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A B S T R A C T   

The aim of this paper is to leverage the free-energy principle and its corollary process theory, active inference, to 
develop a generic, generalizable model of the representational capacities of living creatures; that is, a theory of 
phenotypic representation. Given their ubiquity, we are concerned with distributed forms of representation (e.g., 
population codes), whereby patterns of ensemble activity in living tissue come to represent the causes of sensory 
input or data. The active inference framework rests on the Markov blanket formalism, which allows us to 
partition systems of interest, such as biological systems, into internal states, external states, and the blanket 
(active and sensory) states that render internal and external states conditionally independent of each other. In 
this framework, the representational capacity of living creatures emerges as a consequence of their Markovian 
structure and nonequilibrium dynamics, which together entail a dual-aspect information geometry. This entails a 
modest representational capacity: internal states have an intrinsic information geometry that describes their 
trajectory over time in state space, as well as an extrinsic information geometry that allows internal states to 
encode (the parameters of) probabilistic beliefs about (fictive) external states. Building on this, we describe here 
how, in an automatic and emergent manner, information about stimuli can come to be encoded by groups of 
neurons bound by a Markov blanket; what is known as the neuronal packet hypothesis. As a concrete demon
stration of this type of emergent representation, we present numerical simulations showing that self-organizing 
ensembles of active inference agents sharing the right kind of probabilistic generative model are able to encode 
recoverable information about a stimulus array.   

1. Introduction 

Living creatures are endowed with a representational capacity: they 
behave as if states of their bodies encode information or probabilistic 
beliefs about salient features of their environment, which they seem to 
leverage to generate contextually appropriate, adaptive behaviour 
(Egan, 2018; Kiefer and Hohwy, 2018; Ramstead et al., 2020, 2019a, 
2019b). Most multicellular creatures have evolved specialised cell 

populations – nervous systems, comprising neural and nonneural (e.g., 
glial) cells – that are dedicated to realizing this representational ca
pacity. Through continuous tuning of network connections, groups of 
neurons self-organize to form functionally integrated ensembles that 
look as if they are recapitulating the statistical structure of the envi
ronment, in a manner that organisms can leverage to generate adaptive 
patterns of behaviour. 

Population codes, where neural ensembles look as if they encode 
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probabilistic beliefs about the statistical structure of the environment (i. 
e., probability densities over the latent causes of sensory data), are as 
ubiquitous as they are well documented (Pouget et al., 2000). Single 
neurons are known to respond preferentially to specific kinds of stimuli; 
e.g., neurons in primary visual cortex respond preferentially to specific 
orientations and luminance contrasts of a stimulus presented in their 
receptive field. Neurons also look as if they work together to infer the 
most likely causes of sensory input in distal sensory epithelia, such that 
stimulus information can only be fully recovered by examining activa
tion patterns across many cells. This has been shown extensively in the 
visual system (Usrey and Reid, 1999). It is well known, for instance, that 
neurons in primary visual cortex look as if they infer the causes of 
stimuli (i.e., the patterns of photons) that impinge upon retinal neurons 
(Maunsell and Van Essen, 1983); that is, the average activity pooled over 
these neural populations looks as if they track features of the stimulus 
presented to retinal neurons. Something similar can be said of many 
other neural populations, e.g., place cells in the hippocampus (Bair, 
1999; Borst and Theunissen, 1999) and topographically organized 
neurons in motor cortex (Tolhurst et al., 1983). 

How are these coordinated feats of representation possible? How 
does specialised neural tissue, and indeed any kind of phenotypic state, 
come to encode information about the world in which the organism is 
embedded? Is it possible to formulate a general theory of how the 
confluence of brains, bodies, and their behaviours can represent the 
environment? Can we construct a general theory of phenotypic 
representation? 

In this paper, we leverage the apparatus of the free-energy principle 
and its corollary process theory, known as active inference, to propose a 
general theory of neural representation. This framework opens, more 
broadly, onto a theory of phenotypic representation, where the brains, 
bodies, and behaviours of organisms – and indeed, the coordinated 
behaviour of groups of organisms – are cast as engaging in inference 
about the causes of their sensory states at several nested spatial and 
temporal scales. 

The free-energy principle is a novel multiscale framework for 
studying belief-driven adaptive action (Friston, 2020). The free-energy 
principle provides us with a theory derived from first principles 
regarding what it means to exist as a system with a phenotype (i.e., to 
exist in a nonequilibrium steady state regime). On this account, to exist 
as a living system entails continually revisiting the neighbourhood of the 
same set of states (e.g., remaining within a certain range of body tem
peratures or ecological environments). Technically, such systems are 
endowed with a random dynamical or pullback attractor. This engen
ders a nonequilibrium steady state density that we can associate with the 
phenotype of a living system. Active inference, in turn, provides us with 
a (Bayesian) mechanics that explains how organisms remain within their 
phenotypic bounds (Ramstead et al., 2018). The framework rests on the 
Markov blanket formalism, which allows us to partition systems of in
terest into internal states, external states, and the blanket (active and 
sensory) states that render internal states conditionally independent of 
external states. This fundamental nonequilibrium Markovian structure 
(Friston et al., 2020a, 2020b) will guide our investigations here. We 
argue that representational capacities of living creatures can be 
formalized in a biologically realistic way via the active inference 
framework. We develop a generic and generalizable model of the 
representational capacities of living creatures or, indeed, particles with 
particular states (namely, internal states and their Markov blanket). 

We draw on one prescient operationalization of this distributed 
representational capacity – the construct of a neuronal packet – and 
provide a proof of principle for the neuronal packet hypothesis (Yufik, 
1998; Yufik and Friston, 2016). According to the neuronal packet hy
pothesis, cortical neurons perform inference about the causes of patterns 
in sensory neuron stimulation by forming neuronal packets, which are 
neural ensembles wrapped in a Markov blanket, such that neuronal 

packets come to represent recoverable features of the stimulus. In one 
sense, the notion of a neuronal packet can be read as homologous to the 
notion of a neuronal group, ensemble or assembly that has a long 
pedigree in neurology and neuroscience (Buzsaki, 2010; Edelman, 1993, 
1998; Gerstein and Kirkland, 2001; Hebb, 1949; Mountcastle, 1997; 
Nicolelis and Lebedev, 2009; Sherrington, 1911; von der Malsburg, 
1981). 

We argue that the representational capacity of creatures is a conse
quence of their Markovian structure. The Markovian partition of a sys
tem in a nonequilibrium steady state regime equips the internal states of 
a system with a dual-aspect information geometry. Internal states have 
an intrinsic information geometry that describes their trajectory over 
time in state space, as well as an extrinsic geometry based on probabi
listic beliefs about fictive external states (that is, beliefs that may or may 
not correspond to true external states), encoded by internal states. Here, 
we show simulation results that concretely demonstrate in silico that – 
when suitably configured under the right probabilistic model – the self- 
organizing ensembles of active inference agents (ensembles of simulated 
neurons) that share the same model are able to encode recoverable in
formation about a stimulus array. We argue that the configurations at 
which the system arrives through such self-organised coordination can 
be cast as a form of embodied inference (i.e., arriving at posterior state 
estimates over the causes of sensory stimulation). 

Although we focus on neuronal ensembles, it is important to high
light that the account that we develop here, based as it is on the free- 
energy principle, can be applied to any group of living (sub-)systems 
that entertain a shared generative model. This means that the repre
sentational capacity that we discuss in this paper is general. It need not 
be restricted to cells, or even to animals, and has the resources to ac
count for potential collective representational capacities across all kinds 
of self-organising systems; e.g., plant dynamics (Calvo and Friston, 
2017). 

Extant work on this topic has focused on the representational ca
pacities of individual systems (Friston, 2013; Kuchling et al., 2019), 
sometimes composed of other systems (Palacios et al., 2020). In this 
paper, we extend this line of reasoning to patterns of group activity that 
enable a group of agents (be they neurons or other elements of larger 
systems that realise the appropriate dynamics) to collectively represent 
features of an external environment. This extension is crucial for un
derstanding the intentional capacities of living systems, where hierar
chical and distributed dynamics are ubiquitous. 

2. Background: multiscale active inference 

2.1. Active inference and Markov blankets 

The free-energy principle begins from the observation that living 
creatures tend to revisit the neighbourhood of the same states of being 
(Ramstead et al., 2018). This is formalized as the claim that the dy
namics of living creatures are underwritten by a nonequilibrium steady 
state (Friston, 2020). Living systems exist far from thermodynamic 
equilibrium, in a regime of characteristic states that we associate with a 
nonequilibrium steady-state density over the system’s states, with high 
probability states corresponding to typical states given ‘the kind of 
creature that I am’, i.e., to those that are consistent with an organism’s 
phenotype. The free-energy principle explains how living creatures 
remain alive (i.e., away from equilibrium), by continuously generating 
patterns of adaptive action that bring about preferred sensory data or 
observations compatible with their survival (Friston, 2020). Thus, ac
cording to active inference, to exist as a living thing means to continu
ally produce sensory evidence of one’s own existence (i.e., evidence that 
‘I am in or near a nonequilibrium steady state); what is sometimes called 
self-evidencing (Hohwy, 2016). 

Active inference rests on a few fundamental, interlocking 
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mathematical constructs: these comprise the nonequilibrium steady 
state densities just discussed, as well Markov blankets, generative 
models, and variational free-energy (Ramstead et al., 2019a, 2019b; 
Ramstead et al., 2020, 2019a, 2019b). A growing literature appeals to 
Markov blankets to account for biological self-organization and the 
ability of living systems to remain alive over time (Constant et al., 2018; 
Friston, 2013, 2020; Hipólito, 2019; Kirchhoff et al., 2018; Kuchling 
et al., 2019; Palacios et al., 2020; Ramstead et al., 2018, 2019a, 2019b). 
This scheme gives us a principled definition of what it means to exist as a 
system (Kirchhoff et al., 2018; Ramstead et al., 2018). Minimally, to 
exist as a system implies a form of conditional independence with 
respect to the rest of the world; and Markov blankets operationalize this 
independence. 

A Markov blanket defines a system of interest by identifying the 
states that mediate its probabilistic relations with the events and regu
larities of the environment in which it is embedded, and which cause or 
generate those sensory states. By inducing conditional independence 
(Pearl, 1988), Markov blankets enable us to define the boundaries be
tween a system and its environment, and thereby delimit the system as 
such (Friston, 2013, 2020; Friston et al., 2015). We define a system of 
interest, delimiting it from the system in which it is embedded (e.g., a 
living creature in its ecological niche, or a cell in the intercellular 
milieu), by defining a third set of states – the Markov blanket itself – that 
mediate the causal influences between them. The Markov blanket is 
further partitioned into sensory and active states: active states affect, but 
are not affected by, external states; whereas sensory states affect, but are 
not affected by, internal states. Given this partition, internal states are 
independent of external states, given blanket states. See Fig. 1. 

2.2. Generative models, variational free-energy, and the mechanics of 
inference 

Active inference is a formulation of Bayesian mechanics, which tells 
us about the flow of internal and active states and how this keeps the 
Markov blanket in play (i.e., keeps the boundaries that separate an or
ganism from its environment intact). For action and perception to be 
adaptive and knowledge-driven, some structures must exist that harness 
this knowledge in a form amenable for use in guiding adaptive action. 
These structures are the internal states of creatures, shielded behind 
their Markov blankets. Active inference allows us to cast perception and 
action (i.e., the flow of internal and active states, respectively, in 
response to perturbations from sensory states) as maximising the evi
dence for an implicit statistical model, which living creatures embody 
and which guides their production of adaptive action through the se
lection of (beliefs about) sequences of actions, or policies (Friston, 
2020). 

Formally, generative model is a joint probability density over the 
variables of a system; in the case of active inference, this a joint prob
ability density over organismic states (so-called particular states, i.e., 

internal, sensory, and active states) and fictive external states (Ramstead 
et al., 2019a, 2019b). Under the free-energy principle, the generative 
model is just an interpretation of the nonequilibrium steady state density 
that we associate with the organism’s phenotype (Friston, 2020). Heu
ristically, we can either look at this density from the point of view of the 
physics of flow, as the underlying manifold that structures the flow of 
states; or as a joint probability density over all systemic states (Ramstead 
et al., 2020). In brief, the presence of a Markov blanket in a system at 
nonequilibrium steady state means that we can look at the system’s 
internal states as if they parameterize beliefs about (probability distri
butions over) external states. Because the external states now play the 
role of random variables they are often referred to as the latent or hidden 
states (i.e., hidden behind the Markov blanket). These hidden states can 
be read as explanatory fictions that the organism entertains to explain 
how its data were caused (Ramstead et al., 2020). 

A modest representational capacity follows from this Markovian, 
nonequilibrium setup (Friston, 2020; Friston, Wiese, et al., 2020; Parr 
et al., 2020a, 2020b). Indeed, the Markovian structure just described 
leads to a dual-aspect information geometry that licences a description 
of internal states where they encode a conditional (Bayesian) belief 
about the external world. Information geometry is essentially concerned 
with measurement of spaces that represent (the sufficient statistics of) 
probability distributions. Simply put, the existence of the Markovian 
partition implies that, for any blanket states of a system, one can identify 
(an average over) internal states and a corresponding conditional belief 
(i.e., probability density) about external states. Thus, in addition to the 
‘intrinsic’ information geometry of the system – which captures the 
probability of internal states over time – the Markovian structure en
dows the system with an ‘extrinsic’ information geometry, which cap
tures beliefs about concurrent external states (Friston et al., 2020a, 
2020b). 

According to the free-energy principle, living systems enact dy
namics (patterns of action and perception) that entail a generative 
model (Friston, 2012; Ramstead et al., 2019a, 2019b). What this means 
is that, mathematically, the behaviour looks as if it was produced by a 
specific causal process (a specific generative process), the structure of 
which is recapitulated in the generative model. In producing adaptive 
behaviour, living systems will look as if they are performing inference 
about the causal structure of their ecological niche, and maximising the 
evidence for a model of the world that they implicitly embody. More 
specifically, they do so by optimizing a bound on the (negative log) of 
this evidence known as the variational free-energy – which the organism 
can compute from the dynamics of its sensory states. By minimizing 
variational free-energy (a.k.a. maximizing model evidence), internal 
states of an organism come to encode a probabilistic ‘best guess’ about 
the causes of sensory input (Kiefer and Hohwy, 2018; Ramstead et al., 
2019a, 2019b). This is known as the (variational) free-energy principle 
(Friston, 2010, 2020). 

To summarize, the entailment of a generative model by adaptive 

Fig. 1. Markov blankets under active inference. 
This figure depicts the statistical relations that define the 
Markov blanket. The existence of a Markov blanket induces 
certain conditional independences: the presence of the blanket 
partitions the system into internal states (denoted s), external 
states (denoted s), and the blanket states themselves – which 
render internal and external states independent of each other, 
when conditioned on blanket states. The Markov blanket itself 
comprises active states (a) and sensory states (o). From Ram
stead et al. (2019a), 2019b.   
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behaviour, and the concomitant partition of the system into internal and 
external states separated by blanket states (and thereby the maintenance 
of the Markov blanket), leads to the induction of beliefs or knowledge 
about external states, parameterized by internal states. The physical 
states of the system then come to encode (the sufficient statistics) of 
distinct posterior beliefs about latent states. These are explanatory fic
tions or hypotheses about what is causing the sensory states. This means 
that the physical quantities that organisms embody encode the (pa
rameters of) posterior or conditional density (i.e., Bayesian beliefs) over 
hidden or latent states that might best explain the manner in which 
sensory data were generated (Ramstead et al., 2019a, 2019b). Theex
istence of a partition into internal, blanket, and external states thus also 
induces beliefs or knowledge about external states encoded by internal 
states and leads to the emergence of representational capacity in living 
creatures (Friston, 2012, 2020; Friston et al., 2020a, 2020b; Ramstead 
et al., 2020). The ensuing Bayesian mechanics suggests a deep if 
somewhat deflationary connection between existence and knowledge; 
namely, to exist is to know – in the sense of holding Bayesian beliefs 
(John Campbell, personal communication). 

2.3. Nested Markov blankets and multiscale self-organization 

This Markovian structure of living systems is iterated recursively 
across all levels of biological organization (Friston, 2020; Kirchhoff 
et al., 2018; Palacios et al., 2020). Since most living systems are 
composed of parts that are themselves living systems (e.g., organisms 
are made of organs, which are made of cells), the Markovian structure 
iterates recursively, allowing us to explain the dynamics of any system 
that exists at nonequilibrium steady state across levels of description – 
from cells to societies (Friston, 2020; Kirchhoff et al., 2018; Ramstead 

et al., 2018, 2019a, 2019b). It is thus blankets of blankets, as it were, all 
the way up, and all the way down. See Fig. 2. 

The strategy deployed by proponents of active inference to model 
self-organization at several scales is to show that some higher-level 
phenomenon (e.g., pattern formation) emerges from the coordinated 
inference dynamics of component phenomena at the subordinate scale, 
given that they share a generative model (Friston, 2013; Kirchhoff et al., 
2018). In this work, each individual agent is equipped the same gener
ative model (which is a metaphor for a shared genetic code). The pa
rameters of this generative model encode knowledge about the kinds of 
signals that different cell types receive and send, as a function of the kind 
of cell they are. (We discuss this in detail in the Methods and Results 
sections below). Based on this shared knowledge, each cell in the 
ensemble is able to infer its place and its role (as an internal, active, or 
sensory state) in the higher-order system, as a function of the evidence 
that each cell accumulates that is indicative of such a role, in terms of 
probabilistic relations between roles as defined by the Markovian 
partition – e.g., internal states do not communicate directly with other 
internal states (which are shrouded behind their blankets), but can 
communicate with blanket states, etc. 

In other words, an ensemble self-organizes to some target configu
ration because its components share the same expectations about the 
typical observations or data that are generated by the behaviour of it and 
other members of the ensemble. For a system of units sharing a gener
ative model, the free-energy minimum for each cell coincides with the 
free-energy minimum for the ensemble (Friston, 2013; Friston et al., 
2015; Kuchling et al., 2019; Palacios et al., 2020). Target morphologies 
emerge as the result of group inference operating on a shared generative 
model; where each unit comes to ‘know its place’ by inferring what role 
it must be playing, given the signals it is receiving from other units and 

Fig. 2. Nested Markov blankets. 
This figure depicts the recursive structure of 
nested Markov blankets. At each successive 
level of the nested hierarchy, superordinate 
dynamics at successively larger and slower 
scales emerge from, and constrain, dynamics 
arising at subordinate, smaller and faster scales. 
We can read the figure starting with the bottom 
panel. This panel depicts an ensemble of nine 
states – denoted x – which have not yet been 
differentiated into the partition prescribed by a 
Markov blanket. The formalism deploys 
renormalization group theory to derive a scale- 
free dynamics (Friston, 2020). In brief, we start 
at the bottom panel with a group of vector 
states (here, nine are depicted). We use a 
grouping operator G to group these states ac
cording to their conditional independences, by 
computing the Jacobian of their adjacency 
matrix. This leaves us with a particular parti
tion of the same states, now grouped into 
blanket (sensory and active) and internal states. 
We then use a dimension reduction operator R 
to derive dynamics at the next scale. Here, the 
fast and stable modes of the blanket states and 
the internal states are dropped. The principal 
eigenstates of each blanket are taken to define 
new vector states at the scale above; and the 
process repeats until all states have been 
accounted for. Depicted in the upper panels are 
particles, which are defined in terms of the 
conditional dependences between these states 
and that define the Markov blanket of each 
particle. Here, a particle π is a mixture of 
blanket states (b) and internal states (μ). From 
Friston (2020).   
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those it sends. 

2.4. Markov blankets in the brain and the neuronal packets hypothesis 

As discussed above, Markov blankets have been used to define the 
boundaries and dynamics of systems interacting across scales (Friston, 
2020; Hipólito, 2019; Kirchhoff et al., 2018; Palacios et al., 2020; 
Ramstead et al., 2018, 2019a, 2019b). This applies to the brain as well 
(Friston et al., 2020a, 2020b; Hipólito et al., 2020; Palacios et al., 2019; 
Parr and Friston, 2018). To start with, single neurons have their Markov 
blankets (Kiebel and Friston, 2011). The sensory states of the neuron are 
the synapses through which it receives signals from other cells. The 
active states of neurons are their axons and synaptic terminals through 
which they convey action potentials and patterns of neurotransmitter 
release onto other cells. Each neuron has a preferred receptive field 
profile or response vector that represents its preferred stimulus type, 
which we can associate with the afferent synaptic connections of the 
neurons that encode its likelihood function (i.e., that encode what inputs 
are those that provide evidence for the hypothesis it represents). Active 
inference can be used to explain neural behaviour at three different 
scales: the fast timescale of inference (changes in activation or depo
larization), the slower timescale of associate learning (changes in syn
aptic efficacy or gain), and the even slower timescale of structure 
learning (structural change in dendritic architecture) (Kiebel and Fris
ton, 2011). Empirically, there is emerging evidence for the 
self-evidencing behaviour of neuronal ensembles in terms of dendritic 
architectures; even in cell cultures (Isomura and Friston, 2018). 

On the active inference account, the architecture of (nested) Markov 
blankets discussed above might form the basis of brain organization 
generally (Friston et al., 2020a, 2020b; Hipólito et al., 2020). The causal 
factors that figure in generative models are thought to correspond to 
anatomically segregated brain areas (Friston and Buzsáki, 2016; Parr 
and Friston, 2018). The evidence once thought to suggest modular 
processing in the brain may be better interpreted as evidence for 
structures enabling this factorization. In other words, functionally spe
cialised brain regions may encode factors of a factorized probability 
density, which are conditionally independent but related to each other 
through their mean fields (Friston et al., 2017a, 2017b; Parr et al., 
2020a, 2020b). This means that neuronal populations may encode 
distinct factors, each segregated by their Markov blanket (e.g., the 
identity of an object vs. its spatial location). 

This leaves open the question of how neural ensembles come to encode 
information. The neuronal packet hypothesis (Yufik and Friston, 2016) 
proposes that neurons are able to encode information about external 
causes by forming coherent, bounded ensembles, enshrouded behind a 
Markov blanket. The self-organization of a Markovian ensemble of 
neurons in response to perturbations (action potentials) coming from 
sensory neurons can thus be interpreted as a form of posterior inference, 
with each packet encoding a different hypothesis (Yufik, 2019; Yufik 
and Friston, 2016). This is broadly consistent with theories of structural 
representation, according to which neurons encode exploitable infor
mation about a target domain by mirroring the (mathematical or sta
tistical) structure of that target domain (Kiefer and Hohwy, 2018, 2019; 
Kiefer, 2020). The neuronal packet hypothesis goes further and proposes 
that the capacity of an organism to infer and interpret the causes of its 
sensory states results from the binding together of neuronal populations 
through the formation of a boundary (i.e., a Markov blanket) around the 
neuronal packet. To ‘mobilise’ such a packet – in response to sensory 
perturbation – would be to understand a world composed of interacting 
causes (Yufik, 2019; Yufik and Friston, 2016). 

Empirical evidence supports the neuronal packet hypothesis, sug
gesting that neurons process information by forming task-dependent, 
transient coalitions on the fly; for an extensive review of the empirical 
evidence for this type of ‘neural reuse’ (Anderson, 2014). Thus, brain 

activity arises from coalitions of neurons functioning together as a 
cohesive unit, in a context- and goal-dependent manner. This allows for 
the combination of information about more or less independent causal 
factors encoded by the physical states of brain networks (Parr et al., 
2020a, 2020b). Neurons are thus trying to form functional coalitions 
dynamically, to bring to bear the factors that they encode in a multi
factorial coordinated inference; see also Park and Friston (2013). 
Strikingly, evidence for the Markovian structure of brain dynamics 
comes from recent work in neuroimaging, which demonstrates that 
brain regions form Markovian ‘parcels’ (Friston et al., 2020a, 2020b). 

In recent active inference models, neurons are endowed with the 
prior belief (encoded in their shared generative model) that, in the 
absence of external perturbations, their signalling profiles will align or 
synchronise (Palacios et al., 2019). This might provide the initial 
impetus for packet formation. Each neuron is equipped with a genera
tive model that allows it to infer its functional identity (or role in the 
Markovian partition) in the superordinate ensemble. It thus follows that 
perceptual inference arises as the neuronal system self-organizes into 
coherent packets in response to sensory perturbations. 

One further phenomenon of interest that may be worth considering 
in this context is structural self-organization – and associated functional 
segregation (Zeki, 2005) – during early development and neuronal dif
ferentiation. Instead of neurons being genetically hard-wired to come to 
represent specific stimuli, some work suggests that common patterns of 
functional segregation may be more weakly specified by the inherited 
constraints on large-scale axonal structure (e.g., the path of optic nerve 
signals to visual cortices via the thalamus), where the functional role of a 
neuron (or of a locally connected population of neurons) instead 
emerges from self-organization in response to the statistics of the signals 
it receives early in development (Bienenstock et al., 1982; Peters and 
Yilmaz, 1993; Sin et al., 2002; Sur et al., 1988; Sur and Rubenstein, 
2005; von der Malsburg et al., 2010; Von Melchner et al., 2000; Zeki and 
Shipp, 1989). This has been most starkly demonstrated in studies of 
experimentally manipulated large-scale neuronal pathways, e.g., studies 
that redirect visual signals from the optic nerve to the medial geniculate 
nucleus and auditory cortices. Remarkably, in these cases, populations 
of auditory cortex neurons become sensitive to specific visual properties 
similar to those normally seen in visual cortex. Other studies of devel
opmental windows, such as work showing selective blindness to 
particular visual features (e.g., vertical contours) not present in the early 
environment, and associated pruning of the necessary synaptic con
nections to implement the inference of such properties, further illus
trates this point (Blakemore and Cooper, 1970; Buonomano and 
Merzenich, 1998; Huang and Reichardt, 2001; Muir and Mitchell, 1973; 
Rice and Barone, 2000; Singer et al., 1981; Thoenen, 1995). Thus, there 
is a strong sense in which (under broad genetic constraints on large-scale 
axonal wiring patterns) neural populations infer what specific functional 
role they play based on the early inputs they receive. 

2.5. Neural representation in the active inference framework 

This paper builds on the technical developments of active inference 
models of hierarchical self-assembly and self-organization (Friston et al., 
2015; Kirchhoff et al., 2018; Palacios et al., 2019, 2020). This work has 
shown that a Markov blanket emerges naturally around a group of active 
inference agents that share the right kind of generative model (Friston 
et al., 2015; Kirchhoff et al., 2018; Kuchling et al., 2019). The strategy 
deployed in these papers is to recast the problem of superordinate 
boundary formation – the emergence of a Markov blanket –as the 
consequence of inference conditioned on a shared generative model. 

Extending this work, our strategy in this paper is to explain the self- 
organization of neural tissue into neuronal packets at a superordinate 
level by modelling coordinated inferences of single neurons sharing a 
generative model. The technical novelty in our setup is that each 
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individual neuron must now infer to which higher-order Markov blan
keted system it belongs, in addition to the role that it plays in that su
perordinate system. This role in the superordinate ensemble is 
implemented by leveraging the partition of the system into different 
kinds of states, which follows from the existence of a Markov blanket at 
the superordinate scale (and beliefs about membership in that blanketed 
system): individual neurons must infer whether they play the role of a 
sensory state, an active state, or an internal state, where each of these 
roles is defined in terms of the conditional independencies that define 
the Markov blanket. 

We model neuronal packet formation as the result of inferences 
about membership to a higher-order Markov blanketed ensemble, which 
can be cast as a form of inference. Each neuron has an individual 
response vector; that is, each neuron responds preferentially to some 
features being present in their receptive field. When sensory neurons 
detect their preferred stimulus in their receptive field, they send signals 
(i.e., action potentials) to cortical neurons, e.g., neurons in the primary 
visual context receiving signals from sensory neurons in the retina 
(through the lateral geniculate nucleus). We model the later type of 
neuron in this work. We hypothesize that cortical neurons use these 
signals as evidence for a specific inference: that they are the internal states 
of a neuronal packet at the superordinate level. Neurons exchange signals 
as well, which express their beliefs about blanket membership at the 
superordinate scale. This group inference and communication leads to 
the formation of a neuronal packet, which encodes a hypothesis about 
what might have caused the sensory impressions on visual receptors. 
Neuronal packet membership can be seen as a measure of evidence for 
that hypothesis. Thus, neuronal packet formation corresponds to the 
self-organization of neural ensembles enabled by inferences about 
membership to a higher-order Markov blanketed system. This provides a 
generalizable mechanism for distributed neural representations, pre
mised on a nonequilibrium, Markovian, and recursively nested 
architecture. 

In short, we hypothesize a specific architecture that links neurons in 
the sensory epithelia to neurons in the brain. The response vector of 
sensory neurons encodes the kinds of target features in their receptive 
fields to which they are most sensitive (e.g., orientation and contrast). 
This sensitivity means that, in the presence of their preferred stimulus, 
the rate at which action potentials are generated increases. Our hy
pothesis is that, when they detect increases in particular signalling 
patterns from sensory neurons, cortical neurons take this as evidence to 
infer that they are internal states of a higher-order ensemble. Essentially, on 
this account, the action potentials generated by each cortical neuron 
broadcast to other cortical neurons a signal that conveys its beliefs about 
whether it is an internal state of a superordinate ensemble. 

3. Methods 

To concretely demonstrate our proposed formulation, we simulate 
N = 256 ‘particles’ operating in a two-dimensional phase space, where 
the location of a particle is denoted x ∈ R2 and the equations of motion 
are largely based on those used by Palacios and colleagues (2020). Each 
particle – representing an individual neuron – is modelled as an active 
Bayesian agent, partitioned into sensory s, active a and internal μ states. 
The internal states parameterize beliefs about (i.e., a probability density 
over) hidden external causes of sensory input and are optimised using 
Gaussian filtering (Palacios et al., 2020). In other words, they are 
updated in order to minimise variational free-energy. In the current 
context, the internal states parameterize beliefs about the identity of the 
particle ψ ∈ R4, where each identity corresponds to membership in a 
superordinate ensemble. 

Particles emit signals ψ ∈ R4, where each signal corresponds to a 
particular identity. In particular, each particle emits signals ψ as a 

function of their internal states μ: 

ψ = σ(μ) (1)  

Where σ is the softmax function. The internal states μ ∈ R4 of a particle 
encode model evidence (negative free-energy) for their identity, such 
that the distribution ψi represents the beliefs of a particle about its own 
identity. Particles thus transmit beliefs about their respective identity. 
These transmitted signals are sensed by neighbouring particles. Signals 
decay exponentially as a function of distance in their shared phase space 
(e.g., as in local vs. long-range synaptic connections within a cortical 
region or diffuse neuromodulator release), such that the local signal 
intensity m ∈ R4 for particle is given by: 

m =
∑N

j
ψj exp

(

−
1
2

Δ x→2
j

)

(2)  

where the vector between particle locations is given by Δ x→j = x→j − x→. 
We introduce two numerical innovations with respect to the simu

lations reported by Palacios and colleagues (2020). Rather than particles 
sensing local signal intensities directly, they sense the (2D) spatial flow 
vector of the four signals, R→∈ R2 × R4, the relative rate of change in the 
signal as a function of location, or its proportional intensity gradient: 

R→=
∇x m

m
(3)  

By combining Eqs. (1–3), we can show that the flow vector of any 
exponentially decaying variable satisfies: 

R→=
∑N

j∕= i

Δ x→j σ
(

μj −
1
2
Δ x→2

j

)

(4) 

This equation shows that, for any particle, the flow vector R→ points 
directly to the (intensity-weighted) signal source. Moreover, the 
magnitude R = |R→| of this vector is proportional to the distance from the 
signal source. These are remarkable properties for a signal that can al
ways be computed locally, given the reasonable assumption of an 
exponential decrease of signal intensity with distance. 

As well as sensing the flow vector magnitude sR, each particle 
internally senses the signal it transmits sψ , such that the complete sen
sory state s is: 

s =
(

sψ
sR

)

=

(
ψ + Ωψ

R + ΩR

)

(5)  

where Ωψ and ΩR are Gaussian fluctuations. 
To enable self-organising behaviour, we equip the particles with 

prior beliefs about the magnitude of flow vectors R. As Bayesian agents 
act to realise prior beliefs (i.e., maximise model evidence), expectations 
about R will promote behaviour (i.e., movement in state space) that 
realises the corresponding belief about distance from the intensity- 
weighted signal source. 

We specify a unique prior P(R|ψ) for each signal identity ψ , meaning 
that the signals (flow vector magnitudes) that are expected by each 
particle depend on their inferred identity: 

P(R|ψ) = N (Rψ ,ΠR) (6)  

where Rψ ∈ R4 is a set of four conditional means for each signal, given a 
particular identity ψ and given the corresponding set of precisions ΠR 
(inverse variances). Because R is directly proportional to the (intensity- 
weighted) distance to the signal source, the Markov blanket structure of 
the superordinate ensemble can be encoded in these identity-specific 
expectations Rψ : 
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Rψ =

⎡

⎢
⎢
⎣

D D 2D 2D
D D D 2D
2D D D D
2D 2D D D

⎤

⎥
⎥
⎦ (7)  

Where D is a scaling parameter. Effectively, this matrix encodes the 
compatibility of spatial proximity between the four identities. Specif
ically, particles can (infer they) belong to one of two higher-order en
sembles, where these ensembles are themselves superordinate particles 
consisting of internal and blanket states. Particles can form beliefs about 
whether they are an internal state ψ1 or a blanket state ψ2 of one su
perordinate Markov blanket, or alternatively, a blanket state ψ3 or an 
internal state ψ4 of the alternative superordinate Markov blanket. These 
identities differ only in terms of their associated expectations P(R|ψ), 
where inferring that one is an internal state ψ1 of one Markov blanket 
involves the expectation of being far away (distance of 2D) from parti
cles that are part of the other superordinate particle, ψ3,4, and vice versa. 
Particles which identify as ψ2 or ψ3 correspond to the blanket states that 
separate the internal states of the superordinate ensembles. Accordingly, 
blanket states ψ2 are compatible with proximity (distance of 1D) to the 
corresponding internal states ψ1 as well as the blanket states ψ3 of the 
other ensemble. Reciprocally, blanket states ψ3 are compatible with 
proximity to internal states ψ4 and blanket states of the other ensemble 
ψ2. 

The agents have a categorical belief distribution over identities and 
their actual expectations are a Bayesian model average of the expecta
tions corresponding with each identity: 

R = Eψ [R] = ψRψ (8) 

We now derive updates for the model evidence for internal states μ.
The flow of the internal states is given by gradient flows on variational 
free-energy F: 

fμ(s̃, ã, ũ) = (Qμ − Γμ) ∇μ F (9)  

Here, the tilde indicates generalised coordinates, containing both the 
variable and all its temporal derivatives. We refer readers to Palacios 
and colleagues (2020) for a full description. We consider a first-order 
approximation for small Gaussian fluctuations; in which case we 
obtain the rate of change of model evidence μ: 

μ̇ = ∇μR⋅ΠRεR +∇μψ⋅Πψ εψ − Πμμ (10)  

Here, ΠR, Πψ , Πμ are sensory and internal precisions (inverse variances) 
that normalise model evidence μ and the prediction errors εR, εψ : 

εψ = sψ − ψ  

εR = sR − R (11) 

In other words, the model evidence for each particle identity varies 
with the normalised prediction error, where the prediction error quan
tifies the difference between the (magnitude of the) sensed flow vector 
and the prior beliefs about the magnitudes of flow vectors. 

Finally, we move on to consider active states, which correspond to a 
chemical emitter (aψ ∈ R4) and motor actuators (ax ∈ R2) that move the 
particle through phase space x. The flow of active states mirrors that of 
internal states: 

fã (̃s, ã, ũ) = (Qa − Γa) ∇ã F (12) 

Intracellular self-communication serves as a minimal type of memory 
that is regulated by a chemical emitter that communicates identity be
liefs with normalised Gaussian fluctuations (mentioned above): 

aψ = ψ  

ȧψ = − Πψ εψ (13) 

As discussed, motor actuators regulate the spatial location of cells. 
We still neglect friction for now (Πx = 0), but we increase the realism of 
cell movement by choosing for a second-order approximation: ãx =
(

x
ẋ

)

, where ẋ is the velocity. Since we are calculating the flow of both 

position and velocity as defined by the free-energy functional, this 
model also incorporates acceleration: 

ẋ = − ∇x R→⋅ΠRεR  

ẍ = ∇x R→⋅λΠRṘ (14)  

where λ parametrises the autocorrelation of fluctuations over time, 
which sets the smoothness of fluctuations and regulates the magnitude 
of second-order effects (see Friston et al., 2010 for its derivation) and Ṙ 
is the temporal derivative of expectations about R: 

Ṙ = Rψ(1 − ψ)μ̇ (15) 

Collecting all results, we can now integrate over time and use a 
Taylor series expansion to simulate trajectories of particles over time in 
terms of x, aψ and μ: 

xt+1 = xt + ẋtΔt +
1
2

ẍtΔt2  

aψ,t+1 = ψ + Πψ Ωψ Δt  

μt+1 = μt + μ̇tΔt (16) 

In summary, all we have done here is write down a relatively simple 
generative model of what any neuron or particle expects to sense, 
depending upon its identity (e.g., functional selectivity) and spatial 
relationship to other particles that share the same generative model. 
This generative model means that one can compute variational free- 
energy gradients and the ensuing flow of particular states, which can 
be read as neuronal dynamics or movement. This dynamics will neces
sarily show self-organising, self-assembling, and self-evidencing aspects 
because it minimises a variational bound on the evidence for a (shared) 
model of the external milieu. Crucially, the external milieu is made up of 
particles that are all trying to do the same thing and thereby fulfil each 
other’s expectations. Technically, because we are dealing with contin
uous states and Gaussian fluctuations, the variational free-energy gra
dients become prediction errors. This can be seen in the above equations 
where the flow of internal and active states is a function of various 
prediction errors. Biophysically, these prediction errors would corre
spond to the setpoints of electrochemical variables, such that the par
ticles keep moving when prediction errors are all zero and each particle 
has found its variational free-energy minimum (Fig. 3) 

In order to illustrate the concepts outlined in the previous sections, 
we constructed two sets of numerical experiments. These will illustrate, 
respectively:  

• The emergence of a two Markov blanketed systems, which results 
from the application of an external field that provides evidence of 
ensemble membership (ψ1,2) to a small subset of particles.  

• The transient and dynamic nature of Markov blanket formation in 
response to changing external fields. 

4. Results 

4.1. The emergence of a neuronal packet 

The results of the first series of numerical simulations are presented 
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in Fig. 4. In these simulations, a subpopulation of the individual neurons 
was stimulated to induce the precise posterior belief that they were 
states of one Markov blanketed system at the superordinate level (ψ1,2). 
This was achieved by coupling the selected neurons to an external field, 
which, as described as above, is a metaphor for signals received from 
neurons in the sensory epithelia of the organism. 

We introduce a stimulus function fstim(x) ∈ 〈0, 1〉 that specifies the 
stimulus intensity (between 0 and 1) as a function of phase space posi
tion. This function determines the evidence a neuron receives for being a 
member of the first ensemble ψ1,2, while the complement of this function 
1 − fstim(x) determines the evidence a neuron receives for the alterna
tive ensemble ψ3,4. 

At the start of the simulation, neurons were initialised with uniform 
beliefs about their identity. The stimulus field was then introduced at 
time step T = 10, causing the neurons within this field to quickly form 
beliefs that were members of the first superordinate ensemble (ψ1,2). 
Conversely, the remaining neurons formed beliefs that they are mem
bers of the second superordinate ensemble (ψ3,4). Over the course of the 
simulation, the shared expectations about proximity relations Rψ caused 
neurons to converge to either internal (ψ1,4) or blanket (ψ2,3) states. 
Specifically, neurons which were not in spatial proximity to states of the 
opposing higher-level ensemble formed beliefs that they were internal 
states, whereas neurons which were in spatial proximity to both en
sembles formed beliefs that they were blanket states. This caused the 
first Markov blanket to form around the field introduced by the stimulus 
function, and the second Markov blanket to envelope the first. The 

emergence of this structure meant that when conditioned on their 
blanket states ψ2, the internal states ψ1 of the first Markov blanket were 
independent of the states of the second Markov blanket ψ3,4, and vice 
versa. 

These results may also speak to the role of local field potentials in 
neural synchronization. The prior belief that they will synchronise with 
each other in the absence of stimulation lends to the individual neurons 
that make up a neuronal system a kind of coherence, which gives it the 
look and feel of a fictitious ‘centripetal’ force. Conversely, when neurons 
are stimulated by contradictory driving inputs, they will self-organize 
into distinct and segregated groups, which will look like a ‘centrifugal’ 
force. The group inference that realizes population coding effectively 
balances these two opposing tendencies in self-organization. 

4.2. Splitting ensembles and multiple ensembles: towards an account of 
dynamic, transient Markov boundary formation 

We move on to consider dynamic nature of Markov blanket forma
tion in response to changing external stimulation. Following the first set 
of simulations, we initialise neurons with uniform beliefs about their 
identity and introduce an external stimulus at T = 10. However, we now 
transform the external stimulus at T = 200. This change in stimulation 
causes a subpopulation of neurons to form incompatible beliefs and 
promotes the reorganisation of the superordinate ensembles. 

The results of these simulations are shown in Fig. 5 and 6, which 
differ only in the stimulus function used. As with the first set of 

Fig. 3. Morphogenesis under the free-energy principle. 
This figure depicts the numerical results reported in Friston et al. (2015), which were expanded upon by Palacios et al. (2020) and by Kuchling et al. (2019), and 
which are described further in the text. The bottom right panel depicts the target configuration and the movement of cells towards this configuration, and the central 
bottom panel depicts the signalling profile associated with each target position, which each cell uses to find its place. The top panels display the expectations of each 
cell as it moves towards the final position. The bottom left panel depicts the free-energy of the ensemble. Free-energy increases initially as each cell figures out what 
kind of cell it is, and then drops to the global minimum, which coincides with each cell finding its place in the target configuration. 
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simulations, these results show the emergence of two Markov blanketed 
systems around the initial stimulus. However, the results additionally 
demonstrate that once the location of the stimulus changes, the entire 
ensemble self-organizes anew. Specifically, a new Markov blanket or
ganises around the location of the new stimulus, which is a direct result 
of the evidence provided by the stimulus field. The new blanket forms on 
a slower time scale to that of the original, due to the fact that members of 
this new ensemble originally believed they were members of the alter
native ensemble (ψ3,4). Moreover, since the original external field has 
been removed, the corresponding neurons no longer receive evidence 
that they are states of the first ensemble (ψ1,2). Instead, they receive 
evidence that they are members of the opposing ensemble (ψ3,4), leading 
to the gradual dissolution of the first Markov blanket. Taken together, 

these results demonstrate the dynamic nature of Markov blanket for
mation when coupled to a dynamic external field. 

5. Discussion 

This paper has presented a model of neural and phenotypic repre
sentation developed using the active inference framework. One poten
tial advantage that our model offers is that it builds on the current neural 
process theory associated with active inference. The current process 
theory models single-neuron activity – which can also simply be equated 
with activity in populations of neurons – as more or less uniformly 
encoding posterior beliefs over states; moreover, it assumes that the 
synaptic connection patterns giving rise to the selective stimulus 

Fig. 4. The emergence of a neuronal packet. 
This figure depicts the first series of numerical results, which demonstrate the emergence of a Markov blanket in response to external stimulation – or coupling with 
an external field. (A) A visualisation of individual neurons at different times during the stimulation. The colour of a neuron represents its beliefs about membership in 
superordinate Markov blankets, while its location denotes its position in phase space. Black and white represent distinct Markov blankets; while line colour represents 
role in the Markovian partition (as internal or blanket states of the respective blanketed ensemble). At the start of the stimulation, neurons are initialised with 
uniform beliefs about their identity. At time step T = 10, an external stimulus is introduced (described in the main text). The external stimulation causes neurons to 
divide into two sets of internal and blanket states, organised around the stimulus. Over time, shared expectations about what each neuron should sense cause the 
neurons to divide into internal and blanket states. The internal states of the first ensemble (A) organise around the stimulus centre, while the blanket states of this 
ensemble organise around the edges of the stimulus. Of the remaining neurons, those which are in spatial proximity to the first ensemble (A), or are at the external 
boundary of the ensemble, form beliefs that they are blanket states of the second ensemble (B), while the other neurons form beliefs that they are internal states of 
that ensemble. The external stimulation thus induces the formation of two Markov blankets, the internal states of which are conditionally independent of one 
another, conditioned on the blanket states. (B) A visualisation of the signals emitted by neurons, averaged over the ensemble, for each location in phase space. In 
panels (A) and (B), the two axes represent the two abstract states of a two-dimensional state space. For simplicity, here, we assume this is a physical space where the 
agents move, with real values R2. (C) The ensemble-average evidence for each type of identity as a function of time. D) The stimulus function used in this simulation, 
where the white denotes the stimulus intensity. 
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sensitivity of a given neuron (or population) are formally specified as 
single entries in a likelihood matrix connecting sensory epithelia to 
those neurons. Heuristically, learning in these models is Hebbian, in that 
synaptic connections in the likelihood matrix are strengthened based on 
the strength of the activity of a neuron (or population), coincident with 
current observations. 

The key points are that – in extant models – no distinction is made 
between the function of a single neuron versus a population of neurons 
encoding posterior beliefs over states, or learning stimulus sensitivity, 
and that the activation levels that are modelled are single trajectories of 
values. Our results in this paper demonstrate that coherent activity in 
neural populations can arise in response to environmental perturbation 
and allow for population-wide tuning of synaptic connections during 
development – such that different populations of neurons could learn 
differential sensitivities to different stimulus features. This avoids 
possible concerns about modelling ‘grandmother cells’ – and may offer a 
means of redundant coding that allows a system to be robust to noise or 
injury. 

On a related note, the formalism used to model the emergence of a 
selective responses and specialisation (e.g., receptive fields) – as a free 
energy minimising process – may resolve arguments about whether 
probabilistic representations are represented by the sample density of 
population responses; i.e., a population code in the sense of Beck et al. 
(2008); Pouget et al. (2013); Zemel et al. (1998) – or whether the 
population response encodes the parameters or sufficient statistics of a 
probabilistic representation; i.e., an ensemble code. On the present ac
count, the two are the same thing. In other words, the quantity that 
matters – in terms of a representational or extrinsic information geom
etry – is the ensemble average of a population of neurons that constitute 
the internal states of a larger Markov blanket. 

A subtle, technical point here is that the extrinsic information ge
ometry that undergirds neuronal representation or encoding rests upon 
the conditional expectation or average of internal states, e.g., neurons 
that are internal to a larger Markov blanket. However, mathematically, 
this expectation is over time, not over internal states (Friston, 2020). To 
endow ensemble averages with a representational attribute, it then 

Fig. 5. Dynamic and transient packet formulation. 
This figure depicts the second series of numerical results, which demonstrate the dynamic nature of Markov blanket formulation in response to transient external 
stimulation. (A) A visualisation of individual neurons at different times during the stimulation. As in the first set of simulations, the neurons are initialised with 
uniform beliefs and at time step T = 10 an external stimulus is introduced (described in the main text). Following the results of the first simulation, the external field 
induces the formation of two Markov blanketed systems organised around the stimulus. At time step T = 200, the location at which the stimulus is applied is 
changed. This leads a subpopulation of neurons to receive evidence that is incompatible with their Bayesian beliefs, causing the dissolution of the original Markov 
blanket and the emergence of a new Markov blanket around the changed site of stimulation. These results demonstrate the dynamic and transient nature of Markov 
blanket formation when coupled to an external field. (B) A visualisation of the signals emitted by neurons at different times during the stimulation. Again, in panels 
(A) and (B), the two axes represent the two abstract states of a two-dimensional state space. For simplicity, here, we assume this is a physical space where the agents 
move, with real values R2. (C) The ensemble-average evidence for each type identity as a function of time. D) The stimulus function used in this simulation. As above, 
white denotes the stimulus intensity. Here, the stimulus changes location at 200 time steps. 
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becomes necessary to make the ergodic assumption that the average 
over a large number of internal states is the same as the time average. 
This only works if the internal states are exchangeable or can be treated 
as equivalent to each other. This simple observation means that there 
may be something quintessential about population codes; in the sense 
that they can only be attributes of ensembles, e.g., populations of neu
rons that play the role of internal states at a superordinate scale. 

This work presented here also demonstrates novel Markov blanket 
dynamics, opening the door to the modelling of transient boundary 
formation and reconfiguration – and dynamics in functional and effec
tive connectivity – consistent with a growing body of evidence sup
porting neural reuse (Anderson, 2014). Some systems have permanent 
boundaries that endure over time. This is the case, for instance, when the 
statistical boundaries of a system coincide with its physical ones, as in 
the case of a cell, where the statistical boundary is also hardwired into 
the physical structure of the system, as a literal barrier (a cell 

membrane). Other living systems, however, have more malleable 
boundaries, which dissolve and reform over time. These are systems like 
social systems (Veissière et al., 2020) and – arguably – neuronal packets 
(Yufik and Friston, 2016). When we wake up in our home, we are part of 
the intimate living unit; when we go to the office, we are part of another 
functional unit; and belonging to these groups constrains possible 
courses of action. This is also the case for neural ensembles, which seem 
to form and reform on the fly to match task requirements (Anderson, 
2014). For systems such as these, the relevant boundaries are functional 
precisely because they can change, as when one individual member 
moves to another group, when a group splits into two, or when two 
groups merge. The boundaries of such neural (or social) systems are 
intrinsically malleable, which allows for adaptive reconfigurations of 
groups and group membership. We propose that one can associate the 
changing architecture and membership of superordinate ensembles with 
inference dynamics that track different perceptual contents. 

Fig. 6. Dynamic and transient packet formulation (B). 
This figure depicts the final series of numerical results, which further demonstrates the dynamic nature of Markov blanket formation in response to external stimuli. 
These numerical results utilise a different set of set stimuli relative to Fig. 5. (A) A visualisation of individual neurons at different times during the stimulation. As in 
the previous simulations, neurons are initialised with uniform beliefs and at time step T = 10 an external stimulus is introduced. This again induces the formation of 
two Markov blanketed systems organised around the induced stimulus. At time step T = 200, the location at which the stimulus is applied is changed, and this again 
causes the location of Markov blankets to dynamically reorganise. Unlike in Fig. 5, the two stimuli overlap, meaning a subset of the population receives consistent 
evidence after the stimulus is changed. These beliefs of these neurons do not change, leading to faster blanket formation, relative to Fig. 5. (B) A visualisation of the 
signals emitted by neurons at different times during the stimulation. As above, in panels (A) and (B), the two axes represent the two abstract states of a two- 
dimensional state space. For simplicity, here, we assume this is a physical space where the agents move, with real values R2. (C) The ensemble-average evidence 
for each type identity as a function of time. D) The stimulus function used in this simulation. As above, white denotes the stimulus intensity. Here, the stimulus 
changes location at 200 time steps. 
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Note that fluctuating and itinerant Markov blankets are consistent 
with non-equilibrium steady-state, due to a separation of temporal 
scales that emerges with Markov blankets of Markov blankets (Friston, 
2020). In other words, any Markov blanket will change slowly from the 
point of view of Markov blankets at the scale below. For example, the 
Markov blanket of a city does not change hour by hour, as you commute 
from work to home. Similarly, the Markov blanket of your brain does not 
change second by second, as neuronal ensembles (i.e., packets or as
semblies) split and merge. The key thing – from the perspective of 
ensemble dynamics – is that various (attracting) states are revisited after 
a sufficient period of time. For example, you return home every evening. 
And your functionally specialised neuronal ensembles are activated 
every few seconds by characteristic patterns of sensory afferents. 

The framework that we develop here has implications that transcend 
neuronal dynamics. Indeed, the scheme offers a formal, generalizable 
account of phenomena that involve the formation of transient bound
aries in nested systems. The ensuing formalism provides a generic and 
general mechanism by which coordinated movement in living creatures 
might act as an effective means to model or represent the causal situa
tions, environments, and predicaments in which living creatures find 
themselves. 

Group foraging behaviours, for instance, obey similar principles, 
where the coordinated patterns of movement in a direction count as 
accumulated evidence for specific hypotheses about the structure of the 
environment. This is the case, for instance, when ants leave and follow 
pheromone trails. In this setup, the more ants that follow a given path, 
the more evidence each provides to its conspecifics for the belief that 
there is something salient (a food item or danger) at the end of the trail 
(Jackson et al., 2004). 

We suggest that it may be possible to extend the modelling strategy 
developed above to account for the ways in which social and cultural 
group membership functions as a form of inference about relevant causal 
structure in the human environment. For instance, political affiliation 
seems to track one’s beliefs and attitudes regarding some domains, such 
as the reality of human-made climate change. One might speculate that 
for many human agents, the individual inference problem (namely, to 
answer for oneself the question, ‘Do I believe that human-made climate 
change is real?’) is solved by outsourcing the process of generating a 
working guess (computing the posterior) to one’s close social circle, 
often by figuring out and learning those things believed and valued in 
one’s social ingroup (Kirmayer and Ramstead, 2017; Ramstead et al., 
2016; Veissière et al., 2020). 

Another, less politically contentious example is the optimal foraging 
behaviour in ant colonies discussed above. Indeed, ant foraging behav
iour might be modelled as a kind of group inference, where each 
foraging ‘arm’ of the ant population (enshrouded behind its own Markov 
blanket, here determined by chemical pheromone gradients) can be cast 
as representing a distinct hypothesis that ‘there is food here’, or that 
‘there is a dangerous threat here’, and so on. One advantage of applying 
this formalism to such animal models – instead of human systems – is 
that they are comparatively easier to study, since they are simpler to 
extensively (and ethically) measure and since their (relatively less 
complex) behaviour is easier to model. Work on ant foraging and on 
other simple foraging systems, such as the multiple search fronts of 
foraging slime mould populations, routinely employs modelling strate
gies amenable to active inference (Chandrasekhar et al., 2018; Reid 
et al., 2012). Behavioural data regarding the decisions made by those 
simple systems is equally reproducible in silico. 

Finally, one might be able to extend the above population coding 
strategy to hierarchically nested representational capacities. In such a 
scheme, neuronal packets at the superordinate level would engage in 
exactly the same kind of coordinated inferential dynamics, inferring 
their membership identity in yet a higher level of self-organization. This 

could lead from a theory of neural representation to a theory of con
ceptual- or semantic-level processing (Yufik, 2019; Yufik and Friston, 
2016) – as opposed to the perceptual processing formally modelled here 
– where neuronal packet formation at several nested scales in the brain 
explains the perception and multimodal integration of the perception of 
objects. Indeed, current formulations of understanding and abstraction 
rest upon deep generative models with relational structure that neces
sarily call upon Markov blankets to separate hierarchical levels; e.g., 
Friston et al. (2017a), 2017b. The time and context sensitive nature of 
Markov blankets – considered in this work – may reflect the context 
sensitive, state dependent, nonlinear generative models that are neces
sary for self-evidencing. 

6. Conclusion 

The aim of this paper was to develop a generic and generalizable 
model of the representational capacities of living creatures by using the 
resources of the free-energy principle and its corollary process theory, 
active inference. We developed an account of neuronal and, more 
broadly, phenotypic representation. We argued that the representational 
capacities of living creatures are a consequence of their Markovian 
structure and action in nonequilibrium regimes to counter the dissi
pating effects of random fluctuations and environmental itinerancy. We 
demonstrated in silico that information about external stimuli can be 
encoded by groups of neurons bound by a Markov blanket, thereby 
providing evidence for the neuronal packet hypothesis that inherits from 
theories of neuronal groups and assemblies (Buzsaki, 2010; Edelman, 
1993, 1998; Hebb, 1949; von der Malsburg, 1981). Our numerical 
proof-of-principle simulations showed that self-organizing ensembles of 
particles that share the right kind of probabilistic generative model are 
able to encode recoverable information about a changing sensorium – 
and that they can dynamically evince patterns of functional 
self-organization that adapt to the demands of the situation. This model 
of neuronal packet formation thus entails a modest form of representa
tional capacity and opens up important directions for future work. 

7. Software note 

The Python code for this paper is available at https://github.com/al 
ec-tschantz/packets. To recreate the figures four, five and six, please run 
packets_figure_01.py, packets_figure_02.py and packets_figure_03.py, 
respectively. Further information on recreating the figures and data are 
available in the linked repository. This code is based on a generalised 
filtering scheme written in the SPM software for the MATLAB environ
ment; namely, the DEM_cells.m and DEM_cells_cells.m scripts, which 
implement the self-organisation of a single ensemble Markov blanketed 
ensemble and an ensemble of such ensembles, respectively. The original 
routines are available at http://www.fil.ion.ucl.ac.uk/spm. 
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