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Abstract

Objective: To screen for immune genes that play a major role in Kawasaki

disease and to investigate the pathogenesis of Kawasaki disease through

bioinformatics analysis.

Methods: Kawasaki disease‐related datasets GSE18606, GSE68004, and

GSE73461 were downloaded from the Gene Expression Omnibus database.

Three microarrays were integrated and standardized to include 173 Kawasaki

disease samples and 101 normal samples. The samples were analyzed using

CIBERSORT to obtain the infiltration of 22 immune cells and analyze the

differential immune cells in the samples and correlations. The distribution of

the samples was analyzed using principal component analysis (PCA).

Immune‐related genes were downloaded, extracted from the screened samples

and analyzed for differential analysis (different expression genes [DEG]) and

weighted gene co‐expression network analysis (WGCNA). We constructed

coexpression networks, and used the cytohobbe tool in Cytoscape to analyze

the coexpression networks and select the immune genes that played a key role

in them.

Results: Immune cell infiltration analysis showed that B cells naive, T cells

CD8, natural killer (NK) cells activated, and so forth were highly expressed in

normal samples. T cells CD4 memory activated, monocytes, neutrophils, and

so forth were highly expressed in Kawasaki disease samples. PCA results

showed a significant difference in the distribution of normal and Kawasaki

disease samples. From the screened samples, 97 upregulated and 103 down-

regulated immune‐related genes were extracted. WGCNA analysis of DEG

yielded 10 gene modules, of which the three most relevant to Kawasaki disease

were red, yellow, and gray modules. They were associated with cytokine

regulation, T‐cell activation, presentation of T‐cell receptor signaling path-

ways, and NK cell‐mediated cytotoxicity. CXCL8, CCL5, CCR7, CXCR3, and

CCR1 were identified as key genes by constructing a coexpression network.
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Conclusion: Our study shows that we can distinguish normal samples from

Kawasaki disease samples based on the infiltration of immune cells, and that

CXCL8, CCL5, CCR7, CXCR3, and CCR1 may play important roles in the

development of Kawasaki disease.
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1 | INTRODUCTION

Kawasaki disease (KD), also known as Kawasaki syn-
drome or mucocutaneous lymph node syndrome,1 is an
acute febrile rash pediatric disease, majorly presenting
with systemic vasculitis lesions. It is more prevalent in
children under the age of 5 years and males but rare in
adults and infants under 3 months old.2 Clinical mani-
festations of KD include fever with oropharyngeal
changes, edema of the hands, and feet and enlarged
lymph nodes.3–5 KD is more often acute (fever > 38.5°C)
or subacute, where the latter develops from acute cases
within just 2 weeks of no treatment. Studies show that
KD often affects the small and medium‐sized arteries,
particularly coronary arteries,2 therefore if untreated, it
can lead to serious complications such as coronary an-
eurysm, thrombosis, stenosis, and even sudden death.6 In
fact, up to 25% of patients with KD are at risk of severe
coronary artery inflammation and aneurysm.7 Mean-
while, KD is currently one of the most common causes of
acquired heart disease in children in developed coun-
tries.8 At the moment, KD is managed using high routine
doses of intravenous immunoglobulin (IVIG), which re-
duces the risk of coronary aneurysms in these patients by
3%–6%.9,10 Unfortunately, 10%–20% of patients with KD
still experience persistent high fever and relapse after
receiving IVIG.11 In addition, there is currently no gold
standard for the diagnosis of the disease. Presently, di-
agnosis of KD is based on four out of five symptoms;
fever for ≥5 days with strawberry tongue and cracked
lips, conjunctivitis of both eyes, enlarged lymph nodes in
the neck, edema of the extremities, and general rash.12

Ancillary examinations show elevated white‐blood cell
and platelet count, increased C‐reactive protein, ac-
celerated sedimentation of blood cells among others in
KD.12 However, these clinical manifestations are not al-
ways apparent, which delays timely diagnosis and treat-
ment of the disease.

Even though molecular biomedicine and in‐depth
research have strengthened our understanding of KD, the
main cause of the disease remains elusive.13,14 In some
quarters it is believed KD is a systemic vasculitis,

whereas others believe it is a combination of infection
and immune reaction triggered by specific pathogens
attaching on the coronary arteries. KD is also thought to
be an autoimmune disease arising from autoimmune
dysregulation.15–17 Accordingly, immune genomics can
give an insight into the molecular events leading to its
development, in particular, immune cell infiltration.
Findings of this study will create a foundation for the
diagnosis and treatment of KD, as well as deepen our
understanding on the etiology of the disease.

2 | METHODS

2.1 | Data acquisition and processing

GSE18606,18 GSE68004,19 and GSE7346120 immune gene
expression datasets, comprising of 101 and 173 blood
samples from the respective normal and KD individuals
were downloaded from the Gene Expression Omnibus
database (http://www.ncbi.nlm.nih.gov/geo/). The data
were cleaned using Limma21 and SVA22 packages in R
software (3.61).

2.2 | Infiltration of immune cells in the
samples

The immune cell expression profile between KD and
normal tissues were analyzed using CIBERSORT tool,23

based on messenger RNA‐Seq data of the cells. Overall,
we analyzed the relative abundance of 22 types of im-
mune infiltrating cells, including natural killer (NK)
cells, T cells, B cells, and macrophages. Statistical sig-
nificance was set at p< .05.

2.3 | Principal component analysis

Principal component analysis (PCA) was performed to
realine the dimensionality of the 22 types of immune
infiltrating cells, while still retaining key information.
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2.4 | Immune‐response‐related gene
expression profiles

Expression profiles of 2498 genes related to immune in-
filtrating cells were downloaded from ImmPort (https://
www.immport.org/home). The genes included those re-
lated to antigen‐presenting cells, chemokines and their
receptors, cytokines and their receptors, interferons, and
interleukins. Comparative expression of immune cells
between normal individuals and those with KD was
evaluated using the Limma package21 in the R software.

2.5 | Screening of differentially
expressed immune‐response‐related genes

After standardizing the data using Limma,21 we identi-
fied differentially expressed genes related to immune
response during KD. Statistical significance for different
expression genes (DEGs) was set at a change factor

greater than onefold (|fold change|≥ 1) and the corrected
p value false discovery rate≤ 0.05.

2.6 | Construction of coexpression
networks

Differentially expressed immune cells in 173 KD and
101 normal samples were analyzed using weighted
gene co‐expression network analysis (WGCNA) package
of R software (https://cran.rproject.org/web/packages/
WGCNA/index.html), based on Pearson's correlation
matrix; amn = |cmn|β (where amn is the closeness be-
tween gene m and n, cmn is the Pearson's correlation
and β is the soft‐power threshold). WGCNA was majorly
utilized in the construction of the gene coexpression
network, identification and analysis of key disease‐
associated modules, and construction of the protein
network together with identification and enrichment
analysis of key module hub nodes.

FIGURE 1 (A) Proportionate microarray analysis of the 22 immune cells in serum of individuals with or without Kawasaki disease. (B)
Heat map for differential expression of immune cells in the samples. (C) Correlation between immune cells. (D) Immune cell infiltration
(*p< .05, **p< .01, ***p< .001)
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2.7 | Gene Ontology and Kyoto
Encyclopedia of Genes and Genomes
enrichment analyses

Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analyses were per-
formed using clusterProfiler package in R software.24

Significance of differentially expressed genes in each
signaling pathway was analyzed based on the hypergeo-
metric distribution at p< .05.

2.8 | Construction of coexpression
networks of KD immune‐related genes

Key genes in coexpression networks were identified
using WGCNA, and were then used to construct the
protein–protein interaction (PPI) network. Meanwhile
differential coexpression network of immune‐related
genes was constructed using Cytoscape. The sig-
nificance of coexpression was analyzed using the Cyto-
hubbe tool.

FIGURE 2 (A) Principal component analysis distribution of immune cells in normal and Kawasaki disease (KD) serum samples. (B)
Volcano plot for differential expression of immune‐related genes in KD and normal tissues (blue dots represent downregulated genes
whereas the red ones represents upregulated genes). (C) Outliers in the data were detected by clustering of samples. (D) Scale‐free fit indices
obtained by soft threshold analysis of the topological network
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3 | RESULTS

3.1 | Immune cell infiltration of
samples

CIBERSORT analysis identified 173 KD and 101 nor-
mal samples exhibiting ideal immune cell infiltration
(p < .05). As shown in Figure 1A, 22 immune cells
infiltrated significantly different between the two sets
of samples. In particular, monocytes, neutrophils, and
T cells CD8 were the most significant differently ex-
pressed cells between the samples (Figure 1B). Corre-
lation analysis revealed a strong negative correlation
between CD8+ T cells and neutrophils, monocytes and
M0 macrophages. On the other hand, eosinophils dis-
played a strong negative correlation with M2 macro-
phages, but positively correlated with M0 macrophages

(Figure 1C). Figure 1D show 15 immune cells differ-
entially expressed between normal samples and KD
samples. Activated CD4+ memory T cells, gamma and
delta T cells, monocytes, M0 macrophages, activated
dendritic cells, activated mast cells, neutrophils, B cells
naïve, plasma cells, CD8+ T cells, CD4+ resting mem-
ory T cells, resting and activated NK cells were all
upregulated in KD. On the other hand, M2 macro-
phages and resting NK were overexpressed in normal
samples.

3.2 | PCA of the samples

PCA further validated the clear distinction between in-
dividuals with or without KD with regard to 22 immune
infiltration cells (Figure 2A).

FIGURE 3 (A) Cluster analysis of the differentially expressed immune‐related genes data. (Each color represents a module in the gene
coexpression network constructed by weighted gene co‐expression network analysis [WGCNA]). (B) Scale‐free fit index of 0.88 when the soft
threshold β= 20. (C) Distribution of each WGCNA module. (D) The relationship between each module with disease, age, and sex

NIE ET AL. | 161



3.3 | Screening of immune‐related
genes

Analysis of immune‐related genes uncovered 97 and 103
genes that were respectively upregulated and down-
regulated between individuals with or without KD
(Figure 2B).

3.4 | Construction of gene coexpression
network

Differentially expressed immune‐related genes were
identified using WGCNA (Figure 2C). Cells were clus-
tered based on the β vaue, derived according to “sft
$powerEstimate.” At β= 20, KD and normal tissues

(Figure 2D) were classified into 10 modules (Figure 3A).
At this threshold, the scale‐free topology was 0.88
(Figure 3B). The distribution of modules is shown in
Figure 3C.

3.5 | Module linkages and the
relationship between WGCNA modules
and clinical features

We constructed a graph depicting the relationship be-
tween different modules and clinical characteristics. KD
was strongly associated with three modules; arbitrarily
named red, yellow, and gray (Figure 3D). Functional
enrichment analysis showed the red (Figure 4A,B) and
gray modules (Figure 4C,D) were mainly associated with

FIGURE 4 (A) Histogram for Gene Ontology (GO) enrichment analysis of red module genes. (B) GO enrichment analysis dot plot for
red module genes. (C) GO enrichment analysis dot plot for gray module genes. (D) GO enrichment analysis dot plot for gray module genes
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proliferation and activation of T lymphocytes. On the
other hand, the yellow module was mainly associated
with mast cell response (Figure 5A,B). Overall, connec-
tion analysis revealed an interlinkage among the three
modules (Figure S1).

3.6 | PPI networks

PPI network of the red, yellow, and gray modules
(Figure 5C) identified CXCL8, CCL5, CCR7, CXCR3, and
CCR1 as the key genes (Table 1) mediating the devel-
opment and pathogenesis of KD. As shown in Figure 5D,
the higher the degree value of the node, the darker the
color and the larger the diameter.

FIGURE 5 (A) Histogram for Gene Ontology (GO) enrichment analysis of yellow module genes. (B) Dot plot for GO enrichment
analysis of yellow module genes. (C) Network construct of Kawasaki disease (KD) immune‐related genes. (D) Core immune‐related genes
associated with KD (the darker the gene, the higher the score)

TABLE 1 Key gene score

node_name MCC Type Category

CXCL8 2.11E+13 Up Antimicrobials

CCL5 2.11E+13 Down Antimicrobials

CCR7 2.11E+13 Down Antimicrobials

CXCR3 2.11E+13 Down Chemokine_Receptors

CCR1 2.10E+13 Up Cytokine_Receptors

C3AR1 2.09E+13 Up Cytokine_Receptors

FPR2 2.09E+13 Up Cytokine_Receptors

C5AR1 2.09E+13 Up Chemokine_Receptors

CXCL16 2.09E+13 Up Cytokines

CCR4 2.09E+13 Down Cytokine_Receptors

Abbreviation: MCC, maximal clique centrality.
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4 | DISCUSSION

KD is an acute self‐limiting systemic vasculitis, first de-
scribed by Kawasaki in 1967.25 Pathologically, KD affects
coronary arteries, and at the moment, it is the most com-
mon cause of heart disease in children in developed
countries.26 Unfortunately, the incidence of the disease is
increasing in Japan.27 Though an old disease, the definite
cause of KD is still unknown, 50 years after its discovery.
The diagnosis of KD is confounded by in apparent clinical
signs and symptoms. Accordingly, it is imperative to
broaden our research into probable diagnosis approaches of
KD, including profiling the expression of immune genes.

In this study, we analyzed the infiltration profile of
22 immune cells in 173 KD and 101 normal tissues based
on 3 publicly available datasets. Monocytes, M0 macro-
phages, and neutrophils were significantly overexpressed
in KD tissues. This immune profile was, in turn, asso-
ciated with acute KD clinical symptoms such as periodic
fever, lymphangitis, and oropharyngeal mucositis.28–30

Activated memory CD4+ T cells, delta, and gamma
T cells also displayed a similar trend, consistent with
findings of Abe et al.31,32 On the other hand, the pro-
portion of B cells naïve, T cells, CD8, and NK cells
decreased significantly in KD. Although the under-
expression of naïve B cells in KD has been demonstrated
in several studies,33–35 the precise mechanism underlying
this phenomena in the disease remains elusive. Expres-
sion profiles of T cells CD8 and NK cells are closely re-
lated to the progression of KD. Indeed Popper et al.36

demonstrated that T cells, CD8, and NK cells stick on the
arterial walls or bind endothelial cells in acute phase of
KD, but returned to normal circulation after recovery.
Herein, PCA further demonstrated a clear distinction
between KD samples and normal tissues (Figure 2A).
Therefore, we performed WGCNA analysis, which stra-
tified immune‐related genes into 10 modules. Three of
them, arbitrarily named red, yellow, and gray were clo-
sely associated with KD. GO and KEGG analyses further
revealed the three modules were associated with T‐cell
responses, consistent with our previous immuno‐
analysis. Network constructs of the red, yellow, and gray
modules identified CXCL8, CCL5, CCR7, CXCR3, and
CCR1 as the major immune genes involved in KD pa-
thogenesis. One previous study in North India showed
that mutations in CCL5‐403A genes are associated with
coronary artery injury in children with KD.37 Meanwhile,
expression of CCR7‐associated Treg cells peak in the
acute and subacute phase of KD but declines during re-
covery. The self‐limiting nature of vascular inflammation
during KD is, in fact, attributed to overexpression of
Tregs.38 On the other hand, CXCR3, a G protein‐coupled
receptor, is often associated with chemotaxis of immune

cell and polarization of Th1 cells. Meanwhile, CXCL9,
CXCL10, CXCL11 are the most important CXCR3 ago-
nists. In a related study, Ko et al.39 showed that CXCL10
is significantly upregulated in acute KD, but is none-
theless, a positive prognostic factor of the disease.
CXCL10, also a receptor for CXCR3, is also shown to be
activated in the acute phase of KD. Independent studies
have shown that the CXCL10/CXCR3 axis plays an ex-
tremely important immunomodulatory role in ischemic
heart disease, myocarditis, leukoplakia, nonischemic
heart failure, and KD, thus modulation of this axis is a
potential immunotherapy target for these diseases.40 Al-
though there are no studies on the role of CXCL8 and
CCR1 in KD, these genes play important roles in
immune‐related diseases such as vasculitis, Takayasu
arteritis, glomerulonephritis, and granulomatosis with
polyangiitis (Wegener's).41–44 Moreover, CCR1 is prog-
nostic factor in palliative inductive therapy for vasculi-
tis.45 Taken together, we believe CXCL8, CCL5, CCR7,
CXCR3, and CCR1 are the key immune‐related genes
that participate in the development and pathogenesis of
KD. Regarding limitations, this study lacked experi-
mental validation. However, we shall undertake in‐depth
follow‐up studies of the screened genes to establish the
more precise mechanism underlying their involvement
in the development and pathogenesis of KD.

5 | CONCLUSION

CXCL8, CCL5, CCR7, CXCR3, and CCR1 are the major
genes involved in the development and pathogenesis of
KD. As such, they are potential targets in the diagnosis
and treatment of the disease.
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