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Abstract

Abundance and distribution of earthworms in agricultural fields is frequently proposed as a

measure of soil quality assuming that observed patterns of abundance are in response to

improved or degraded environmental conditions. However, it is not clear that earthworm

abundances can be directly related to their edaphic environment, as noted in Darwin’s final

publication, perhaps limiting or restricting their value as indicators of ecological quality in

any given field. We present results from a spatially explicit intensive survey of pastures

within United Kingdom farms, looking for the main drivers of earthworm density at a range of

scales. When describing spatial variability of both total and ecotype-specific earthworm

abundance within any given field, the best predictor was earthworm abundance itself within

20–30 m of the sampling point; there were no consistent environmental correlates with

earthworm numbers, suggesting that biological factors (e.g. colonisation rate, competition,

predation, parasitism) drive or at least significantly modify earthworm distributions at this

spatial level. However, at the national scale, earthworm abundance is well predicted by soil

nitrate levels, density, temperature and moisture content, albeit not in a simple linear fash-

ion. This suggests that although land can be managed at the farm scale to promote earth-

worm abundance and the resulting soil processes that deliver ecosystem services, within a

field, earthworm distributions will remain patchy. The use of earthworms as soil quality indi-

cators must therefore be carried out with care, ensuring that sufficient samples are taken

within field to take account of variability in earthworm populations that is unrelated to soil

chemical and physical properties.

Introduction

The study of the spatial variation in a species abundance has often resulted in significant

insights into their biology and ecology, e.g. [1]. This has not been the case in pasture earth-

worms, where the reasons for the spatial patterns of species abundance observed within any
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given field still remain unclear (S1 Table). The apparent random distribution of earthworms at

the field scale has been the object of study over many years. Charles Darwin’s final publication

was a detailed study of earthworms [2]. Among other insights he commented that “even on

the same field worms are much more frequent in some places than in others, without any visi-

ble difference in the nature of the soil”, though later in the same section he suggests that soil

moisture and compaction were likely important factors. This is important because it is widely

agreed that earthworms, as ecosystem engineers, are fundamental in driving a range of soil

processes that give rise to many ecosystem services, particularly in agriculture, e.g. [3–5].

Thus, understanding the distribution of earthworms may allow us to manage the services that

they provide.

It is because earthworms drive soil processes that contribute to ecosystem services that it is

frequently suggested that earthworms are good indicators of a healthy agricultural soil; earth-

worm counts feature in a number of schemes for assessing the ecological quality of the soil and

farming environment, e.g. [6–11]. In field surveys and controlled laboratory experiments

earthworms are known to respond to a variety of key environmental drivers such as pH, tem-

perature, soil texture, soil moisture and soil density e.g. [12] and the spatial distribution of

earthworms must in some way represent an integrated response to these, to climatic gradients

more broadly which, for example combine effects of temperature and rainfall, e.g. [13,14] and

other, environmental variables, for example plant species present [15]. This raises the prospect

that spatially resolved measures of earthworm diversity and abundance may provide a good

approximation both to soil health/quality and also the ecosystem services delivered by them.

A variety of studies investigating controls on the distributions of earthworms in fields have

reached similar conclusions to those of Darwin (S1 Table). In studies using variograms, Spatial

Analysis by Distance Indices (SADIE) methods and other statistical methods involving corre-

lations and comparisons of sampling sites and their physical and chemical properties, earth-

worm distribution has been found to be spatially correlated but also patchy in both arable and

pasture systems with typical patches of earthworms/spatial dependence of earthworm numbers

on the scale of 20–60 m. The evidence from these studies is that these patches are either unre-

lated to measured soil properties or correlate with particular site specific soil properties with

no consistency across the studies. This raises concerns about the robustness of using earth-

worm abundance as an ecological indicator of soil quality.

The above studies were carried out at the scale of thousands to tens of thousands of square

metres within fields/plots. Despite being carried out on different land uses and often in differ-

ent climatic zones on different continents they all report the patchy distribution of earth-

worms. At these scales patchiness can be generated in a number of ways: 1) earthworms

moving to patches of soil of “good” quality, 2) self-regulation with a limiting resource decreas-

ing in response to increased earthworm density leading to a decrease in survival/fecundity tied

to low mobility such that earthworms are unable to migrate sufficiently rapidly to resource-

rich areas when limiting resources fall below a critical level [16], 3) reproduction being more

rapid than dispersion [17], 4) predation resulting in significant reductions in the prey popula-

tion that can not be balanced by reproduction before the predator moves to a new prey-rich

area [18] 5) complex interactions with parasites which cause a reduction in fecundity or an

increase in mortality in their hosts and the relative mobilities of the parasites and hosts [18],

and 6) passive dispersal by humans [19] (note here we are not considering the situation

where earthworms are invasive species). All but the first of these causes would suggest that

earthworms are not necessarily a good indicator of soil quality. At a larger landscape scale,

studies suggest that earthworm numbers increase with decreasing management intensity

across different land uses (e.g. arable < pasture < woodland, [20]; pasture< young spruce

plantation < old beech coppice, [21] and that changes happen relatively rapidly, within three
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years [20]. Schmidt and Briones’ recent meta-analysis indicates that most studies on arable

fields show that a reduction in tillage of arable fields leads to an increase in earthworm abun-

dance [22]. However, studies on the effects of varying levels of intensification within other

land uses, such as pasture which is the topic of the current study, are still lacking.

The existing work on controls on earthworm distributions suggest to us that although

earthworm distributions are undoubtedly integrators of soil properties and that although

earthworms are responsible for soil processes that give rise to ecosystem services, their use as

soil quality indicators is still far from straightforward. To address this issue, we conducted a

spatially nested survey of earthworm abundances in pasture fields managed at varying levels of

intensity across Britain, at farms located across the dominant national climatological gradients

(temperature and rainfall). We used our data to test the hypotheses that at a field scale the spa-

tial variation of earthworm abundance is random whilst at a national scale the variation in

earthworm abundance is driven by climate-related gradients in temperature and rainfall that

will be reflected in soil temperature and soil moisture values.

Methods

Site locations

After obtaining permission from the farm owners, we surveyed four fields at each of seven

dairy farms across Britain (Fig 1; grid co-ordinates for all sampling points are given in S5

Table). Farms were chosen on the basis of previous contact with dairy farmers who were will-

ing to allow sampling on their pasture fields, the availability of at least four contiguous fields

per farm for sampling and to give locations across the UKs north-south temperature and east-

west rainfall gradients. Fields ranged in size from 0.97 to 13.34 ha with a mean size of 3.94 ha

(full details are given in S2 Table). For each farm and sample location we obtained geology and

predominant soil groups from the Soil surveys of England and Wales [23], and of Scotland,

and aspect, elevation and slope from a digital elevation map [24]. Within each farm we sam-

pled four fields covering a gradient of land management intensity, from unimproved rough

grazing to improved pasture; fields had been in pasture management for at least three years,

and the majority for far longer (S2 Table). Farmers were asked to rank the four sampled fields

in terms of management intensity from “lowest” to “low to medium” to “medium to high” to

“highest” as part of the process of field selection for sampling. We purposely did not define

“management intensity” in terms of a metric for the farmers to rank their fields against as one

single metric may not be relevant to all farms; instead we relied on the famers expert judge-

ment and experience with our choice of statistical methods (see below) being driven by the

need to be able to incorporate such qualitative measures into our analysis. The classes were

determined by conversation with the land owner/farmer and are relative measures within each

farm but not between farms. Within each field, we characterised the spatial distribution of

earthworms by an intensive spatial sampling scheme where we measured earthworm abun-

dances and soil properties.

Earthworm sampling and identification

Sampling was carried out 7th October– 15th December, 2013. We chose these dates as earth-

worm abundance is less likely to be detrimentally affected by seasonal weather conditions in

late autumn; in the hotter, drier months (and the coldest months) earthworms either die or

aestivate e.g. [25] which would hinder investigating controls on their distribution. Work con-

ducted for several years in the New Forest has shown that this is the optimal period to sample

earthworms [25]. During the sampling campaign none of the fields froze and all had active

worms throughout the whole of the sampling period. There may have been overnight frosts
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towards the end of the sampling period but if there were they did not noticeably affect earth-

worm activity. We sampled earthworms in pits and preserved them in 80% industrial methyl-

ated spirits. Adult individuals (with a clitellum) were identified (by DTJ and VJB) to both

species level following [26] and [27] and functional group. Juvenile individuals were grouped

into functional group (endogeic, epigeic or anecic species) based on colour, size and external

morphology [28]. An average of 18.9 ± 1.4 (std. dev, n = 28) pits were sampled per field with

the maximum (and target) number of pits being 20 and the minimum 16. When fewer than 20

pits were sampled this was due to time constraints; typically we had three days sampling time

at each farm in an attempt to ensure all the samples collected from a single farm were collected

under similar environmental conditions. Within each field the pits were positioned using a

random number generator that ensured the distances separating any one pit from every other

pit in the same field could vary from a few meters to> 100 m depending on the overall size of

Fig 1. Sampling locations in the UK and their relationship to average annual rainfall and average annual temperature,

illustrating the temperature and soil moisture gradient used to help determine the farms sampled. Sampling was carried out at

SRUC, Craibstone Aberdeen (CBS), Torr Organic, Dumfries (TOR), Skeffling, Yorkshire (SKF), Loddington, Leicester (LOD),

Manor Farm, Somerset (MAN), Elm Farm Berkshire (ELM) and Swanage, Dorset (DST). Figure created by Ron Corstanje,

University of Cranfield and released under CC By 4.0 License.

https://doi.org/10.1371/journal.pone.0241945.g001
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the field. The sampling sites were allocated randomly to ensure no spatial bias, coverage across

the field and to ensure that sufficient separation distance was sampled for an effective estima-

tion of the model variogram (see below). Pits falling within 5 m of the field boundary were

reassigned a new random position, as field margins are known to have a different invertebrate

assemblage from those in the middle of the field [29]. The geolocation of each pit was recorded

with a Garmin eTrex 10 GPS. At each pit temperature at 5 cm and 10 cm depth was measured

with a soil thermometer and averaged. Four moisture readings were made using a Delta-T

Moisture metre (Delta-T Devices, Cambridge, England) with attached Theta probe and then

averaged. Each soil pit had a surface area of 20 cm x 20 cm. The earthworms were sampled

using the well-established method of hand sorting and mustard extraction, e.g. [30]. The soil

monolith (pit) was dug out with a spade to a depth of 10 cm and placed on a plastic sheet.

Immediately upon removing the soil 2 litres of mustard solution (12g Colman’s mustard pow-

der in 1 L of water) were poured into the soil pit. The extracted soil and plant roots were

searched by hand and all earthworms collected. Any earthworms emerging from the bottom of

the pit during the 15 minutes following the application of the mustard solution were collected

separately. Vegetation cover as % of covered soil was assessed for several broad functional type

groups around the vicinity of the pits using the Daubenmire counting method [31].

Soil sampling and analysis

Two soil samples were collected from each soil pit during the earthworm sampling. One sam-

ple was collected from midway down the side of the pit wall using a 95 cm3 density ring and

used for bulk density and subsequent measurements on dry soil. The other, c. 50 g, was taken

from the homogenised soil that had been excavated from the pit and sorted through for earth-

worm collection; this soil was used for measurements that required field moist soil. We mea-

sured a wide range of explanatory variables from each pit. Field moist subsamples of each soil

sample were stored at 4˚C and analysed for microbial activity using fluorescein diacetate

hydrolysis within one week of sampling [32]. Soil density samples were oven dried and

weighed to calculate dry bulk density and soil moisture content. The soil samples were then

sieved to< 2mm and analysed for particle size distribution using a Malvern Mastersizer 2000.

pH was measured in water using a 10g:25mL ratio [33]. Total carbon and total nitrogen con-

tent (%C and %N) of soil was measured by combustion using a Vario MacroElemental (CN)

Analyser. Extractable nitrate (nitrate-N) and ammonia (ammonia-N) by 1M KCl and extract-

able phosphate (phosphate-P) by 0.5M NaHCO3 were analysed by autoanalyser [34]. Bulk

composition was determined by aqua regia digest [35] and analysis by inductively coupled

plasma–optical emission spectrometry (ICP-OES). Detection limits were calculated for solu-

tion analyses by repeated measurements of procedural blanks and precision (which was

generally > 95%) by repeated measurements of selected solutions (S3 and S4 Tables). For the

aqua regia digests recoveries were> 95% for analysis of the San Joaqiun NIST SRM 2709a.

Statistical analysis

Our approach comprises an initial set of national (across all farms) and farm level models

using Bayesian Belief Networks [36] to determine which are the key factors in determining the

total earthworm abundance. Whereas we used Bayesian methods when we were dealing with

complex mixtures of expert knowledge, categorical and continuous data we subsequently

modelled the species responses to these key factors using generalised linear models as species

response curves are more straightforward and can be analysed using standard approaches. At

the farm scale, across fields, linear models of coregionalization (LMCR) [37]) were then used

to describe both the spatial variation in total abundances and their possible spatial co-
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dependency to the measured soil properties at the field to farm scale. Here we report the results

for all earthworms. We also carried out equivalent analysis for individual earthworm ecotypes

(anecic, endogeic and epigeic); these results are presented in the Supplementary information

rather than the main text as our key results and conclusions were the same as for the total data

set.

Bayesian Belief Networks (BBN) are a set of probabilistic influence networks that are

increasingly being used in ecological studies, as they are well-suited to complex data sets and

incomplete knowledge, which are common to ecological systems, [36,38]. The BBN modelling

was conducted in Netica [39]. The influence network for the BBN included data measured at

each sample pit location during field work (soil properties, vegetation cover), field manage-

ment intensity as described by the local farmers/landowners, and landscape attributes (soil

type, geology, aspect and slope) obtained as stated above from the LandIS database (Soil Survey

of England and Wales - http://www.landis.org.uk) and from a digital terrain model (repre-

sented in Fig 1), and resulting in a range of landscape variables (Elevation, Aspect, Slope, Elev,

Soil association, soil unit, soil description, dominant geology, dominate soil series in the asso-

ciation, associated soil series in the associate, historical crop/land-use) in LandIs with the total

earthworm abundances as the response variable. Conditional probabilities describe the rela-

tionships between the sample pit location, farm and landscape level factors and the earthworm

abundances. These were obtained through processing individual cases, where each case repre-

sented a point observation of abundance and factor values found at a given location. All nodes

in the BBN models were assigned five states, based on round values and distributions for pre-

dictors, and equal intervals for the abundance predictions. The conditional probabilities pro-

duced for the five levels of abundance were visualised as a heat map using R version 3.2.2 [40].

The resultant BBN structure is shown in the Supporting Information (S1 Fig).

For the species response models we undertook curve fitting for individual earthworm spe-

cies using generalized linear modelling on the entire dataset (using CANOCO 5 [41], which

has a generalized linear model curve fitting module). We used the count number for each spe-

cies in each monolith as the dependent variable and the chemical and soil variables from the

same monolith as the independent variables. We fitted null, linear and quadratic models and

calculated AIC and F-values for each model for each species and chose the model in each case

that had the lowest AIC and highest F. A Poisson error distribution was used for each species-

level model with a log link function, as was appropriate for count data. These were not mixed

model as we were interested in patterns across the whole dataset, and we did not use or quote

the inevitably over-inflated P-values.

Linear models of coregionalisation. The sampling design at the farm level was such that

spatial variation of earthworm abundance can be described using variograms, and its spatial

covariation with likely drivers by cross variograms [42]. These are models which describe spa-

tial patterns, are used for predictions at unsampled locations (generating maps), and assess the

uncertainty associated with these predictions. The variogram represents a measure of dissimi-

larity as a function of distance between points, and the cross variogram a measure of the joint

variability between the earthworm abundances and a particular soil property. From the vario-

gram model we can obtain a set of parameters. The nugget variance (c0), is the point at which

the model crosses the intercept and represents the variation observed in the data that is either

not spatially correlated or is correlated but at a finer distance than that sampled in this study (5

m). The sill variance (c1) is the value of semivariance at which the variogram model levels off

and represents the total observed variation in the dataset under consideration. The ratio of

nugget to sill variance (c0/(c0+ c1)) expresses the fraction of variation which can be ascribed to

spatial processes. Here the larger the ratio, the more of the observed variation can be described

as spatially autocorrelated. If the variable under observation approximates a spatially random
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process, then this ratio would approach 0. All variogram and cross variogram models were fit

individually at each farm using the gstat package [43] in R version 3.2.2 [40].

Results and discussion

Observed earthworm abundances

Our full data set (grid references for each sampling point, earthworm data, soil data, landscape

variables) is provided in the Supporting Information (S5 Table). Across all the sample sites,

juvenile earthworms were more abundant than adults of any one species. Of the three ecotypes

of earthworm, endogeics were more abundant than epigeics which were in turn more abun-

dant than anecic species (Fig 2A).

There is a paucity of systematic distribution data for earthworm species in the UK [44].

However, our data are typical of other pasture surveys of earthworms in the UK and similar

climatic regions. As with other studies populations are dominated by juvenile and particularly

juvenile endogeic earthworms e.g. [45–49], while among adult populations, endogeic earth-

worms, notably, Allolobophora chlorotica and Apporectodea caliginosa often dominate with

Lumbricus rubellus and/or Lumbricus castaneus being the most abundant epigeic species;

Aporrectodea longa and L. terrestris are the only two UK anecic species e.g. [46–51]. All the

farm sites apart from Manor Farm had significant differences in earthworm numbers between

fields (ANOVA on Ranks for BS, SKF, LOD, MAN, ELM, DST; ANOVA for TOR; p< 0.05)

but using this simple linear modelling approach, we found no consistent pattern between rela-

tive level of management intensity and earthworm numbers. The relationship between earth-

worm numbers, management intensity and field properties was therefore further investigated

using Bayesian Belief Networks.

National level drivers of earthworm distribution

At a national scale, the Bayesian belief network developed for the entire data set, was able to

describe about 57% of the observed variation in abundances (absolute error of 19.72, and root

mean square error of 26.12). Given the scale and nature of the ecological dataset, these results

are not unreasonable. For this model, the overall most influential variables were found to be

Fig 2. Abundances of earthworms by (a) species (total numbers). Total numbers = 13298 earthworms (endogeics = 77%, epigeics = 17%,

anecics = 6%).� = continues to 6126 individuals; open bars indicates endogeic species, closed bars epigeics and checked bars anecics and (b)

sampling site (mean abundance m-2 ± standard error, n = 15–20). F1 to F4 for each sampling site are fields 1 through 4 and for each farm are

arranged in order from lowest management intensity on the left to highest intensity on the right. The intensity levels are relative and not

necessarily comparable between farms.

https://doi.org/10.1371/journal.pone.0241945.g002

PLOS ONE Earthworm distributions and soil quality

PLOS ONE | https://doi.org/10.1371/journal.pone.0241945 August 30, 2021 7 / 17

https://doi.org/10.1371/journal.pone.0241945.g002
https://doi.org/10.1371/journal.pone.0241945


Field temperature, Soil bulk density, Moisture and Nitrate-N followed by Soil type and Under-

lying geology. The main analytically measured continuous variables were % clay, % carbon, %

nitrogen, Soil bulk density, Temperature at 5 and 10 cm and Soil moisture. The sensitivity of

the BBN is presented in Fig 3, and Table 1. There are clear climatic effects in the abundance

data, with field moisture and temperature as key drivers. Management intensity, as it was con-

ditional on a particular farm, was modelled as a child node of farm, and therefore, at this level,

had little influence on abundances. The sensitivity of the BBN at ecotype level (S6 Table) gives

similar results as the analysis for the entire data set though interestingly epigeic earthworms

were determined to be less sensitive to soil moisture levels than endogeic and anecic earth-

worms. This difference may reflect the litter dwelling nature of the epigeic earthworms com-

pared to the soil dwelling nature of endogeic and anecic earthworms.

When species level response curves were considered in the full dataset by simply fitting

Generalize Linear Models to soil parameters (S7 Table), we found that bulk density and nitrate

level in particular are strongly related to earthworm numbers across a range of species (Fig 4).

However, a majority of the plots show that a unimodal curve was the best fit response to the

environmental gradients. Nitrate-N, for example has narrow optima for Allobophora chloro-
tica, Aporrectodea caliginosa and Aporrectodea longa, showing that they are less abundant at

low and high nitrate concentrations. Bulk density shows a much flatter response for most spe-

cies while still typically showing optimal values. The response to soil moisture is more idiosyn-

cratic, because of the presence of Aporrectodea limicola, a species often found in waterlogged

soils [27] and Aporrectodea caliginosa, which is tolerant of flooding [52,53]. For bulk density,

nitrate-N, pH and soil moisture content A. chlorotica show the narrowest peaks, suggesting

that this species has more marked preferences, and possibly sensitivities, to these soil proper-

ties. Both bulk density and nitrate were highlighted in the national level BBNs as exerting

important controls on earthworm numbers.

Farm level drivers of earthworm abundance

Bayesian Belief Networks produced for the individual farms using both the entire data set

(Table 2) and for different earthworm ecotypes (S8 Table) are consistent with the analysis

Fig 3. Panels show the sensitivity of the overall Bayesian belief network to main continuous variables used to predict values of total earthworm counts across all 7

farms. Values of the continuous variables were split into 5 bins (where Bin 1 has the lowest values and 5 the highest) as defined for this dataset. For details of bin ranges

see Table 1; the more intense the colour the more likely this value is for this number of earthworms. For example, at a depth of 5 cm, if temperature is in the range 12–

16˚C then earthworm abundance is most likely to be low (0–13 individuals), if the observed temperature is in the range 9.1–10.8˚C, then the earthworm abundance will

probably be in the range of 25–34 individuals, and at an observed temperature range 6.9–9.1˚C then the abundance is most likely to be high (34–110 individuals), at a

farm scale.

https://doi.org/10.1371/journal.pone.0241945.g003
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Table 1. The ranges of soil properties associated with each of the 5 bins used in the BBN.

Total number of

earthworms

% clay % carbon NO3-N % nitrogen Density Temperature @ 10 cm Temperature @ 5 cm Soil moisture content State

0–13 0–0.04 1.5–3.4 -0.3–

0.5

0.15–0.3 0.23–

0.69

4.7–6.9 4.6–6.9 17–41 1

13–19 0.04–

0.5

3.4–4.6 0.5–1.1 0.3–0.45 0.69–

0.83

6.9–9.2 6.9–9.1 41–47 2

19–25 0.5–0.7 4.6–6.3 1.1–2.9 0.45–0.56 0.83–

0.92

9.2–10.9 9.1–10.8 47–54 3

25–34 0.7–1.1 6.3–9 2.9–6 0.56–0.8 0.92–1.1 10.9–11.9 10.8–12 54–61 4

34–110 1.1–7.7 9–42 6–105 0.8–2.2 1.1–1.7 11.9–20 12–16 61–96 5

Bins 1–5 correspond to the positions of the boxes indicated in Fig 3. The net had an absolute error of 19.72, and root mean square error of 26.12.

https://doi.org/10.1371/journal.pone.0241945.t001

Fig 4. Generalized linear model fits between measured soil parameters and numbers of earthworms at a species

level across all sampling sites. a) bulk density, b) nitrate-N, c) pH, d) soil moisture content (SM%). Details of the

models including uncertainties are given in S7 Table. Only species where numbers vary with the particular soil

parameter are shown. (Al-chl = Allolobophora chlorotica, A pros = Aporrectodea rosea, L-rub = Lumbricus rubellus, L-

cas = Lumbricus castaneus, Ap-lim = Aporrectodea limicola, Ap-cal = Aporrectodea caliginosa, Ap-lon = Aporrectodea
longa, M-mul = Murchieona muldall, L-fes = Lumbricus festivus, L-ter = Lumbricus terrestris.

https://doi.org/10.1371/journal.pone.0241945.g004
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carried out at the national level. The networks describe earthworm abundance generally well,

with an RMSE between 12 and 2 and an absolute error between 6 and 1 counts. In terms of the

most significant variables, Management Intensity was consistently identified as the main factor

at field scale for the average earthworm abundance within a farm with variables relating to cli-

mate (e.g. temperature and soil water content) consistency being included in the identified sec-

ondary variables (Table 2).

Field level spatial patterns of earthworm abundances

We were able to determine spatial autocorrelation, and fit authorised variogram models to 5 of

the 7 farms, with DST and MAN exhibiting only pure nugget variation (Fig 5, Table 3). Of

these five farms, SKF exhibited the longest range at 114 m, with the others ranging between 19

and 30 m. This suggests that for the majority of the farms (with the exception of SKF), earth-

worm populations exhibited either short range spatial autocorrelation or no spatial autocorre-

lation at all. Where autocorrelation was observed, the variance component which was spatially

autocorelated was generally substantial (from an estimated 37% to 91% of the observed varia-

tion in earthworm abundance). These variogram results are in general agreement with other

studies across a range of land uses, climates and species (S1 Table), and it is therefore clear that

in any given field, the spatial variability in earthworm abundances will be short range and pat-

chy in nature, i.e. earthworm abundance will be high in patches of c. 30–100 m width, and

those patches appear to be randomly distributed within fields. Variograms for the different

ecotypes are presented in the Supplementary information (S9 Table) and show similar results

for each ecotype.

For those farms where we observed spatial autocorrelation in earthworm abundances, we

subsequently fitted LMCRs but observed no spatial covariation with the earthworm abun-

dances in any of the soil properties (e.g. soil organic carbon, pH, density, nitrate-N) at the dis-

tance intervals for which earthworms show spatial autocorrelation. This would indicate that

Table 2. Results from the Bayesian Belief Networks developed for each individual farm.

Site LOD SKF DST TOR CBS ELM MAN

Abs Error 4 1.43 6.05 2.00 2.5 2.47 2.81

RMSE 6.74 2.06 12.56 3.44 4 4.50 6.13

Top 10

variables

Management

intensity

Management

intensity

Management

intensity

Domsoils Management

intensity

Soil water content Iron

Potassium Calcium FDH activity Geology Slope FDH Activity Slope

% carbon Domsoils Temp at 10 cm

depth

Management

intensity

Temp at 10 cm

depth

% carbon Soil bulk

density

% nitrogen Geology Aluminium Potassium FDH activity Management

intensity

Manganese

Soil pH Magnesium Temp at 5cm depth PO4-P C:N Phosphorus NH4-N

Phosphorus Strontium Lead Lead Soil pH Aluminium Strontium

Magnesium Elevation Soil pH Elevation Elevation Aspect Calcium

NO3-N Temp at 5 cm depth Elevation Temp @ 5cm Zinc Soil bulk density % nitrogen

Aluminium Phosphorus Slope Sodium % clay Iron % clay

Sodium Soil water content Cadmium Temp at 10 cm

depth

Aspect Field soil moisture Aluminium

The top portion describes the performance of the networks as Absolute (Abs) Error and Root Mean Square Error (RMSE) on the earthworm species count estimates.

The subsequent portion of the table describes results from a sensitivity analysis on the models by ranking, from top to bottom, the most influential variables in each

model.

https://doi.org/10.1371/journal.pone.0241945.t002
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none of these properties were key drivers of the abundance of the earthworms at the farm scale

despite our species response curves (Fig 4) and the results of the full dataset BBNs (Fig 3,

Tables 1 and 2) and the well-established literature concerning the physico-chemical factors

that earthworms are sensitive to (see the many references in [12]). Since our results show that

soil properties of themselves do not control the spatial variability of earthworm communities

they suggest that instead biological and ecological factors, such as rates of reproduction and

migration, anthropogenic interventions, predation and parasitism, as proposed by Satchell

[17], may be the driving factors for short scale variation in abundance in a way that then con-

founds the short range effect of edaphic factors. We cannot be certain which of those biotic

factors were the most important as the sampling protocol did not allow us to examine local

biotic factors in sufficient detail.

Table 3. Variogram parameters for the seven sites.

Site Range (m) ci co ci/(ci+co)

LOD 27 230 22 91%

SKF 114 33..7 22 61%

DST - - - -

TOR 23 47 80 37%

CBS 19 124 20 86%

ELM 30 103 40 72%

MAN - - - -

Range reflects the extent to which the spatial autocorrelation extends, ci is the sill variance, and co is the nugget

variance, ci/(ci+co) represents the variance component that is spatially autocorrelated. No spatial autocorrelation was

found for DST and MAN.

https://doi.org/10.1371/journal.pone.0241945.t003

Fig 5. Within field and farm distribution of earthworms for each of the four fields at three representative sites, a) CBS, b) DST and c) SKF. Contoured

colours represent the interpolated (predicted) values of total earthworm counts, coloured dots represent the observed counts within each sampling point.

Inserts show the variograms used to generate the interpolated surfaces, with the separation distances on the x-axis, and semivariance (earthworm counts,

log for DST) on the y-axis.

https://doi.org/10.1371/journal.pone.0241945.g005
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Implications of our results for the use of earthworms as indicators of soil

health and soil management

For most fields, earthworms are spatially correlated at short distances and a knowledge of their

distribution does not provide spatially resolved information about factors such as soil pH, den-

sity, nitrate content and organic matter content. Thus, individual samples are unreliable indi-

cators of earthworm populations and other soil properties. Further, the level of variability in

earthworm numbers between sampling sites within a field suggests that for any monitoring

scheme that requires a reliable estimate of earthworm numbers, whether earthworm numbers

are of direct interest or are being used as a proxy for other specific soil properties such as

organic matter content or more diffuse measures such as soil health/quality, multiple samples

are required because these properties show significant within-field variation. The schemes

detailed in [7] and [8] suggest sampling 3 or 4 sites per field to assess soil quality with earth-

worm numbers as one of multiple tests proposed on those samples. A recent national level sur-

vey aimed at using earthworms to assess soil health of arable fields used a sampling density of

10 pits per field with a total survey time of 60 minutes per field [11]. The survey achieved high

levels of participation and cost-effectiveness and supported the accepted wisdom that tillage

has a negative effect on earthworm numbers. It was suggested that numbers of pits could be

reduced to 5 per field with little decrease in the quality of the results. In our study, if we assume

comparable threshold qualitative values of> 66% of pits containing 16 earthworms or more as

described by Stroud [11], then in order to determine the difference between good and poor

quality soil in pasture fields on the basis of earthworm abundances, based on a power analysis

of our data, we would recommend about 8–10 pits per field.

Much interest in earthworm populations stems from their role in soil processes that deliver

ecosystem services [3–5]. While it is well established that moving from conventional to mini-

mum- or no-till management can lead to increases in earthworm numbers in arable fields [22]

our results suggest that pasture fields can also be managed to enhance earthworm numbers. At

a national scale, earthworm abundance appears to be related to both soil temperature and

moisture reflecting natural gradients but also soil nitrate levels and soil density. In broad terms

at the national level more intensely managed farms will have higher N inputs leading to higher

levels of nitrate N e.g. [54–57]. Similarly, increasing intensity of farm management is likely to

be linked to more on-field traffic with consequent compaction and density increases. Our defi-

nition of management intensity at the farm level is qualitative and based on discussion with

the resident farmers. Thus, our ranking of relative intensity is not directly comparable between

farms. However, our BBN networks for individual farms (Table 2), the lack of a linear relation-

ship between earthworm numbers and intensity at each farm (Fig 2B) and the unimodal spe-

cies response curves for soil density and soil nitrate-N (Fig 4) suggests that there is a role for

management interventions to maximise earthworm populations, for example through fertiliser

or organic matter amendments, to optimise earthworm-friendly conditions.

Conclusions

Although Darwin’s insights were based on sparse quantitative data it seems that his essential

intuition was correct: at the field scale, the spatial variation in earthworm abundance is con-

trolled or at least heavily influenced by some factor other than soil properties, most likely biotic

(possibly reproduction, migration rates, competition and predation), giving the appearance of

a spatially random distribution of ~30 - ~100 m patches of high earthworm abundance. This

suggests that the use of individual based models, that incorporate biological behaviour e.g.

[58–61] are likely to be a better route for understanding the distribution of earthworms in

fields than measures of soil properties.
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However, at a national level earthworm distributions are clearly influenced by both natural

gradients related to temperature and moisture and (in a non-linear fashion) by factors such as

soil nitrate and density that will be influenced by levels of intensity of farm management.

Thus, whilst it is generally accepted that reducing fertiliser use and minimising compaction

are important interventions to increase the sustainability of arable farming such interventions

will impact on earthworm populations in a non-linear fashion. This suggests that management

interventions are possible to increase earthworm numbers, and thus enhance the ecosystem

services that their actions in soil give rise to, at the farm scale. This means examining the farm

as a whole, taking into account its previous land use and cropping history, and not assuming

that a single field can be managed alone to reach the farmer’s expectations.
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57. Meyer A, Focks A, Radl V, Keil D, Welzl G, Schöning Iet al. 2013. Different land use intensities in grass-

land ecosystems drive ecology of microbial communities involved in nitrogen turnover in soil. PLoS

One. 2013; 8 e73536. https://doi.org/10.1371/journal.pone.0073536 PMID: 24039974

58. Johnston ASA, Sibly RM, Thorbek P. Forecasting tillage and soil warming effects on earthworm popula-

tions. J Appl Ecol. 2018; 55: 1498–1509.

59. Johnston ASA, Sibly RM, Hodson ME, Alvarez T, Thorbek P. Effects of agricultural management prac-

tices on earthworm populations and crop yield: an ecosystem services modelling approach. J Appl Ecol.

2015; 52: 1334–1342.

PLOS ONE Earthworm distributions and soil quality

PLOS ONE | https://doi.org/10.1371/journal.pone.0241945 August 30, 2021 16 / 17

https://www.R-project.org/
http://cran.r-project.org/web/packages/gstat/
https://doi.org/10.1016/j.scitotenv.2020.142102
http://www.ncbi.nlm.nih.gov/pubmed/32916493
https://doi.org/10.1371/journal.pone.0201058
http://www.ncbi.nlm.nih.gov/pubmed/30102732
https://doi.org/10.1371/journal.pone.0073536
http://www.ncbi.nlm.nih.gov/pubmed/24039974
https://doi.org/10.1371/journal.pone.0241945


60. Baveco JM, de Roos AM. Assessing the impact of pesticides on Lumbricid populations: An individual

based modelling approach. J Appl Ecol. 1996; 33: 1451–1468.

61. Klok C, Holmstrup M, Damgaard C. Extending a combined dynamic energy budget matrix poplutaion

model with a Bayesian approach to assess variation in the intrinsic rate of population increase. An

example in the earthworm Dendrobaena octaedra. Environ Toxicol Chem. 2007; 26; 2382–2388.

https://doi.org/10.1897/07-223R.1 PMID: 17941747

PLOS ONE Earthworm distributions and soil quality

PLOS ONE | https://doi.org/10.1371/journal.pone.0241945 August 30, 2021 17 / 17

https://doi.org/10.1897/07-223R.1
http://www.ncbi.nlm.nih.gov/pubmed/17941747
https://doi.org/10.1371/journal.pone.0241945

