality requirements of the two processes, neither
the RCPAQAP nor NATA were involved in the acquisition of data.

The study sample comprised ten General (G) and 29 Branch (B) designated labora-
tories, for a total sample of 39 pathology laboratories. The G designation is for larger
multi-discipline laboratories, with the B designation for branches of G laboratories with
G supervision, as per NPAAC definitions [7]. The branch laboratories are related to the
general laboratory in a hub (supervisory) and spoke (regional) model.

The EQA results obtained from the RCPAQAP covered an assessment period com-
prising 16 individual testing challenges (mean of two samples) over a four-month period
during 2017. A range of routine and second tier EQA markers were provided, with the
eventual modelling utilizing serum creatinine plus electrolytes (Na*, K*, C1~, bicarb, Ca™™,
POy, Mg**), or liver function test (LFT) markers: Alanine aminotransferase (ALT), Aspar-
tate aminotransferase (AST), gamma-glutamyl transferase (GGT), Lactate dehydrogenase
(LD), Alkaline phosphatase (ALP), total protein (TP), Albumin (Alb) and total bilirubin
(TBil). These markers featured for each laboratory, and had the largest sample sizes, hence
their choice for modelling against NATA response classes. Full Blood Count (FBC) data
were not available.

NATA inspections were also conducted during 2017, with one compliance report
provided for each laboratory, which presented written feedback on performance, as well as
“conditions” stipulated to meet the required standards under ISO 15189 (see the follow-
ing section).
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2.1.1. NATA Results and Response Classes

The results of NATA site audits utilized in this study included three types of advice
in relation to performance measured against ISO 15189 compliance—namely Conditions
(©), Minor (conditions) (M) and Observations (O). A NATA Condition is an assessment
that requires immediate attention and resolution before the following inspection. If not
addressed adequately, Conditions can lead to laboratory closure or other NATA sanction.
Minor (conditions) require attention, which if not addressed, with risk becoming a full
Condition during the following evaluation. Observations (O) are general feedback on
laboratory operations that are not linked to condition requirements.

As recommended previously [6], response (NATA) classes were established from the
number of Minor (M) condition reports per laboratory to represent the extent of ISO 15189
compliance. To develop the NATA response classes, Minor medians were calculated from
the pooled laboratory data (1 = 39), and each laboratory was classified as high (H) or low (L)
depending upon whether their Minor total fell above or below the medians calculated from
all laboratories in the sample; therefore, 50% of laboratories in the sample were allocated to
class H, or class L. Laboratories with the exact median value were allotted to the high or
low response classes depending on whether the laboratory concerned also attracted any
Condition (C) reports (allocated to high), while laboratories that attracted no C reports
received a low response classification.

The placement of a laboratory in the high NATA class represented poorer ISO 15189
compliance (as reflected by more than the median number of reports), whereas the low
class represented the better performing laboratories in relation to compliance. Some low
NATA class laboratories recorded zero Condition or Minor reports, representing the best
performance in terms of ISO 15189 compliance.

2.1.2. Calculation of Relative Deviation for EQA Markers

The results for each marker across all 16 EQA challenges of the cycle were trans-
formed to relative deviation scores, thus representing how close the laboratories were to
achieving the EQA target value for the specific marker at each specific testing point (1-16)
(Figure 1). The target value was determined from the EQA mean reference value calculated
from the national database comprising 450—-600 laboratories. The equation to calculate
relative deviation from EQA results is—

(Individual Lab result — EQA Target value)

EQA Relative Deviation =
QA Relative Deviation EOA Target value

A relative deviation result of zero (0.0) was a perfect EQA outcome; namely, the exact
EQA target value was achieved. Relative deviation results that did not achieve exact
agreement were represented as negative (—) or positive (+), indicating a laboratory EQA
result below or above the EQA target value, respectively, with the degree of variation from
zero on a continuous scale, indicating the extent of variation from the target value.

All EQA data were applied to machine learning models, and statistical analyses and
data plots were first transformed into relative deviation values, as achieved via the above
equation. Therefore, all results and conclusions reported here reflect variation in achieving
EQA target values for the predictive markers interrogated, and analyzed against NATA
response class.

EQA results were collected from each of the 39 laboratories and for all 2017 challenges,
with the 2017 NATA assessor reports linked thereafter to each participating laboratory.
Because the EQA process provided multiple results, whereas NATA provided a single
result, the same NATA response class allocation (Minor-high or low) was attached to each
of the 16 EQA results prior to analysis (Figure 1).
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Figure 1. External Quality Assurance (EQA) relative deviation presented as boxplots for serum
creatinine, separated by National Association of Testing Authorities (NATA) Minor class Condition
reports for comparison, over the entire Royal College of Pathologists Australasia Quality Assurance
Program (RCPAQAP) quality assurance cycle comprising 16 separate test challenges (4-months).

2.1.3. Direct Comparison of EQA and NATA Results

Laboratories were ranked in order from best to worst EQA performance for each
marker as calculated by coefficient of variation percent (CV%). The CV% was calculated
for individual laboratories from the 16 challenges across the 2017 EQA cycle. This within-
laboratory CV% thereafter provides performance rankings, which were clustered into
quartiles (Table 1). Quartile 1 represented the best EQA performance, and quartile 4
the worst performance, from the laboratories investigated, and for each individual EQA
marker assessed.

Table 1. EQA quartile (%) rankings of laboratories according to: (a) serum Creatinine, (b) GGT and
(c) serum Potassium, and matched with the Mean (x) NATA conditions for each quartile (descending
from the highest EQA performance to the lowest).

Percent (%) NATA Conditions
(] . —
EQA Marker Quartile Quartile Means (x) (&= SEM)
Minor (M) Major (C) Minor + Major
1 3.6 £09 20+ 1.0 56+ 17
Serum 2 6.4+0.9 3.8+0.6 101+ 14
Creatinine 3 77+14 42+1.3 119 £ 2.6
4 48+1.0 1.0 £ 06 58+1.3
1 6.6 £1.0 5.1+09 11.6 £19
2 3+14 0+ 1. 34+22
GGT 6.3 3.0 0 9.3
3 40+09 1.7+05 57+1.2
4 71+14 25+1.3 9.6 £25
1 63+£1.0 35+09 9.8 +1.38
Serum 2 3.8£09 19+£1.0 57+138
Potassium 3 73+17 43409 11.5+23
4 6.4+12 3.0+1.0 94+22

Percent Quartile Ranges: 1 (1-25%), 2 (26-50%), 3 (51-75%), 4 (76-100%). Quartile range 1 = Best EQA Performance;
Quartile range 4 = Worst EQA Performance. Rankings determined after coefficient of variation percent (CV%)
calculation, with the smallest CV% representing the best performance across the 16 time point EQA challenge, for
the EQA marker concerned. M-Minor condition reported by NATA. C-major Condition reported by NATA.
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The CV% was determined by the routine calculation as the SD divided by the aver-
age/mean of the participant’s range of concentrations, expressed as a percentage mid-point
average (full details—Supplementary Materials).

Mean numbers (x + SEM) of NATA C and M conditions were calculated for each
quartile, and compared directly to quartile rankings to determine whether NATA and EQA
performance relationships were obvious. To demonstrate this direct comparison, GGT,
serum creatinine and potassium were examined (Table 1).

2.1.4. Distribution Profile of EQA Performance

To visualize the relative deviation of EQA markers over the 16 challenges, results were
summarized by boxplots displaying median and inter-quartile range (IQR) results, in the
context of NATA Minor class (Figure 1).

Included in the distribution analyses were histograms for GGT and TP, which included
the Kolmogorov-Smirnov (K-S) two-sample test. The K-S test was applied to test the
hypothesis that there were no significant differences in frequency distribution for GGT and
TP when separated into NATA High and Low Classes.

2.2. Statistical Methods

Standard statistical analyses that included the calculation of sample mean, median,
standard deviation, histograms and other plots, and two-sample Kolmogorov-Smirnov
tests (K-5), were performed using SPSS for Windows (version 26) [8].

For the assessment of machine learning model prediction efficacy, Kappa [9] and
McNemar’s [10] statistics were used. Both statistics estimate the degree of agreement in
data arranged into 2 x 2 contingency tables, relevant here for the statistical comparison of
observed and predicted NATA Classes in the test data set.

A p-value of 0.05 was applied to decide statistical significance, unless stated otherwise.

2.3. Machine Learning-Integration of NATA and EQA Results

The R Statistical programming language (version 3.6.1) was used for all machine
learning analyses, and ultimate construction of NATA-EQA prediction models [11]. The R
package e1071 was used for support vector machine (SVM) modelling [12,13]. The €1071
package supported pre-model tuning for cost and gamma coefficients to ensure model
optimization. For recursive partitioning, two algorithms were employed; (i) the rpart
package for single decision trees [14], and (ii) the randomForest (RF) package for analyses
of the same name [15].

The R caret package was used for the tuning and inspection of machine learning
models, particularly for random forests [16]. This package supported the tuning of RF
models via the mtry parameter, according to receiver operating characteristics (ROC). As
well as model fitting, caret assessed model accuracy and efficacy. For RF, the aforemen-
tioned Kappa and McNemar's statistics were calculated to allow the assessment of model
robustness.

Training-testing ratios were set at a 70-30% data split for analyses via caret, with the
final results calculated from the 30% testing sub-sample. RF used 5000 trees (ntree = 5000) for
each analysis, with the mtry value (number of trees per decision node) determined for each
model prior to training. The replace function was also included to provide randomization
of data entry into the models [15,16].

As well as supervised RF models to predict NATA Class via EQA results, an unsuper-
vised model was tuned and conducted that evaluated the variation of all EQA markers
relative to each other, without reference to the NATA response, and as an indication of
predictive potential.

Rpart (decision tree) analyses were conducted on a minimum node split of 30 observa-
tions, with complexity parameters (cp) applied according to pre-model tuning.

The models developed involved the prediction of NATA class (high or low categories)
by multiple EQA relative deviation scores. Therefore, the NATA class acted in the model
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as the response to be predicted by EQA relative deviation. The SVM models included only
the top 2-3 EQA predictors identified from RF model tuning and optimization, while the
final RF model of EQA-ISO15189 integration included ALT, AST, GGT, sodium bicarbonate
and serum creatinine relative deviations as predictor variables.

3. Results

The following results were determined by machine learning models to predict NATA
outcomes via a range of EQA markers. The NATA outcomes reflected ISO15189 compliance
by laboratories over a two-year period, represented as two separate classes (categories).
All EQA results were calculated as a relative deviation value prior to inclusion in the
models as predictor variables, as well as supporting plots and statistics.

3.1. Direct Relationship of EQA Performance to NATA (I15015189) Compliance

During the 2017 assessment period for the 39 laboratories investigated, 128 Conditions
(C) and 244 Minor (M) conditions were recorded in total from NATA assessments. How the
number of NATA conditions reflected EQA performance over the same assessment period
was central to the following investigations.

Quartile rank for each laboratory (as decided by within-laboratory CV%) was deter-
mined for GGT, serum creatinine and serum potassium, and matched with the mean (¥)
number of NATA C, C+M and M reports (Table 1). NATA performance was not reflected by
the EQA quartile rankings for GGT, creatinine nor potassium. Therefore, the direct match-
ing of EQA performance rankings and NATA results did not show an obvious relationship,
hence the more sophisticated investigation of the combined 2017 NATA and EQA results.

3.2. Arrangement of EQA Results in Relation to NATA Response

Boxplots representing the entire EQA cycle (16 test challenges over four months
of 2017) were plotted for serum creatinine, as an example EQA marker included in the
following machine learning studies (Figure 1).

As presented by Figure 1, serum creatinine relative deviation fluctuated over the
16 EQA challenges, both between EQA challenges and when separated by NATA class. This
is the graphical representation of how distinct NATA and EQA results were arranged for the
machine learning investigations that follow, with NATA results matched to an EQA cycle
that comprised 16 individual challenges per marker. NATA assessments were conducted
once every two years, and reported on system-level performance across a number of
management and technical ISO15189 clauses, representing long-term performance of
the complex systems that underpin day-to-day laboratory performance and, which if
Conditions were detected, required lengthy periods to ameliorate.

3.3. Machine Learning-Predicting NATA Compliance by EQA Relative Deviation
3.3.1. Creatinine and Electrolytes

NATA-EQA recursive partitioning and SVM modelling explored EQA relative devia-
tion in creatinine and electrolytes (with and without GGT) to predict NATA response class.

Integrated NATA-EQA recursive partitioning models are summarized in Figure 2 and
supported by Table 2. GGT, serum bicarbonate and creatinine were the leading predictors
of NATA class. Bicarbonate and creatinine retained their leading predictor ranking when
GGT was removed from the random forest (RF) model (result not shown). The importance
of GGT, creatinine and bicarbonate relative deviations as leading predictors of NATA class
were confirmed by decision tree (Figure 2b). The removal of GGT weakened RF model
accuracy, particularly the prediction of the low (M) NATA class, and models for both NATA
classes were less accurate without GGT (Table 3).
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Figure 2. Plots summarizing the recursive partitioning and support vector machine (SVM) analyses of EQA relative
deviation prediction of NATA Minor Class Condition reports by electrolyte-creatinine data (and GGT). (a) Random Forest;
(b) Single Decision Tree and (c) SVM model. Features of the random forest modelling are presented in Table 2. For
SVM, only GGT and sodium bicarbonate were included in the final model. Low NATA Class (Yellow); High NATA
Class (Red). Model accuracy (10-fold cross validation)-66.23% (58.1-72.6%), at coefficients of Cost = 4, Gamma = 0.125
(C-classification and radial kernel). X denotes the support vectors (that define the calculated hyperplane required to perform
as a classification model). O symbols denote the observations (Red is a class 1 prediction, and Black a class 0 prediction).
GGT = gamma-glutamyl transferase.

Table 2. Predictive statistical and model tuning parameters of the random forest analyses presented in Figure 2, which
interrogated serum creatinine-electrolyte + GGT (relative deviation) data for the best predictors of NATA class (High or
Low Minor Condition reports).

Features and Results Random Forest (RF)
from RF Models * Optimal mtry Sensitivity Specificity Final Model Accuracy
Model Tuning 4 0.74 0.65
McNemar’s Sensitivity Specificity 0.71
Statistics
Kappa PPV NPV
0.42 0.71 0.72

* Model interrogated: NATA Minor (High/Low) Class — (EQA relative deviation results): Bicarbonate + Calcium + Chloride + Creatinine
+ Magnesium + Phosphate + Potassium + Sodium + GGT. The median number of Minor (condition) reports across all laboratories was
calculated to allow the designation of high (>median) and low (<median) NATA Classes for modelling with EQA results. The McNemar'’s
result is a p-value, with p > 0.05 indicating no significant difference between the marginal totals from the 2 x 2 contingency table used for
class prediction. Kappa statistic results are a proportion between 0.0-1.0 indicating degree of agreement between class predictions, with
values 0.0-0.20 as no to slight agreement, 0.21-0.40 as fair, 0.41- 0.60 as moderate, 0.61-0.80 as substantial, and 0.81-1.00 perfect agreement.
ROC (Receiver Operating Curve); PPV (Positive Predictive Value); NPV (Negative Predictive Value).
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Table 3. The impact of GGT on the Electrolyte-Creatinine EQA model of NATA class prediction by random forest modelling.

NATA Class- GGT Included in UEC Model GGT Excluded from UEC Model
Minor Reports Prediction Accuracy (%) Overall Accuracy (%) Prediction Accuracy (%) Overall Accuracy (%)
High (>Median) 241/320 (75.3%) 71.3% 230/320 (71.9%) 66.4%
Low (<Medjian) 198/296 (66.9%) 179/296 (60.5%)

Model interrogated: NATA Minor (High/Low) Class — (EQA relative deviation results): serum Bicarbonate + Calcium + Chloride +
Creatinine + Magnesium + Phosphate + Potassium + Sodium + GGT. The median number of Minor (condition) reports across all laboratories
was calculated to allow the designation of high (>median) and low (<median) NATA Classes for modelling with EQA results.

Decision tree prediction accuracy (%) broadly agreed with the random forest results
(Table 2), but were higher at some nodes, e.g., GGT > 0.0128 + creatinine > 0.024 = 83.02%.
Random forest and decision tree results are best considered in tandem when determining
predictive rules.

The RF model had an overall accuracy prediction of 71%, with both positive and
negative predictive values over 70% (Table 2). Sensitivity was approximately 9-14% points
higher than specificity, indicating greater success at correctly predicting true positive
results across high and low classes. The Kappa statistic was 42%, suggesting moderate
performance in agreement between observed and predicted outcomes. The McNemar’s
test was non-significant (p = 0.272), indicating no evidence of a difference in classification.

The top two RF NATA class predictors were explored by support vector machine
(SVM), illustrating the interaction patterns between the leading EQA predictors of NATA
class (Figure 2c). The kinetics of GGT in relation to bicarbonate demonstrated the sensitivity
of GGT for NATA class prediction. In predicting the NATA high class (1), bicarbonate
remained consistent across the range, while GGT fluctuated from < 0.0 to 0.1 relative devia-
tion with increasing bicarbonate values, representing approximately a 10-12% variation
in GGT response to fluctuations in bicarbonate accuracy. This SVM model, with only two
EQA predictor variables, had an accuracy of 66.23% (Cost = 4, Gamma = 0.125).

3.3.2. Liver Function Tests (LFTs)

GGT was confirmed as a powerful predictor within a serum electrolyte profile [6],
so GGT performance with other LFTs was of interest. The EQA data available covered the
LFT range of routine chemical pathology markers.

Amongst the EQA results for the selected LFTs, GGT was the leading predictor in the
RF models, which was confirmed by a single decision tree analysis (Figure 3a,b). AST and
ALT deviations were the second and third ranked RF predictors, respectively, but were
inverted for the single decision tree. The RF model had positive and negative predictive
values over 70%, a Kappa statistic result of 43%, a McNemar’s p-value of 0.27 and an
overall model accuracy of 72% (Table 4), which suggested a robust prediction model.
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Figure 3. Recursive partitioning results from the modelling of EQA Liver Function Test (LFT) relative
deviation results to predict the NATA Minor Class Condition reports. (a) Random Forest model
predicting NATA Classes; (b) the same model as (a), but interrogated by a single decision tree.
Features of the random forest modelling are presented in Table 4.
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Table 4. Predictive statistical and model tuning parameters of the random forest analyses presented in Figure 3 that
interrogated LFT (relative deviation) data for the best predictors of NATA class (High or Low Minor Condition reports).

Features and Results Random Forest (RF)
from RF Models * Optimal mtry Sensitivity Specificity Final Model Accuracy
Model Tuning 4 0.75 0.71
McNemar’s Sensitivity Specificity 0.72
Final Model Statistics 027 077 0.6 (5% C1.0.65,0.78)
Kappa PPV NPV
0.43 0.71 0.73

* Model interrogated: NATA Minor (High/Low) Class — (EQA relative deviation results): ALT + AST + TBil + GGT + LD + TP. The
median number of Minor (condition) reports across all laboratories was calculated to allow the designation of high (>median) and low
(<median) NATA Classes for modelling with EQA results. The McNemar’s result is a p-value, with p > 0.05 indicating no significant
difference between the marginal totals from the 2 x 2 contingency table used for class prediction. Kappa statistic results are a proportion
between 0.0-1.0 indicating degree of agreement between class predictions, with values 0.0-0.20 as no to slight agreement, 0.21-0.40 as fair,
0.41-0.60 as moderate, 0.61-0.80 as substantial, and 0.81-1.00 perfect agreement. ROC (Receiver Operating Curve); PPV (Positive Predictive
Value); NPV (Negative Predictive Value).

Informed by the recursive partitioning results, SVMs focused on the prediction of
NATA Minor Classes via the top three EQA predictor variables, GGT, ALT and AST, from
the full model that included all LFT markers (Figure 4).
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Figure 4. Cont.
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Figure 4. Support vector machine (SVM) plots representing the interactions between the top three
EQA Liver Function Test (LFT) predictors of NATA Minor Class Condition reports (High = Red;
Low = Yellow). The plots represent ALT and GGT relative deviations on the x-y axes, with SVM
slices for AST included at the following relative deviation values: (a) —0.15 (b) 0.0 and (c) 0.15. The
SVM model ran the liver function test relative deviations ALT, AST, Total Bilirubin, GGT, LD and
Total Protein (C-classification and radial kernel; Cost = 2, Gamma = 0.25). Model accuracy (10-fold
cross validation) -73.01% (65.96-79.17%). X denotes the support vectors (that define the calculated
hyperplane required to perform as a classification model). O symbols denote the observations (Red
is a class 1 prediction, and Black a class 0 prediction).

With GGT and ALT x and y axis variables, an extra dimension was added to the SVM
modelling via AST slices spanning negative to positive relative deviations (Figure 4a—c),
unlike the two variable SVM model described earlier. The impact of changing the AST
relative deviation from —0.15 to 0.15 had a clear influence on the prediction of the NATA
class (Category 0-Low, yellow region), as observed by GGT and ALT. At —0.15 and 0.0
AST, both GGT and ALT reflected predominantly positive EQA relative deviations, while
at AST 0.15 the range of the NATA low class extended towards negative GGT and ALT
dimensions, with GGT restricted to approximately 0.0-0.3 at an ALT relative deviation
of-0.4, while expanding its range towards 0.0 ALT (Figure 4c).

NATA class prediction accuracy for SVM was similar to that found for the recursive
partitioning models, at 73.01% (10-fold cross validation; range 65.96-79.17%). Repeating
the SVM with only the top three EQA predictors (GGT, AST, ALT) resulted in a drop of
10-fold cross validation accuracy to 67.48% (62.90-77.42%), but still within the range of
recursive partitioning prediction accuracy.

3.3.3. NATA Class Prediction by Combined Creatinine-Electrolyte-LFT EQA Results

To explore whether the prediction of NATA classes could be improved, the leading
predictors from the separate creatinine-electrolyte and LFT models were combined into a
single random forest model (final model).

Figure 5 confirmed the position of GGT as the leading predictor variable, AST and ALT
ranked second and third respectively, with creatinine and bicarbonate the least powerful
predictors of NATA Classes (but still impressive at between 50-60 on the Gini Index). Full
blood count (FBC) EQA results were not available for inclusion, although investigation of
NATA-EQA results from another laboratory network identified red cell distribution width
(RDW) as leading predictor of NATA M class from the FBC profile (results not shown).
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Figure 5. Random Forest (recursive partitioning) analyses that interrogated a combined serum
creatinine-electrolyte and LFT (EQA relative deviation) model to determine the best predictors of
NATA class (NATA Minor-High or Low Condition reports). The analysis used leading predictors
from separate models (Figures 2 and 3), namely, GGT, AST, ALT, creatinine and sodium bicarbonate.
Tuning and the predictive features of the random forest modelling are presented in Table 5.

The combined EQA marker model accuracy and prediction values (Table 5) were not
superior to the separate creatinine-electrolyte and LFT models (Tables 2 and 4).

Table 5. Statistical and final predictive model tuning parameters for the random forest analyses presented in Figure 3
that interrogated the combined serum creatinine-electrolyte + LFT (EQA relative deviation) data, to determine the best
predictors of NATA class (High or Low Minor Condition reports).

Features and Results Random Forest (RF)
from RF Models Optimal mtry Sensitivity Specificity Final Model Accuracy
Model Tuning 2 0.73 0.66
McNemar’s Sensitivity Specificity 0.71
Final Model Statistics 0.055 0.80 0.61 (3% CL: 0.66,0.75)
Kappa PPV NPV
0.42 0.69 0.74

Model interrogated: NATA Minor (High/Low) Class — (EQA Relative Deviation results): serum Bicarbonate + Creatinine + GGT + ALT +
AST. The median number of Minor (condition) reports across all laboratories was calculated to allow the designation of high (> median) and
low (< median) NATA Classes for modelling with EQA results. The McNemar’s result is a p-value, with p > 0.05 indicating no significant
difference between the marginal totals from the 2 x 2 contingency table used for class prediction. Kappa statistic results are a proportion
between 0.0-1.0 indicating degree of agreement between class predictions, with values 0.0-0.20 as no to slight agreement, 0.21-0.40 as fair,
0.41-0.60 as moderate, 0.61-0.80 as substantial, and 0.81-1.00 perfect agreement. ROC (Receiver Operating Curve); PPV (Positive Predictive
Value); NPV (Negative Predictive Value).

The RF final model of NATA response was repeated by logistic regression (LR), as a
comparison prediction method. The pseudo-R? result (Nagelkerke) was less than 20%, with
a Hosmer-Lemeshow result of p = 0.05, suggesting a poor model fit. Further investigation
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of the LR model identified issues of collinearity, particularly for bicarbonate and ALT
deviations, rendering the results unreliable.

To conclude, LFT or creatinine-electrolyte EQA predictors will suffice for the prediction
of NATA compliance performance, providing that GGT is included. As noted previously,
removing GGT from the creatinine-electrolyte model resulted in a 5.1% predictive accuracy
decrease (Table 3).

3.3.4. Investigations of EQA Marker Predictive Capacity via Unsupervised Analyses

To further investigate the variation of the EQA markers applied to predict NATA
performance, unsupervised analyses of EQA markers were conducted without reference to
NATA class.

Unsupervised random forest ranked GGT as the top EQA marker, with bicarbonate
second, and AST in the top five (Figure 6), reflecting the final supervised model summarized
by Figure 3. Additionally, potassium (K) and total protein (TP) were the two lowest ranking
EQA markers, consistent with supervised models of electrolytes and liver function tests,
respectively (Figures 2 and 3).

GGT e}

Bicarb o

Ca o

AST o

TBil o

ALT o

Cl o

PO4 o

Creat L]

TP o

T T T T
0 20 40 60

MeanDecreaseGini

Figure 6. Ranking of EQA markers as calculated by an unsupervised random forest model (no NATA
Class response included). The model includes the relative deviation values of all markers assessed
over 16 EQA challenge cycles conducted over 4 months (2017) from 39 laboratories (n = 624).

3.4. Patterns in EQA Relative Deviation Distribution and the Relationship to NATA
Class Prediction

While GGT was the leading predictor of NATA (ISO 15189) performance for the
laboratory network examined here, it is likely that results from other laboratory EQA-ISO
15189 processes will identify different markers. To assist in the identification of EQA
predictors in general, studies on relative deviation distribution frequencies were conducted
to detect patterns associated with machine learning prediction of NATA results.

As well as GGT, another LFT marker, Total Protein (TP), was investigated as an
example of a poor NATA outcome predictor.

The boxplot medians for GGT showed distinct patterns depending on whether associ-
ated with high or low NATA Minor reporting (Figure 7a). Unexpectedly, the high NATA
report class had medians consistently close to the EQA target (0.0 relative deviation), sug-
gesting superior EQA performance, whereas low NATA report class consistently showed
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median trends close to 0.20 relative deviation. The combined GGT sample had steady EQA
median relative deviations 0.0-0.10 (Figure 7b).

ERUIITITR
FITTITIR
i

EQA Test Period
(b)

Figure 7. Cont.
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Figure 7. EQA relative deviation (bias) variation over a period of 16 EQA challenges for (a,b)-glutamyl transferase (GGT)
and (c,d) Total Protein (TP), represented by boxplots (median + interquartile ranges). Both GGT (a) and TP (c) were
separated by NATA Minor Classes for variation comparison.

The TP boxplots did not show a dichotomy in relative deviation median variation over
the 16 EQA tests dependent upon NATA high or low minor condition reporting, with both
classes consistently varying 0.0 to 0.05 relative deviation. The combined sample showed
the same narrow variation in medians (Figure 7c,d).

Histograms of EQA relative deviation for GGT and TP emphasized further the con-
tribution of distribution to prediction performance (Figure 8a—d). The GGT histogram
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showed a bimodal distribution around an EQA relative deviation of approximately 0.10,
and range from —0.20 to 0.40. The TP distribution was unimodal and had a narrower range
(—0.10 to 0.10), indicating less variation.

Supporting these observations were the result of two-sample Kolmogorov—Smirnov
tests, comparing the distributions of GGT and TP after separation by NATA (Minor) class
(Figure 8b,d). The GGT distributions were significantly different (Kolmogorov—Smirnov
Z = 3.898; 2-tails; p < 0.001), while significance was not achieved for TP (Kolmogorov-
Smirnov Z = 1.010; 2-tails; p = 0.259). These results suggest that wider variation for EQA
relative deviation in general, as well as when differentiated by NATA class, contributes
mathematical properties to enhance NATA performance prediction by EQA analytes.
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Figure 8. Frequency histograms for strong or poor EQA predictors of NATA Minor Condition Classes (High or Low)—
(Strong—(a,b)) GGT and (Poor—(c,d)) Total Protein. The x-axis represents the distribution of cases across the range of

analyte relative deviations calculated.

4. Discussion

Ensuring a consistent quality of clinical laboratory results is an ongoing endeavor, and
while bolstered by the advent of ISO15189 standards [17-22], requires continuing vigilance
due to issues such as laboratory and individual compliance [2,3], and modern pressures of
a high-throughput system. In the Australian context, efforts via the RCPAQAP continue,
in part, due to the recognition that traditional laboratory guidelines were conceived in
the age prior to high-throughput platforms and computerization. Contemporary efforts
include, for example, the evaluation of quality indicators (Qls) delivered through a Key
Incident Monitoring and Management System (KIMMS), to understand laboratory quality
management [23]. Additionally, the computerization of laboratory medicine presented new
challenges associated with professional relationships between the laboratory and the clinic,
and the dominant position of a “black-box” in the form of analytical platforms conducting
analyses of patient samples [24].
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In spite of these challenges to quality management posed by modern analytical plat-
forms, the positive exploitation of mass data, Al and computational power were not as yet
fully realized, as previously reported [6]. On surveying the pathology quality literature,
only one reference was found that included the concept of computer-based systems to im-
prove 1ISO15189 compliance, which was described in the context of training [25], but there
is discussion on the application of Al in the context of healthcare broadly [26].

The application of machine learning to laboratory medicine has not been avoided
altogether, with several studies successfully optimzsing and applying recursive partitioning
and/or support vector machines (SVM) to pathology results for the assessment of HBV
antiviral treatments, the prediction of hepatitis B virus (HBV) infection, and the assessment
of liver function test efficiency [27-31]. The promise of digital histology results and linked
data is also attracting attention, including in relation to ISO15189 compliance [32-35]. In
the context of quality management for clinical laboratories, the potential of ML to produce
new insights from the interrogation of the total quality system, represented for this study
by integrated EQA-NATA results, was compelling, and supports the call by some for the
“flexible scope ... ” of ISO 15189 accreditation [22].

The machine learning conducted for this study utilized two algorithms-recursive
partitioning (decision trees and random forests), and support vector machines (SVM).
These are not traditional statistical methods, but rely upon training and testing the model
via the algorithm employed. For recursive partitioning this relies upon purity /impurity
of outcome in the training data to determine how to split (“partition”) predictor variables
into decision categories, underpinned by Entropy or Gini functions to assess purity [36,37].
Single decision tree models are taken further in the combination of tree predictors into
ensembles (forests), and majority voting to predict the outcomes [38]. The SVM operates on
a different foundation through the placement of support vectors and kernels into separate
categories, which are initially mapped to a high-dimension input space, where after a
linear decision (feature) space is presented [39]. These methods were conceived to solve
classification problems, with regression modes also available for predictive modelling.

Given the complexity of the NATA and EQA data, illustrated by the lack of an ob-
vious relationship (Table 1), the availability of extra classification power was valuable.
Each method provides advantages that in combination allows an enhanced understanding
of the problem of interest; clear decision boundaries from single trees, powerful classifi-
cation and predictor identification via forests, and the capacity to define and generalize
results with only two or three predictor variables via SVM.

The models presented herein required the calculation of relative deviation for each
EQA analyte (to estimate specific target value accuracies), with the frequency of NATA
Minor (M) reports used to establish nominal classes reflecting the extent of ISO15189
compliance by laboratories. The ensuing ML models were assessed in terms of the capacity
to predict NATA class from EQA results obtained from the same assessment period. Reports
by NATA assessors represent technical and/or management problems at the laboratories
assessed, and may reflect in the EQA results as difficulties in obtaining accuracy. Hence,
the NATA-EQA modelling could link systemic operational problems detected by NATA,
with EQA performance at the analyte-detection level. Linkage of these data, therefore, may
assist laboratories identify system-level issues in advance of NATA site audits, resulting in
fewer Condition reports on subsequent NATA assessment.

GGT was the top-ranked EQA predictor of NATA class in all models examined.
Furthermore, the inclusion of GGT in a creatinine-electrolyte model enhanced predictive
performance by 4.5-6.0% (Table 3). In a combined LFT-Creatinine-Electrolyte model, GGT
was followed by AST and ALT, and then creatinine and bicarbonate in the ranking of
EQA markers as NATA predictors (Figure 3). These performances as predictors are not
related to their biochemical functions physiologically, but to their variability between
laboratories when attempting to achieve a result close to the EQA target value. This
suggests that variability in the markers is due to issues of calibration, technical operation,
assay reagents or overall laboratory management, which will reflect in the performance
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consistency between EQA cycles, and hence influence its potential for NATA outcome
predictions. It appears that GGT is most sensitive to these fluctuations, with a definitive
explanation of this sensitivity only speculative at this time. Supported by two-sample
K-S tests, the variation of EQA relative deviation, as summarized here in boxplots and
histograms, may explain the potential of specific EQA markers to act as superior predictors
of NATA performance. Broader variation and the bimodal distribution of GGT relative
deviation contrasted clearly with the poor NATA predictor, total protein (TP).

The NATA and EQA assessment and reporting systems do not match in method or
timeframe, and as such, introduce a limitation. The NATA process involves an inspection
of the laboratory every two years by assessors, who subsequently write reports and make
recommendations on technical and management practices, and how non-compliance to
standards may impact performance quality [7]. If there are concerns about management or
technical standards, Conditions (serious or minor), can be imposed. This is a thorough and
labor-intensive process that cannot be implemented on a regular basis. This contrasts with
the EQA, which in Australia sends samples to laboratories on approximately a weekly basis,
for the range of routine and special test markers. These assessments gauge quality simply
through assay performance as measured by proximity to an assay-specific target value. For
these reasons, it is impossible to directly match the results from one quality system with
the other. However, the implications of ISO 15189 compliance performance, as assessed
by NATA, evaluate the deep management and technical systems that support day-to-day
performance, as captured by the RCPAQAP EQA process, and as such represent slow
moving management change that may not realize change in the laboratories for months.

Taken together, the results presented herein provide direction on integrating NATA
assessment results with the outcomes from the EQA process, and reveal details on what
aspects of the models were most predictive of laboratory performance. Therefore, in
designing an integrated quality assessment model (and eventually system) for the timely
detection of problems encountered by clinical laboratories, it is recommended that EQA
results are converted to a relative deviation value, plotted in a histogram and thereafter
examined for a bimodal distribution. The detection of specific EQA markers to track
individual laboratory networks in relation to quality assurance via ISO15189 will be further
assisted by the application of random forest algorithms, assisted by single decision trees and
SVMs to identify precise decision boundaries, and overall prediction patterns, respectively.

Supplementary Materials: The RCPAQAP protocol for calculating the coefficient of variation is
available online at https:/ /www.mdpi.com/article/10.3390/diagnostics11040692/s1.
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