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Neither Single nor a Combination 
of Routine Laboratory Parameters 
can Discriminate between Gram-
positive and Gram-negative 
Bacteremia
Franz Ratzinger1, Michel Dedeyan2, Matthias Rammerstorfer2, Thomas Perkmann1, 
Heinz Burgmann2, Athanasios Makristathis3, Georg Dorffner4, Felix Loetsch2, 
Alexander Blacky5 & Michael Ramharter2,6

Adequate early empiric antibiotic therapy is pivotal for the outcome of patients with bloodstream 
infections. In clinical practice the use of surrogate laboratory parameters is frequently proposed to 
predict underlying bacterial pathogens; however there is no clear evidence for this assumption. In 
this study, we investigated the discriminatory capacity of predictive models consisting of routinely 
available laboratory parameters to predict the presence of Gram-positive or Gram-negative 
bacteremia. Major machine learning algorithms were screened for their capacity to maximize the 
area under the receiver operating characteristic curve (ROC-AUC) for discriminating between Gram-
positive and Gram-negative cases. Data from 23,765 patients with clinically suspected bacteremia 
were screened and 1,180 bacteremic patients were included in the study. A relative predominance of 
Gram-negative bacteremia (54.0%), which was more pronounced in females (59.1%), was observed. 
The final model achieved 0.675 ROC-AUC resulting in 44.57% sensitivity and 79.75% specificity. 
Various parameters presented a significant difference between both genders. In gender-specific 
models, the discriminatory potency was slightly improved. The results of this study do not support 
the use of surrogate laboratory parameters for predicting classes of causative pathogens. In this 
patient cohort, gender-specific differences in various laboratory parameters were observed, indicating 
differences in the host response between genders.

Sepsis is a frequent and complex systemic inflammatory response to a severe infection. The annual 
incidence is 300 per 100,000 inhabitants1 with a mortality reaching up to 50% in certain populations2,3. 
The gold standard of laboratory investigations for the diagnosis of sepsis is microbiological confirmation 
by blood culture analysis. However, blood culture analysis has several drawbacks, including poor cost 
efficacy due to a low true positive rate in septic patients4. Moreover, a median period of three days is 
necessary to obtain final results from blood culture analysis4,5.
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Early empiric antibiotic therapy using broad spectrum antibiotics is pivotal for patients’ survival6,7. 
However the choice of appropriate antimicrobials is complicated by an increase in specific resistance 
against certain classes of antimicrobial drugs8. Early identification of the causative pathogen would there-
fore enable a better choice of empiric antibiotic therapy.

Clinical and laboratory parameters have been proposed as potential prediction markers for 
Gram-positive and Gram-negative infections9–12 and are therefore often used, especially by physicians 
not specialized in clinical infectious diseases to tailor empiric antimicrobial therapy to predicted classes 
of pathogens. Such parameters involve differential blood cell counts, acute phase proteins and electro-
lytes12,13. Although these parameters are essential in patient care, their usefulness for predicting the caus-
ative pathogen is not based on firm evidence. The aim of this study was to investigate the diagnostic 
capacity of single laboratory parameters or their combination to discriminate between patients with 
Gram-positive and Gram-negative bacteremia.

Results
Patient cohort.  In total, data from 23,765 patients were screened for inclusion in this study. Patients 
less than 18 years old (n =  3,879), patients with potentially contaminated blood cultures (n =  464), 
patients with missing data (n =  3,389) and patients with negative blood culture results (n =  14,805) were 
excluded from the analysis. To increase the homogeneity of the cohort, patients with rarely detected blood 
culture isolates (n =  48) were also excluded from further analysis. Finally, data from 1,180 patients were 
analyzed, including 637 Gram-positive cases (54.0%) and 543 Gram-negative cases (46.0%). Figure 1 pre-
sents the patient’ s selection process. The pathogens most frequently detected in the Gram-positive group 
were Staphylococcus aureus (n =  259, 40.7%), Enterococcus faecalis (n =  76, 11.9%) and Streptococcus 
pneumoniae (n =  64, 10.0%). Escherichia coli (n =  333, 61.3%), Klebsiella pneumoniae (n =  70, 12.9%) 
and Pseudomonas aeruginosa (n =  69, 12.7%) were the most prevalent Gram-negative pathogens. Within 
the study population, 58.6% (n =  691) were male and 41.4% (n =  489) were female. The median age was 
64 years (25th to 75th percentile: 53–74 years). Female patients suffered relatively less frequently from 
Gram-positive bacteremia (40.9%) than from Gram-negative bacteremia (59.1%, p =  0.003), whereas this 
ratio was balanced in male patients (49.6% Gram-positive, 50.4% Gram-negative). Supplementary table 
S1 presents the distribution of genders in comparison to the Gram-status.

Single Variable Evaluation.  In total, 49 laboratory parameters were evaluated regarding their single 
predictive power to distinguish between patients with Gram-positives and Gram-negative bacteremia. 
After applying the Bonferroni-Holm method, significant differences were found in the absolute lym-
phocyte count, in the relative and absolute count of monocytes, magnesium (all: p <  0.001), phosphate 
(p =  0.001) and C-reactive protein (CRP, p =  0.001). Details are presented in Table  1. In ROC curve 
analysis, the best predictive parameters were the absolute and relative amount of monocytes (0.589 

Figure 1.  Patient recruitment process. 1absence of routine laboratory data for the respective day (more 
than 95% data missing), 2lack of identification of the microorganism at the species level or with potentially 
contaminated blood, 3rarely detected pathogens (less than 0.15% percent).
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ROC-AUC CI: 0.557–0.622; 0.581 ROC-AUC CI: 0.548–0.615 respectively) as well as magnesium (0.573 
ROC-AUC CI: 0.538–0.608).

Multivariable Prediction.  The CFS subset evaluator was applied in order to select a relevant param-
eter set. This feature selection algorithm selected seven parameters, namely gender, amount of lympho-
cytes (absolute), monocytes (absolute and relative), fibrinogen, creatinine and CRP. For model selection, 
widely-used machine learning algorithms, including artificial neural networks and support vector 
machines, were successively applied. Table  2 presents data of the predictive capacities of the machine 
learning algorithms evaluated and Fig. 2 shows the corresponding ROC-AUC plots. Supplementary Table 
S2 represents an overview of parameters included in each model. Best performances were shown with 
the decision tree-based random forest algorithm (RF, ROC-AUC: 0.653, CI: 0.622–0.684) and the K-Star 
algorithm (ROC-AUC: 0.642, CI: 0.610–0.673). Additionally, a wrapper approach selecting an optimal 
parameter set for a particular algorithm was applied. Using this approach, the K-Star algorithm with 
0.675 ROC-AUC (CI: 0.645–0.705) presented the best performance. This model, consisting of seven 
parameters, was significantly better (p <  0.001) than the absolute monocyte count (0.589 ROC-AUC), 
which represented the best predictive individual parameter. The model resulted in a poor calibration 
(Hosmer-Lemeshow test: p <  0.001), with an inadequate increase in the predicted risk compared to the 
observed risk (see Supplementary Figure S1a). When applying the Youden index method for cut-off 
selection, the K-star model resulted in 44.57% sensitivity, 79.75% specificity, 62.79% NPV, and 65.23% 
PPV for predicting Gram-negative bacteremia.

Assessment of gender aspect.  Since an unequal distribution between Gram-positives and 
Gram-negative cases and patient’  s gender was relatively found, it was speculated that laboratory param-
eters may present gender-specific differences. Apart from mean corpuscular haemoglobin (MCH) and 
mean corpuscular volume (MCV), for which gender-specific reference values are established, a signif-
icant difference between male and female patients was found in a further four parameters. Females 
presented with lower blood urea nitrogen (BUN), potassium and creatinine levels, but higher cholesterol 
levels compared to male patients with bacteremia (all: p <  0.001, see Supplementary Table S3).

Gender-specific data of Gram-positive and Gram-negative cases are shown in Table 3. After applying 
the Bonferroni-Holm correction, albumin and absolute monocyte count showed significant differences 
between Gram-positives and Gram-negatives in female patients. Similarly, the distribution of relative 
and absolute monocyte count, absolute lymphocyte count, CRP, fibrinogen and magnesium significantly 
differed between male patients with Gram-positive and Gram-negative bacteremia.

Since it was evident that patients’ gender had considerable influence on various parameters, 
gender-specific models were trained. When restricted to female patients, the K-Star algorithm performed 
best in the parameter subset selected by CFS subset evaluator (0.644 ROC-AUC, CI: 0.595–0.693) as 
well as in a wrapper approach selected subset (ROC-AUC: 0.716, CI: 0.670–0.761). Figure  3 presents 
ROC-AUCs of both parameter subsets. When using the Youden Index, the K-star wrapper model reached 
65.50% sensitivity, 64.71% specificity, 56.22% PPV and 73.05% NPV for predicting Gram-negatives (see 
Table 4). The model was not adequately calibrated to the given data (p <  0.001), with an underrating of 
the risk in low-risk patients and an overrating for high-risk patients (see Supplementary Figure S1b).

In male patients, the RF-classifier and the K-star algorithm presented the best ROC-AUCs (RF: 0.657, 
CI: 0.616–0.700; K-star: 0.633, CI: 0.592–0.674) in the CFS-selected subset. Using the wrapper approach 
for feature selection, the K-star classifier achieved the best ROC-AUC with 0.699 (CI: 0.660–0.738, see 
Fig.  4). Male patient-derived model yielded 69.39% sensitivity, 64.37% specificity, 65.75% PPV and 
68.09% NPV for the prediction of Gram-negative cases. In contrast to the other models, the calibration 
curve indicated a better model calibration (see Supplementary Figure S1c). However, especially in the 
high risk range, a significant deviation between the predicted risk to the observed risk was seen, which 
was also indicated by the Hosmer-Lemeshow test (p <  0.001).

Discussion
Improvement of survival in patients with severe bloodstream infections largely depends on the appro-
priate choice of early empiric antimicrobial therapy. The aim of the present study was to investigate 
the predictive capacity of highly standardizable parameters to discriminate between Gram-positive and 
Gram-negative bacteremia.

Among the parameters tested, six variables showed a significant difference between patients with 
Gram-positive and patients with Gram-negative bacteremia. The absolute monocyte count revealed the 
highest discriminatory abilities with 0.589 ROC-AUC (CI: 0.557–0.622). In accordance with the litera-
ture, CRP was higher in Gram-negative than in Gram-positive infections (p =  0.001), while WBC did not 
show any significant alterations between Gram-positive and Gram-negative pathogens12. Using the K-star 
algorithm, a model with 0.675 ROC-AUC (CI: 0.645–0.705) was established, resulting in 44.6% sensitiv-
ity and 79.8% specificity for detecting Gram-negative bacteremia. Although the model was significantly 
better than the best single discriminatory parameter (p <  0.001), its ability to estimate the predicted risk 
was poor. Based on these results, laboratory markers cannot be reliably used to predict classes of bac-
terial pathogens and this clinical practice therefore should be discouraged. This finding is of particular 
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No. Parameter n Gram-positive Gram-negative p–value1 ROC–AUC2

1 Age 1180 64.0 (53.0–76.0) 65.0 (53.0–74.3) ns ns

2 ALAT (U/L) 1091 30.0 (17.0–61.0) 30.0 (17.8–54.5) ns ns

3 Albumin (G/L) 1058 34.7 (29.6–39.0) 31. 5 (26.3–36.7) ns ns

4 ALP (U/L) 1065 102.0 (75.0–176.0) 99.00 (71.8–143.5) ns ns

5 Amylase (U/L) 886 44.0 (28.0–73.0) 42.50 (30.0–56.3) ns ns

6 aPTT (sec) 997 36.2 (33.5–40.6) 39.6 (34.4–43.6) ns ns

7 ASAT (U/L) 1075 33.0 (22.0–64.0) 36.0 (26.0–62.0) ns ns

8 Basophiles % 1115 0.1 (0.1–0.2) 0.1 (0.1–0.2) ns ns

9 Basophiles (G/L) 1155 0.00 (0.00–0.00) 0.00 (0.00–0.00) ns ns

10 Bilirubin (mg/dl) 1054 0.9 (0.6–1.8) 1.1 (0.8–1.6) ns ns

11 BUN (mg/dl) 1177 19.7 (13.1–30.3) 25.20 (16.3–43.6) ns ns

12 Calcium (mmol/L) 1112 2.24 (2.13–2.36) 2.23 (2.13–2.33) ns ns

13 CHE (kU/L) 970 4.6 (3.2–6.0) 3.7 (2.6–5.0) ns ns

14 Cholesterol (mg/dl) 761 147.0 (114.0–185.0) 127.0 (104.8–165.0) ns ns

15 CK (U/L) 994 66.0 (34.0–128.0) 71.0 (31.8–175.3) ns ns

16 Creatinine (mg/dl) 1173 1.20 (0.87–1.56) 1.26 (0.87–1.80) ns ns

17 CRP (mg/dl) 1176 10.1 (4.5–18.6) 17.0 (7.5–25.6) 0.001 0.558 (0.525–0.591)

18 Eosinophil % 1109 0.2 (0.0–0.7) 0.100 (0.0–0.6) ns ns

19 Eosinophils (G/L) 1150 0.0 (0.0–0.1) 0.0 (0.0–0.1) ns ns

20 Fibrinogen (mg/dl) 951 535.0 (414.0–673.0) 615.0 (467.3–791.0) ns ns

21 GGT (G/L) 1069 71.0 (29.0–171.0) 63.0 (32.8–176.5) ns ns

22 Glucoses (mg/dl) 961 124.0 (103.0–152.0) 126 (100.0–164.0) ns ns

23 Haematocrit (%) 1175 34.6 (30.3–38.3) 34.4 (29.8–38.1) ns ns

24 Haemoglobin (G/L) 1175 11.5 (10.1–12.8) 11.4 (9.6–12.9) ns ns

25 LDH (U/L) 1020 235.0 (183.0–297.0) 273.0 (210.85–366.3) ns ns

26 Lipases (U/L) 903 21.0 (13.0–34.0) 19.0 (12.0–32.0) ns ns

27 Lymphocytes (%) 1093 6.8 (4.5–12.2) 6.2 (3.9–9.9) ns ns

28 Lymphocytes (G/L) 1133 0.7 (0.4–1.1) 0.8 (0.5–1.1) < 0.001 0.570 (0.536–0.603)

29 MCH (fl) 1175 29.7 (28.4–30.9) 29.9 (28.3–31.3) ns ns

30 MCHC (g/dl) 1175 33.6 (32.8–34.3) 33.45 (32.68–34.53) ns ns

31 MCV (pg) 1175 88.5 (85.8–92.4) 88.9 (84.9–94.1) ns ns

32 MG (mmol/L) 1043 0.74 (0.65–0.83) 0.78 (0.71–0.89) < 0.001 0.573 (0.538–0.608)

33 Monocytes % 1094 5.4 (3.0–8.3) 6.3 (3.9–8.8) < 0.001 0.581 (0.548–0.615)

34 Monocytes (G/L) 1131 0.6 (0.2–1.0) 0.7 (0.4–1.1) < 0.001 0.589 (0.557–0.622)

35 MPV (fl) 1072 10.1 (9.5–11.0) 10.2 (9.7–11.2) ns ns

36 Neutrophiles % 1089 86.5 (78.6–90.6) 86.3 (81.1–90.6) ns ns

37 Neutrophiles (G/L) 1089 8.9 (5.6–13.0) 10.20 (6.98–15.03) ns ns

38 Normotest (%) 991 81.0 (66.0–95.0) 80.0 (61.0–94.3) ns ns

39 PAMY (U/L) 667 19.0 (13.0–31.0) 20.0 (12.0–28.0) ns ns

40 PDW (%) 1031 11.8 (10.5–13.5) 12.0 (10.7–13.7) ns ns

41 Phosphate (mmol/L) 1087 0.9 (0.7–1.1) 1.0 (0.8–1.2) 0.001 0.561 (0.527–0.595)

42 PLT (G/L) 1174 196.0 (142.0–259.0) 192.0 (129.0–262.5) ns ns

43 Potassium (mmol/L) 1064 3.9 (3.5–4.3) 4.0 (3.6–4.3) ns ns

44 RBC (T/L) 1132 3.9 (3.5–4.3) 3.80 (3.4–4.3) ns ns

45 RDW (%) 1175 14.4 (13.6–15.9) 15.0 ( 13.7–16.4) ns ns

46 Sodium (mmol/L) 1139 136.0 (133.0– 139.0) 135 (133.0– 139.0) ns ns

47 TP (G/L) 1068 67.0 (58.9–72.1) 66.7 (58.2–74.7) ns ns

48 Triglyceride (mg/dl) 761 119.0 (84.0–161.0) 120.0 (84.0–166.0) ns ns

Continued
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importance, since the selection of tailored antimicrobial regimens based on unreliable prediction models 
may lead to a higher risk of treatment failure and ultimately to higher mortality.

Interestingly, a gender-specific aspect in the susceptibility to Gram-negative pathogens as well as 
in the response to bacteremia in general was noted. As described in the literature, more male than 
female patients suffered from bacteremia14,15. However, a significantly lower rate of Gram-positive bac-
teremias and comparatively higher relative rate of Gram-negative bacteremia was found in females than 
in male patients (p =  0.003). At this stage it is only possible to speculate as to the reasons for this higher 
susceptibility of female patients to Gram-negative pathogens. Several potential causes have been pos-
tulated, including the influence of hormones, X-chromosomal gene polymorphisms, or expression of 
cytokines16–20. Such a gender-specific difference in the cytokine expression was found in several studies, 
with a more steady expression of pro-inflammatory cytokines in male patients18. Furthermore, patients’ 
gender has been shown to impact on the outcome of patients with severe infections. In several publica-
tions, female patients presented a higher mortality rate21–24. In a prospective study conducted at ICUs, 
the overall mortality was balanced between both genders, but in subgroup analysis restricted to septic 
patients, females had a significantly higher mortality rate than males (23.1% vs. 13.7%, p =  0.036)22.

Moreover, a significant difference between female and male patients was seen in various laboratory 
parameters without gender-specific reference ranges (see Supplementary Table S3). However, none of 
these parameters presented predictive capacities for differentiating Gram-positives and Gram-negatives 
(Tables  2 and 3). When using data aggregated on the basis of gender, the resulting K-star model was 
slightly superior to models using both genders. However, the predictive capacity of these models as well 
as their model calibration was poor.

Due to its retrospective design, several limitations must be considered. Firstly, clinical data might have 
improved the predictive capacities of established models. However, clinical data are difficult to stand-
ardize and therefore models incorporating clinical data are difficult to apply in everyday use and their 
external validity to other health care institutions and settings is questionable. Furthermore, the analy-
sis was restricted to laboratory parameters routinely available during the study period. Non-routinely 
available parameters, such as lipopolysaccharide binding protein (LBP) and the CD14-ST isoform, have 
been shown to be associated with Gram-negative sepsis, and might therefore have improved predictive 
models11,25. The gender-specific differences in the immunological response of bacteremic patients were 
unexpected findings in our cohort; however, their effect on the resulting model was limited.

In summary, the results of this study do not support the assumption that surrogate parameters 
are potential predictors for the classification of causative bacterial pathogens. The usefulness of mod-
els consisting of routinely available laboratory parameters to discriminate between Gram-positive and 
Gram-negative bacteremia was limited. In this study cohort, gender-specific differences in various lab-
oratory parameters were observed, indicating differences in the host response to bacterial blood stream 
infection.

Methods
Study design and data collection.  This retrospective cohort study included patients with suspected 
blood stream infection, treated between January 2006 and December 2010 at Vienna General Hospital. 
As previously described26, all patients for whom their treating physician requested blood culture analysis 
and a certain panel of laboratory parameters within the same day were screened for eligibility. Those 
patients with a positive blood culture revealing a bacterial pathogen were included in the study. Exclusion 
criteria were the patient’s age (less than 18 years), absence of routine laboratory data for the respective 
day (more than 95% data missing) or negative results from the blood culture analysis. Patients for whom 
the microorganism could not be identified on the species level or with potentially contaminated blood 
culture results were excluded from the study. Contaminates were pre-defined according to Hall and 
Lyman (i.e. coagulase-negative staphylococci, Corynebacterium spp., Bacillus spp. except Bacillus. anthra-
cis, Proprionibacterium acnes, Streptococcus viridans and Clostridiium perfringens)27,28. Furthermore, 

No. Parameter n Gram-positive Gram-negative p–value1 ROC–AUC2

49 Uric acid (mg/dl) 964 5.5 (3.7–7.2) 5.65 (3.9–8.3) ns ns

50 WBC (G/L) 1132 10.5 (7.1–15.1) 12.1 (8.4–17.4) ns ns

Table 1.   Univariate evaluation of available parameters. Data given as median with interquartile 
range (Q1, Q3), 1Mann Whitney U-test, 2area under the receiver operating characteristic curve, ns =  not 
significant. ALAT =  alanine aminotransferase, ALP =  alkaline phosphatase, aPTT =  activated partial 
thromboplastin time, ASAT =  aspartate aminotransferase, BUN =  blood urea nitrogen, CHE =  cholinesterase, 
CK =  creatinine kinases, CRP =  C-reactive protein, GGT =  gamma-glutamyl transpeptidase, LDH =  lactate 
dehydrogenase, MCH =  mean corpuscular haemoglobin, MCV =  mean corpuscular volume, 
MG =  magnesium, MCHC =  Mean corpuscular haemoglobin concentration, MPV =  mean platelet volume, 
RBC =  red blood cell count, PAMY =  pancreas amylase, PDW =  platelet distribution width, PLT =  platelet 
count, RDW =  red blood cell distribution width, TP =  total protein, WBC =  white blood cell count.



www.nature.com/scientificreports/

6Scientific Reports | 5:16008 | DOI: 10.1038/srep16008

patients with very rarely detected pathogens (less than 0.15% percent) were also excluded from analysis. 
In total, 49 laboratory parameters, as well as the patient’ s age and gender, were statistically analyzed. 
All laboratory parameters indicated had been analyzed at an ISO 9001:2008 certified facility (Clinical 
Department of Laboratory Medicine, Medical University Vienna) in accordance to parameter specific 
standard operating procedures (SOPs).

Statistical analysis.  For statistical analysis, WEKA (Version 3.7.10, GNU General Public License), 
R (Version 3.0.2, GNU General Public License) and MedCalc (Version 14.8.1, MedCalc Software bvba, 
Ostend, Belgium) were applied29,30. Each parameter is characterized as median and interquartile range. 
For single-variable analysis, Pearson’s chi-squared test, the Mann-Whitney-U test and the area under the 
receiver operating characteristic curve (ROC-AUC) were used. Due to the high quantity of parameters 
available, a parameter selection step was necessary to restrict the multivariable analysis to a relevant set 
of parameters. Parameters were selected using the correlation-feature selection (CFS) subset evaluator 
and, in parallel, by applying a wrapper approach31,32. The CFS subset evaluator assesses the predictive 
power of individual parameters by considering the degree of inter-correlation to the other parameters in 

Classifier

All Female Male

CFS1 Wrapper approach CFS1 Wrapper approach CFS1 Wrapper approach

LogReg2 0.607 (0.575–0.639)8 0.652 (0.621–0.683)9 0.627 (0.577–0.677)22 0.677 (0.629–0.725)23 0.627 (0.586–0.668)15 0.664 (0.624–0.704)16

NB3 0.628 (0.596–0.659)8 0.643 (0.611–0.674)10 0.623 (0.573–0.674)22 0.652 (0.603–0.700)24 0.620 (0.579–0.661)15 0.669 (0.629–0.710)17

ANN4 0.598 (0.566–0.631)8 0.651 (0.620–0.682)11 0.614 (0.563–0.664)22 0.632 (0.582–0.682)25 0.582 (0.540–0.624)15 0.620 (0.578–0.661)18

SVM5 0.561 (0.536–0.586)8 0.581 (0.556–0.605)12 0.524 (0.503–0.544)22 0.503 (0.498–0.507)26 0.575 (0.539–0.611)15 0.608 (0.573–0.644)19

K–Star6 0.642 (0.610–0.673)8 0.675 (0.645–0.705)13 0.644 (0.595–0.693)22 0.716 (0.670–0.761)27 0.633 (0.592–0.674)15 0.699 (0.660–0.738)20

RF7 0.653 (0.622–0.684)8 0.654 (0.623–0.685)14 0.632 (0.582–0.682)22 0.707 (0.660–0.754)28 0.657 (0.616–0.700)15 0.661 (0.621–0.701)21

Table 2.   Predictive capacities of various machine learning algorithms. Data is given as ROC-AUC with 
confidence intervals assessed using bootstrapping (n =  2000 iterations); 1correlation-feature selection, 2logistic 
regression, 3naive Bayes algorithm, 4artificial neural network, 5support vector machine 6K-Star algorithm, 
7random forest algorithm, 8n =  7 [sex, 16, 17, 20, 28, 34, 35]*(number in brackets indicts parameter number 
displayed in Table 1), 9n =  17 [sex, 1, 3, 10, 12, 13, 17, 19, 25, 26, 28, 32, 34, 43, 44, 46, 47], 10n =  13 [sex, 1, 
10, 13, 17, 19, 24, 31, 33, 37, 38, 43, 47], 11n =  7 [sex, 3, 8, 17, 29, 31, 34], 12n =  15 [3, 9, 13, 15, 17, 18, 20, 
21, 26, 27, 28, 32, 34, 41, 47], 13n =  7 [6, 9, 10, 27, 33, 34, 42], 14n =  5 [1, 9, 10, 33, 44], 15n =  5 [17, 20, 33, 
34, 36], 16n =  15 [1, 5, 10, 13, 19, 20, 22, 25, 30, 34, 37, 41, 43, 47, 50], 17n =  12 [1, 10, 13, 16, 17, 22, 31, 33, 
34, 37, 38, 47], 18n =  6 [1, 9, 17, 20, 34, 37], 19n =  10 [5, 7, 8, 10, 20, 25, 36, 38, 41, 43], 20n =  4 [9, 20, 28, 33], 
21n =  18 [1, 4, 8, 9, 10, 12, 16, 17, 19, 22, 28, 31, 33, 35, 39, 42, 44, 46], 22n =  4 [28, 34, 37, 45], 23n =  12 [3, 4, 
10, 20, 31, 34, 36, 37, 45, 47, 48, 50], 24n =  11 [4, 9, 12, 16, 17, 20, 28, 31, 33, 37, 50], 25n =  8 [4, 9, 16, 34, 37, 
45, 47, 48], 26n =  1[9], 27n =  6 [32, 37, 39, 44, 45, 50], 28n =  7 [7, 16, 19, 31, 34, 41, 45].

Figure 2.  Receiver operating characteristic curve of various models including both genders. (a) CFS-
selected parameter set, (b) wrapper approach-selected parameter set.
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the subset. In contrast, the wrapper subset evaluator selects the appropriate parameter set for a particular 
classification algorithm.

For the establishment of multivariable models, various major classes of machine learning algorithms 
were employed, including artificial neural networks, support vector machines or Bayes theorem based 
algorithms. As a reference algorithm, a logistic regression was applied. In brief, (1) the Naïve Bayes 
classifier (NB) is a simple probabilistic algorithm that assumes that all input parameters are independent 

Female Male

Gram-positive Gram-negative p–value1 ROC–AUC2 Gram-positive Gram-negative p–value1 ROC–AUC2

Albumin 
(G/L) 35.0 (31.8–39.6) 31.2 (25.4–36.8) < 0.001 0.588 (0.534–0.642) 31.8 (28.0–38.3) 31.5 (27.1–36.8) ns ns

CRP (mg/dl) 10.6 (5.6–20.3) 11.8 (5.2–29.2) ns Ns 9.70 (3.9–16.3) 17.8 (8.3–23.9) < 0.001 0.583 (0.541–0.626)

Fibrinogen 
(mg/dl) 607.0 (472.0–717.0) 551.0 (422.5–727.0) ns Ns 485.5 (363.8–622.0) 621.0 (488.0–824.0) < 0.001 0.604 (0.557–0.650)

Lymphocytes 
(G/L) 0.7 (0.4–10.1) 0.9 (0.5–10.3) ns Ns 0.7 (0.4–10.3) 0.8 (0.5–10.1) < 0.001 0.584 (0.541–0.626)

MG 
(mmol/L) 0.76 (0.65–0.85) 0.79 (0.71–0.88) ns Ns 0.73 (0.66–0.80) 0.78 (0.71–0.91) < 0.001 0.581 (0.535–0.626)

Monocytes % 5.6 (3.8–8.1) 6.4 (4.2–8.1) ns Ns 5.2 (2.7–8.5) 6.2 (3.7–9.4) < 0.001 0.597 (0.553–0.641)

Monocytes 
(G/L) 0.7 (0.3–1.0) 0.7 (0.4–1.2) < 0.0001 0.591 (0.539–0.644) 0.5 (0.2–1.0) 0.7 (0.5–1.1) < 0.001 0.596 (0.553–0.639)

Table 3.   Gender specific data of parameters with predictive capacities for discriminating Gram-
positives and Gram-negatives. 1Mann Whitney U-test, 2area under the receiver operating characteristic 
curve, ns =  not significant. CRP =  C-reactive protein, MG =  magnesium.

Figure 3.  Receiver operating characteristic curve of models including female patients. (a) CFS-selected 
parameter set, (b) wrapper approach-selected parameter set.

All Female Male

ROC–AUC1 0.675 (0.645–0.705) 0.716 (0.670–0.761) 0.699 (0.660–0.738)

Sensitivity2 44.57% (40.33%–48.86%) 65.50% (58.47%–72.06%) 69.39% (64.21%–74.22%)

Specificity2 79.75% (76.41%–82.80%) 64.71% (58.89%–70.21%) 64.37% (59.09%–69.40%)

Positive Likelihood Ratio2 2.20 (1.84–2.64) 1.86 (1.54–2.23) 1.95 (1.66–2.28)

Negative Likelihood Ratio2 0.70 (0.64–0.76) 0.53 (0.43–0.66) 0.48 (0.40–0.57)

Positive Predictive Value2 65.23% (60.14%–70.07%) 56.22% (49.59%–62.69%) 65.75% (60.61%–70.63%)

Negative Predictive Value2 62.79% (59.36%–66.13%) 73.05% (67.17%–78.38%) 68.09% (62.75%–73.09%)

Table 4.   Predictive capacities of K-Star models. 1Area under the receiver operating characteristic curve, 
2for prediction of Gram-negative bacteremia, bootstrapped confidence intervals are given in brackets.
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from each other and directly applies Bayes’ theorem for classification. (2) The artificial neural network 
algorithm (ANN) approximates nonlinear functions by superpositions of simple nonlinear basic func-
tions (here, the sigmoid function was used), optimized by a gradient-based algorithm. (3) A support 
vector machine (SVM) uses a Kernel function to transform the original features into a high-dimensional 
feature space and finds the linear discrimination with the largest margin (large-margin classifier). In this 
study, the SMO-SVM algorithm was applied, using normalized attributes and a polynomial kernel. (4) 
The K-Star algorithm is an instance-based classifier using an entropy distance function. (5) The random 
forest algorithm (RF) is an ensemble algorithm using decision trees with a bagging approach33–38. All 
algorithms were used in WEKA standard settings. Results were taken from an internal ten-fold cross 
validation. These were used for ROC-AUC analysis and estimation of the model’s calibration. For this 
purpose, Hosmer-Lemeshow tests as well as calibration plots were applied39. ROC-AUCs were compared 
by applying the DeLong test as well as the Hanley and McNeil test40–42. Cut-off points were set using 
the Youden index method. Confidence intervals (CI) of binary outcome measures, including sensitivity, 
specificity, negative predictive value (NPV) or positive predictive value (PPV), were bootstrapped in 
2,000 iterations. Statistical significance was defined as p-values less than 0.05. Where appropriate, errors 
related to multiple testing were corrected by applying the Bonferroni-Holm method.

Ethical considerations.  The study was approved by the local ethics committee of the Medical 
University of Vienna (EC-number: 333/2011). It was conducted in accordance with the Declaration of 
Helsinki and the standards for the reporting of diagnostic accuracy studies (STARD). Due to the retro-
spective study design, informed consent was not required from study participants. During data process-
ing, a consecutive identification number was attributed to the participants in order to assure anonymity.
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