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Extraction and
immunomodulatory activity of
the polysaccharide obtained
from Craterellus cornucopioides
Caixuan Zhang, Ying Shu, Yang Li and Mingzhu Guo*

College of Food Science and Technology, Hebei Agricultural University, Baoding, China

In this study, we investigated the structural features of the polysaccharide

obtained from Craterellus cornucopioides (CCP2) by high-performance

liquid chromatography, Fourier transform infrared spectroscopy and ion

chromatography. The results showed that CCP2 was a catenarian pyranose

that principally comprised of mannose, galactose, glucose, and xylose in the

ratio of 1.86: 1.57: 1.00: 1.14, with a molecular weight of 8.28 × 104 Da.

Moreover, the immunoregulation effect of CCP2 was evaluated both in vitro

and in vivo. It displayed a remarkable immunological activity and activation

in RAW264.7 cells by enhancing the phagocytosis of macrophages in a

dose-dependent manner without showing cytotoxicity at the concentrations

of 10–200 µg/mL in vitro. Additionally, Histopathological analysis indicated

the protective function of CCP2 against immunosuppression induced

by cyclophosphamide (Cy). Meanwhile, the intake of CCP2 had better

immunoregulatory activity for immunosuppression BALB/c mice model. After

prevention by CCP2, the spleen and thymus weight indexes of BALB/c

mice model were significantly increased. The RT-qPCR and Western Blot

results provided comprehensive evidence that the CCP2 could activate

macrophages by enhancing the production of cytokines (IL-2, IL-6, and IL-

8) and upregulating the protein expression of cell membrane receptor TLR4

and its downstream protein kinase (TRAF6, TRIF, and NF-κB p65) production

of immunosuppressive mice through TLR4-NFκB p65 pathway. The results

demonstrated that CCP2 could be a potential prebiotic and might provide

meaningful information for further research on the immune mechanism.
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Introduction

The immune system comprises a heterogeneous population
of cells that are relatively quiescent in a steady-state,
however, they respond to inflammation, infection, and other
perturbations (1). In clinic settings, patients with compromised
immunity may be particularly vulnerable to normal and
opportunistic infections (2). The innate immune system
comprises innate dendritic cells, natural killers cells (NK),
macrophages, mast cells (MCs) and NKT cells as primary
defense entity (3, 4) and protects against invading pathogens
in non-specific way (4, 5). One of the most important non-
specific immune actions is phagocytosis, which is performed
by macrophages (6). Macrophages are involved in antiviral,
anti-tumor activities, hypersensitivity reactions, autoimmune
diseases, and immune regulation in adaptive and innate immune
responses via the production of cytokines (such as interferon
γ), interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor
necrosis factor α (TNF-α) (7). After regulating the activation
and inhibition of receptors, the immune system activates the
pathogen associated pattern-recognition receptors (PRRs) (8–
10).

Polysaccharides, as metabolic products of plants, animals,
and microorganisms, have attracted considerable attention
due to their therapeutic effects, and are considered the
immunological molecules of the innate immune system (11).
It enhances the ability of macrophages to resist external stress
and survive under various conditions by promoting the integrity
and stability of the outer membrane (12). Several studies have
been conducted to investigate the pharmacological activities
and active components of edible and medicinal plants (13–
16). It showed that fungal polysaccharides are efficacious in
the treatment of diabetes, hypolipidemia, oxidative stress, and
obesity, as well as in the activation of innate immune cells and
stimulation of cytokines secretions (17, 18).

Yu, et al. (19) demonstrated that the porphyra-derived
oligosaccharides possessed antigen-specific immune responses
by regulating the levels of IgG1, IgG2a, and OVA-specific
IgE, and producing IL-2, IFN-γ, IL-4, and IL17 in ovalbumin
(OVA)-sensitized mice. Wusiman, et al. (20) verified that
the Lagenaria siceraria (Molina) standl polysaccharide and
sulfated modified LSP50 could induce long-lasting and high
hemagglutination (HI) titers, antigen-specific lgG-NDV
antibody, splenic lymphocyte proliferation, high immune organ
index, which could be served as a novel and effective vaccine
adjuvant in chicken to induce specific immune responses
against infections and diseases.

Therefore, the activations of macrophages induced by fungal
polysaccharides are essential for the innate immune system.

Craterellus cornucopioides is wild, edible fungus, that is
widely distributed around the world (China, Japan, Korea,
North America, and Europe). In our previous studies (21–
23), a natural immune heteroglycan (average molecular weight

of 1.97 × 106 Da) with the potential to activate RAW264.7
macrophages were obtained from C. cornucopioides (CCP)
in vitro. This heteroglycan showed potent immunomodulatory
properties and reversed immunosuppression by enhancing
the development of the immune system and the activation
of peritoneal macrophage phagocytosis via regulation of
the TLR4-NFκB pathway in peritoneal macrophages of
immunosuppressed mice, which shows excellent prospects for
the commercial development of functional foods and medicines
(21–24).

Similarly, polysaccharides obtained from C. cornucopioides
(CCP2) also have strong immunoregulatory potential in
the extrinsic pathway. However, to date, a comprehensive
understanding of the immunomodulatory activity of CCP2
in vitro and its structural characteristics have not been
reported. The structural and bioactivity diversities of CCP2
remain unclear. Generally, the comprehensive utilization of
agricultural products has significant economic and social
environmental benefits, and has thus gained growing interests
in the development of agricultural products.

On this basis, the structure information and
immunomodulatory activity of CCP2 were investigated by
FTIR, and in terms of monosaccharide composition. The
proliferation, phagocytosis, and morphology of RAW264.7 cells
were applied to understand the relationship between structural
properties and biological activities, which further expands the
application and advantages of C. cornucopioides.

Materials and methods

Materials and reagents

The fruiting body of C. cornucopioides was collected at
the Junzi mountain of Shizong in Yunnan Province, P.R.
Different monosaccharide standards (L-rhamnose, D -glucose,
D-mannose, D-galactose, D-arabinose, and D-xylose) and
DEAE-52 column (1.6 cm × 100 cm) were provided by
Solarbio Biological Technology Company (BJ, CHN). Neutral
red and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium
bromide (MTT) were provided by Sigma Company (St Louis,
MO, USA). Phosphate buffered saline, dimethyl sulfoxide
(DMSO), Dulbecco’s Modified Eagle Medium (DMEM), and
fetal bovine serum (FBS) were purchased from Gibco BRL (NY,
USA). All the other reagents were of analytical grade.

Extraction and purification of CCP2

The C. cornucopioides powder was extracted with distilled
water at 85◦C for 2.5 h (twice) after degreasing with acetone.
The water extract was concentrated and deproteinized using
the sevag reagent [Chloroform: n-butanol = 4:1 (V:V), 30 min,
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10 times]. Finally, three volumes of ethanol were added to
precipitate the crude polysaccharide (CCCP), which were
collected after centrifugation at 3,000 rpm at 25◦C for 10 min
and freeze-dried under −80◦C after redissolving in water. The
yield was calculated using formula 1 as follows:

CCCP yield%
WCCCP× 100

Wsample
(1)

Where WCCCP and Wsample are the weights of CCCP and
C. cornucopioides powder, respectively.

CCCP (80 mg) was dissolved in distilled water (2 mL),
purified by the DEAE-A52 column (1.6 cm × 100 cm), and
eluted at the flow rate of 0.6 mL/min. The eluent contained
a macromolecule that was discovered by HPLC and named
C. cornucopioides polysaccharide (CCP2).

Molecular weight of CCP2

The Mw of CCP2 was determined by high-performance
gel permeation chromatography (Agilent-1200) with a Shodex
OHpak gel SB-805HQ column (8.0 mm× 300 mm, 35◦C) and a
refractive index detector (30◦C). The sample solution (20 µL,
5 mg/mL) was injected into the apparatus. Deionized water
was used as the flowing phase at the flow rate of 0.6 mL/min.
The standard curve was established using the T-series Dextran
(T-2000, T-500, T-70, T-40, T-20, and T-10) (25, 26).

Determination of monosaccharide
composition of CCP2

The ICS2500 chromatography system (Thermo) with the
high-performance anion chromatography column Carbo Pac
PA20 (150 mm × 3 mm) and a dual pulse current sensor was
used to determine the monosaccharide composition of CCP2
(NaOH at 2.00 and 10.00 mM was used as the eluent, the flow
rate was 0.45 mL/min, and the temperature was set at 30◦C). In
total, 5.00 mg of CCP2 was hydrolyzed with 2 M Trifluoroacetic
Acid (TFA, 5 mL) for 3 h at 120◦C. Followed, the samples
were diluted with ionized water according to the gradient.
One milliliter CCP2 solution was injected into the apparatus.
D-mannose, D-xylose, D-arabinose, L-rhamnose, D-galactose,
and D-glucose were derivatized as standards.

FT-IR analysis

The experimental methods were referred to the literature
reports (27). Briefly, 1.00 mg of CCP2 and 150 mg of
KBr were mixed evenly and pressed into flake. Pure KBr
flake was used as the blank background, and then the
polysaccharide sample was analyzed on an Fourier Transform
Infrared Spectroscopy (FT-IR) spectrophotometer with a

resolution of 4 cm−1 (range: 4000 –400 cm−1) (VECTOR 22,
Bruker, Germany).

Cell culture

The RAW264.7 cells were cultured in DMEM supplemented
with 10% (v/v) FBS streptomycin (100 units/mL), and penicillin
(100 units/mL) at 37◦C, and 5% CO2 in a humidified
atmosphere. Cells were passaged every 48 h for reserve.

Cell phagocytosis assays

The experimental method was according to the literature
reports (28). For the neutral red uptake assay, the cell suspension
(5 × 104 cell/mL) of the macrophages was added into 96-
well plates at 37◦C. After 4 h incubation, the supernates were
removed and treated with different concentrations of CCP2 (0,
10, 25, 50, 100, 200, and 400 µg/mL) for 24, 36, and 48 h,
respectively, and 100 µL of neutral red solutions were added and
incubated for another 2 h. After staining, the cells were rinsed
twice by Hank’s solution. Afterward, the cells were lysed with
a lysis buffer [ethanol and 0.01% acetic acid at the ratio of 1:1
(100 µL per well) and detected at 540 nm].

General observation

During the experiment, all BALB/c mice were carefully
monitored daily for signs of disease, the body weight and water
intake of mice were recorded daily. The feeding environment
was as follows: temperature: 22 ± 0.5◦C, humidity: 50 ± 5%,
light–dark cycle: 12:12 h. The mental state, stool consistency,
diarrhea and rectal bleeding were observed and recorded.
The mice were fasted for 24 h after gavage and sacrificed
on the 17th day.

Histopathological observation

The experimental methods were referred to the literature
reports (29).

Establishment of cy-induced
immunosuppressive BALB/c mice
model and treatments

Protective effects of CCP2 on immunosuppression mice
were evaluated using a cyclophosphamide (Cy)-induced
immunocompromised model recommended by China Food
and Drug Administration (CFDA Publication No. 107, revised
2012). Briefly, 50 mice were randomly assigned into 5 groups
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(n = 10) according to the double-blind experiment after a week
of adaptive feeding, including normal control group (NCG,
0.9% NaCl), immunocompromised model group (Cy-induced,
CyMG), and three CCP2 as preventive treatment groups
[CCP2 + Cy (L, M, H)]: 100, 200, and 400 mg kg−1 day−1. The
details were as follows:

(1) NCG: Mice were intragastric administration once daily
with 0.9% normal saline (0.2 mL) for 17 consecutive days,
and intraperitoneally injected administration with normal saline
(0.1 mL day−1) at 10th day for 3 days.

(2) CyG: Mice were intragastric administration once daily
with 0.9% normal saline (0.2 mL) for 17 consecutive days
and intraperitoneally injected administration with Cy (0.1 mL
day−1, Mw 261.09 Da) at 10th day for 3 days.

(3) [CCP2 + Cy (L, M, H)]: Mice were intragastric
administration with once daily with CCP2 at the doses of
100, 200, and 400 mg kg−1 day−1, respectively, for 17
consecutive days and intragastric administration with Cy at
10th day for 3 days.

On the 18th day after the various treatments, the BALB/c
mice in each group were killed through the cervical dislocation
method. The spleen and thymus were dissected and weighed.

The organ index was calculated as follows:

Spleen index
(
mg per 10g

) spleen weight
(
mg

)
body weight

(
g
) ×10 (2)

Thymus index
(
mg per 10g

) thymus weight
(
mg

)
body weight

(
g
) ×10 (3)

Western blot analysis

The experiment was conducted according to the method
reported by Price et al. (30). Specifically, the total protein of
peritoneal macrophage of BALB/c mice was extracted using
radio immunoprecipitation assay lysis buffer according to the
instruction of manufacture. After incubation of macrophages in
6-well plates (1 × 105 cells/mL) for 36 h, the macrophages were
used for the protein extraction. All the primary antibodies were
diluted with PBS for 1000 times (Cell Signaling Technology,
Danvers, MA, USA).

In brief, cell lysates were subjected to 10% SDS-PAGE
and transferred to nitrocellulose NC membranes, and then
incubated overnight at 4◦C with anti-TLR4, anti-TRIF, anti-
TRAF6, anti-P-NF-kB p65, and anti-GAPHD monoclonal
antibodies after a 1 h blocking on (5% (w/v) non-fat milk. The
membranes were subsequently washed with Tris Buffered Saline
Tween (TBST) and incubated for 1 h at room temperature with
corresponding secondary anti-bodies. Immunoreactive bands
were detected using enhanced chemiluminescence (ECL) kit
(Millipore Co., Billerica, MA, USA), GAPHD was used as
internal control.

Quantitative reverse
transcription-polymerase chain
reaction analysis

Quantitative reverse transcription Polymerase Chain
Reaction (RT-qPCR) was conducted using SYBR RT-qPCR
kit and Mx3000PTM RT-qPCR system (Stratagene, USA) in
triplicate for each sample reaction according to previous report
(31) to determine the mRNA expression of cytokines IL-2, IL-6,
IL-8, and TNF-α. The total RNAs of peritoneal macrophage
of BALB/c mice was extracted using Trizol reagent (Solarbio,
Beijing, China) according to the instruction of manufacture and
to synthesize cDNA by PrimeScript RT kit (Takara Biological
Engineering Company, Dalian, China). The designed specific
primers (Sangon Biotechnology company, Shanghai, China)
were list in Table 1.

Data analysis

In this study, all statistical analyses were performed
using SPSS 20.0 software (SPSS, Inc., IL, USA). Data were
expressed as mean ± standard error (SE). One-way analysis
of variance (ANOVA) and T-tests were used to test for
statistical significance. P-values less than 0.05 were considered
statistically significant.

Results and discussions

Extraction, purification and purity of
CCP2

100 mg of CCCP was dissolved in distilled water (2 mL),
purified by DEAE-A52 column (1.6 cm × 100 cm) and
sequentially eluted with distilled water and 0.3 M NaCl at a
flow rate of 0.6 mL/min. The eluant contained a macromolecule
discovered by HPLC and named CCP1, which contained
three fractions with similar polarity (Figure 1A). Further, the
SephadexG-100 column (1.6 cm × 100 cm) was used to obtain
CCP2. The single symmetrical peak (Figure 1B) at 15.592 min
in HPLC indicates high purity. The UV absorption spectrum of
thiirane revealed no obvious absorption peaks between 260 and
280 nm after full-wave scanning indicated little protein of CCP2.
The average Mw of CCP2 was determined with a universal
calibration curve using Dextran as a standard (32). Based on the
calibration, the Mw of CCP2 was 8.28× 104 Da.

The monosaccharide compositions
and FTIR spectrum analysis of CCP2

The retention time of monosaccharide standard (Figure 2A)
and CCP2 after degrading by TFA acid (Figure 2B) were shown
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TABLE 1 Primers sequence of polymerase chain reaction (RT-qPCR).

Target gene Forward primer Reverse primer Product size (bp)

IL-2 atgaacttggacctctgcgg atgtgttgtcagagcccttt 129

IL-6 gatgaagggctgcttccaac gcttctccacagccacaatg 128

TNF-α ctgaacttcggggtgatcgg tgctcctccacttggtggtt 157

IL-8 atgacttccaagctggccgtg ttatgaattctcagccctcttca 302

GAPHD agatccctccaaaatcaagtgg ggcagagatgatgaccctttt 220

FIGURE 1

Weight average distribution of (A) CCP1 (crude polysaccharides eluted with 0.3 M NaCl) and (B) CCP2 (purified polysaccharides extracted from
C. cornucopioides).

in the Figure 2 and Table 2. After comparing the remain time
and area between standard and CCP2, the results indicated that
the CCP2 composed of D-Mannose, D-Galactose, D-Glucose,
and D-Xylose with the molar ratio of 1.86: 1.57: 1.00:1.14,
showing mannose might be the backbone of the CCP2 chain
(33).

The absorption band of CCP2 was performed (range:
4000–400 cm−1). The band at 3405.22 cm−1 and 2920.21–
2851.35 cm−1 were ascribed to the -OH and C-H stretching
vibrations, respectively (21). The characteristic absorption
peak of crystal water bending vibration was observed at
1637.15 cm−1 and the band at 1412.15 cm−1 was ascribed to -
CH2 deformation absorption (34). Bands around 1246.78 cm−1

reflected the deformation vibration the of C-H bond. Similarly,

bands between 1042.27–1073.74 cm−1 reflected the C-O-C
stretching in the pyranose ring. The absorption characteristic
peak at 919.10 cm−1 indicated β-type glycosidic bond. The
peaks at 1131.31 cm−1, 1073.74 cm−1, and 1042.27 cm−1

indicated the existence of pyranoid ring structure (12).

Effects of CCP2 on immunoregulation
in vitro

CCP2 promoted phagocytosis activation of
peritoneal macrophages

Recently, polysaccharides have been proven to participate
in cell immune defense, proliferation, and differentiation (35).
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FIGURE 2

Monosaccharide composition [(A) Standards, (B) CCP2 (Blue line)] and the FTIR spectrum (C) of CCP2.
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TABLE 2 Monosaccharide composition of CCP2.

Component Area (standard nC*min) Area (CCP2 nC*min) Molecular Weight (g/mol) Molar ratio

Xyl 31.524 37.3365 150.13 1.14

Man 19.437 46.8032 180.16 1.86

Glc 36.050 44.0274 180.16 1.00

Gal 25.143 50.6455 180.16 1.57

nC*min is the unit of area provided by the gas chromatography (Figure 2A).

Several polysaccharides were used as immunotherapeutic agents
in the treatment of cancer and were clinically applied in
combination with chemotherapy. Phagocytosis is the most
important index to evaluate the activation and function of
macrophages (36–38). In this study, the neutral red uptake assay
was used to evaluate the phagocytosis of macrophages in vitro.

Relative cell phagocytosis of macrophages in the presence of
CCP2 was significantly increased in a dose-dependent manner
(10–200 µg/mL) than that of the control group (P < 0.01),
reached maximum value at 100 µg/mL (Figure 3). Meanwhile,
CCP2 significantly enhanced the phagocytosis of macrophages
in a time-dependent (24, 36, and 48 h) and reached maximum at
36 h. Generally, the phagocytosis of RAW264.7 was significantly
increased, attaining a maximum value at 36 h and 100 µg/mL of
CCP2 (P < 0.01). The above results indicated that CCP2 holded
a strong potential to stimulate macrophages, which was the key
participant in innate and adaptive immunity. Compared with
previous reports, CCP2 showed stronger effect on the activation
of the phagocytosis of macrophages (22, 34, 39).

Effects of CCP2 on immunoregulation
in vivo

The effect of CCP on thymus and spleen index
of immunocompromised mice

The spleen and thymus index of various treatment groups
were dissected and weighed accurately on the 17th day.
The relative thymus index and spleen index of CyG group
decreased significantly (6.94 ± 0.51 vs. 16.27 ± 0.89 mg/10 g,
20.11 ± 1.02 vs. 33.57 ± 1.32 mg/10 g) compared with NCG
group (Table 3). To compared with the CyG group, all the
indexes in CCP2 treatment groups remarkable increased. The
result implicated that the organic damage and immune function
of immunocompromised mice might be recovered after CCP2
treatments.

Effects of CCP2 on the spleen investigated via
histological examinations in the BALB/c mice

The destruction of the immune system, lead to autoimmune
diseases and inflammatory diseases, always accompanied the
organic damage (40). As an vital extrinsic diagnostic technology,
HE image is easily available to assess the immunosuppressive
status of organism (41, 42).

FIGURE 3

Effects of CCP2 on the phagocytic activity of macrophages.
Cells were treated with CCP2 at various concentrations (10, 25,
50, 100, 200, and 400 µg/mL) for 24, 36, and 48 h, respectively.
The control group was incubated with DMEM. ∗p < 0.05 and
∗∗p < 0.01 were significant when compared to the Control
group. Data were expressed as means ± SD.

In this study, the HE stained was performed to evaluate
the effect of CCP2 on colon tissues ultrastructure. As shows
in Figure 4, histological analysis showed that the ultrastructure
of spleen cells in the NCG were dense and arrange regularly.
To compared with NCG group, CyG group (B) showed
unclear red and white pulp structure and obvious intercellular
spaces dilatation. However, the administration of CCP2
could significantly decreased the extent of macroscopic and
microscopic intestinal irregular arrangement of cells induced
by Cy. As the ultrastructure of spleen cells in CCP2 + Cy
(M) (200 mg kg−1 day−1) and CCP2 + Cy (H) (400 mg kg−1

day−1) groups were dense, arrange regularly with clear nuclei,
red and white pulp structure, which were similar to the case of
NCG group. Likewise, the microscopic structure of CCP2 + Cy
(L) (100 mg kg−1 day−1) group also recovered slightly. The
histopathological analysis showed that CCP2 could attenuate the
immune lesions of spleen in immunosuppression mice after Cy
intervention.

Effects of CCP2 on the secretion of cytokines
of the immunosuppressive BALB/c mice

Cytokines are synthesized and secreted by immune cells
(macrophages, monocytes, B and T cells, DCs and neutrophils,
etc.) and non-immune cells (endothelial cells, epidermal and
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TABLE 3 The thymus and spleen index of immunocompromised mice.

Group Dosage (mg·kg−1·day−1) Thymus index (mg 10 g−1) Spleen index (mg 10 g−1)

NCG – 16.27± 0.89 33.57± 1.32

CyG – 6.94± 0.51## 20.11± 1.02##

Prevent CCP2 + Cy (L) 100 9.46± 0.56** 22.97± 1.35**

CCP2 + Cy (M) 200 13.32± 0.74** 29.47± 0.78**

CCP2 + Cy (H) 400 11.27± 0.34** 26.38± 0.68**

Data are presented as mean± SD, n = 6.
##p < 0.01 was significant when compared to the NCG group.
**p < 0.01 was significant when compared to the CyG group.

FIGURE 4

Effects of CCP2 on the spleen tissues showed in HE-stained
histopathological images (scale bar = 100 µm, objective: 20×).
NCG, normal control group; CyG, cyclophosphamide treatment
group; CCP2 + Cy(L), Cy + CCP2 treatment group (100 mg kg−1

day−1); CCP2 + Cy(M): Cy + CCP2 treatment group (200 mg
kg−1 day−1), CCP2 + Cy(H): Cy + CCP2 treatment group
(400 mg kg−1 day−1).

fibroblasts, etc.) after stimulation by immunogen, inflammatory
factors, and exogenous stimulant with the biological activities
on regulating inflammatory, innate or adaptive immune
response (43). Such as TNF-α and IL-1β were released robustly
by monocytes and macrophages after treated with LPS or
Tripalmitoyl-S-glyceryl-cysteine (Pam3Cys, a lipopeptide). ECs
granulocyte-monocyte-colony stimulating factor (GM-CSF),
secreted granulocyte-colony stimulating factor (G-CSF), IL-6,
IL-10, and IL-1α as major cytokines upon TLR stimulation
(44, 45).

To evaluate the immunosuppressive regulation capacity
of CCP2, the mRNA expressions of immunological cytokines
(IL-2, IL-6, TNF-α, and IL-8) in peritoneal macrophage of
various treatment groups were analyzed (Figure 5). To compare
with the NCG group, the expressions of IL-2, IL-6, IL-8,
and TNF-α were suppressed significantly after Cy intervention
(p < 0.01). As the comparison, CCP2 alleviated Cy-induced
immunosuppression at a molecular level by promoting the
production of IL-2, IL-6, and IL-8, but to different degrees in
a dose-dependent manner. The CCP2 + Cy (M) and CCP2 + Cy

FIGURE 5

Effects of CCP2 on the secretion of cytokines (IL-2, IL-6, IL-8,
and TNF-α) in the peritoneal macrophage of
immunosuppressive mice induced by Cy. RT-qPCR analysis was
relative to that of the reference gene (GAPHD). NCG: Normal
control group, CyG: Cyclophosphamide treatment group,
CCP2 + Cy (L): Cy + CCP2 treatment group (100 mg kg−1

day−1), CCP2 + Cy (M): Cy + CCP2 treatment group (200 mg
kg−1 day−1), CCP2 + Cy (H): Cy + CCP2 treatment group
(400 mg kg−1 day−1), ##p < 0.01 vs. the NCG group, ∗p < 0.05,
∗∗p < 0.01 vs. the CyG group. Data were expressed as
mean ± SD, n = 6.

(H) (200 and 400 mg kg−1 day−1) groups significantly enhanced
the mRNA expression of above cytokines to compare with the
CyG groups (p < 0.01) except TNF-α. Current data suggested
that CCP2 capable of reversing the down-regulation of mRNA
expressions to relieve the immunosuppressive.

Effects of Craterellus cornucopioides on
protein expressions in abdominal macrophages
in BALB/c mice

Reportedly, TLRs and NF-κBs were involved in the
stimulation of gene expression [such as Inducible Nitric Oxide
Synthase (iNOS), IL-6, TNF-α mRNA] and cytokine secretion
(such as NO, IL-6 and TNF-α) in immune responses. In view
of the immunosuppression of Cy-induced injury as mentioned
above, we elucidated an underlying mechanism of CCP2 effect
via the TLR4-NF-κBp65 signal pathways, which were commonly
involved in immune signaling cascades. The level of TLR4, TRIF,
and TRAF6, and the phosphorylation of P- NFkB p65 were
determined. As a result of Cy administration, the level of TLR4,
TRIF, TRAF6, and P-NFκB p65 declined significantly, compared
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with those of mice in the NCG group. After administrating with
CCP2, the phenomena (decrease of TLR4, TRIF, and TRAF6)
were all alleviated significantly in a dose dependent manner,
especially at the dose of 200 mg kg−1 day−1. Next, we evaluated
the effect of CCP2 on the phosphorylation of p65. As shown in
Figure 6, treatment with CCP2 increased the phosphorylation
of p65 in a concentration-dependent manner. The CCP2 + Cy
(M) and CCP2 + Cy (H) (200 and 400 mg kg−1 day−1)
groups significantly enhanced the protein expression compared
with the CyG groups (p < 0.01). Results suggested that CCP2
activated NF-κB signaling pathway which was implicated in
transcriptional activation.

The main experiments contents and the sketch map was
showed in Figure 7. In the light of the analysis conducted, we
concluded that the receptor TLR4 plays a key role in the CCP2-
modulated immunoregulation in immunosuppression mice
model. Moreover, we showed that TLR4 in the pathogenesis of
CCP2 modulated NF-κB pathways.

Discussion

Macrofungus (mushroom) has been extensively applied as
traditional oriental medicine and food component for centuries
(46, 47). Several reports revealed the importance of Split
gill mushroom [Schizophyllum commune (Fr.:Fr.)], Lingzhi (in
China) [Ganoderma lucidum (W.Curt.:Fr.) P. Karst.], Shiitake
mushrooms [Lentinus edodes (Berk.) Sing], among other (48,
49). Nowadays, mushrooms are used as natural product-based

pharmaceuticals with higher treatment potential and lower toxic
effects in different pathological processes.

Polysaccharides are made up of identical or different
monosaccharides together with glycosidic linkages to be
linear or branching structure, which have been produced
as the first biopolymer on earth (50, 51). The macrofungus
polysaccharides and polysaccharide complexes components
attract considerable attention due to their bioactive [such
as efficient immunomodulatory, anti-cancer (52) and anti-
inflammatory effects (53, 54)]. However, the structural
information of different functional polysaccharides needs
to be analyzed to supply and to expand the application
of macro-fungus polysaccharides. Thus, in this study, we
obtained a polysaccharide that principally comprised of
mannose, galactose, glucose, and xylose in the ratio of
1.86:1.57:1.00:1.14, obtained from C. cornucopioides (CCP2)
that widely distributed around the world (China, Japan, Korea,
North America and Europe).

There was a clear correlation between allowed
conformations and linking pattern (55). As confirmed by
reports, polysaccharides extracted from MAE showed excellent
biological properties owing to their complete structure,
functional glycosidic linkages with a higher Mw and uronic acid
content. In this study, The CCP2 was a catenarian pyranose with
the Mw of 8.28 × 104 Da. The high structural diversity reflects
the functional diversity of these molecules (55, 56). The number
of structural factors such as monosaccharide composition,
uronic acids content, molecular weight (Mw), glycosidic bond
type in the backbone chain, and the esterification degree
are profoundly affected on the antiradical, antioxidant, and

FIGURE 6

Detection of the protein expressions of TLR4, TRIF, TRAF6, and phosphor-NFκB-p65 by western blotting. (A) Effect of CCP on the expression of
TLR4 in BALB/c mouse. (B) Effect of CCP on the expression of TRIF, TRAF6 and phosphor-NFκB-p65 in BALB/c mouse. GAPHD was used as an
equal loading control. #p < 0.05, ##p < 0.01 vs. the NCG group, *p < 0.05, *p < 0.01 vs. the CyG group. Data were expressed as means ± SD,
n = 10.
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FIGURE 7

The sketch map of the immunoregulatory induced by CCP.

antimicrobial activities of polysaccharides extracted from
biological sources (5, 57).

Recently, the structure of numbers of different
heteropolysaccharides had been precisely defined. It indicated
that the heteropolysaccharides in mushrooms revealed
prominently biological activities, in which β-D-glucan was
mainly relative to immunomodulatory and anti-tumor activity.
The most conversant polysaccharide in medicinal mushroom is
β-glucan due to their ability on stimulating cytokine secretion
ability of T cells, NK cells, and macrophage (proliferation
and differentiation) (47, 58, 59). The water soluble β-glucan
isolated from edible mushroom Entoloma lividoalbum, contains
(1→3,6)-β-D-Glcp, (1→3)-β-D-Glcp, (1→6)-β-D-Glcp,
and terminal β-D-Glcp glucosides, showed antioxidant and
immune-stimulate activities on thymocyte, splenocyte, and
macrophage (44). Based on the result of monosaccharide
composition, CCP2 composed of mannose, glucose and
galactose showed potential utilization in hypoimmunity
population, might be a potential immunomodulatory.

In our previous study, we obtained a polysaccharide
(CCP) with a molecular weight of 1.97 × 103 kDa from
edible C. cornucopioides fruiting bodies (21, 23). It was a
heteroglycan with (1→3)-linked-β-D-Manp-(1→6)-linked-α-
D-Galp backbone distributed by (1→4)-linked-α-D-Xylp-t-
α-D-Manp and t-β-D-Glup units at O-6 and composed of
mannose (48.73%), galactose (17.37%), glucose (15.97%), and
xylose (17.93%), and stimulated macrophage function, rising
phagocytosis, and activated cell morphology of RAW264.7
cells by TLR4-NFκB pathway. In the present paper, we
investigated the chemical structure and biological activity of
another C. cornucopioides polysaccharide. This study reported
the isolation, structure analysis, and immunoregulatory activity
of CCP2. Similarly, the immunomodulatory capacity was

also found in CCP2. indicating the efficacy. Further studies
including clinical trials need to be carried out to ascertain
the safety of these compounds as adequate alternatives to
conventional medicine. Our results showed that CCP2 could
promote the phagocytosis of RAW264.7 cells in a concentration-
dependent potency manner.

Cy has wide-spreading side-effects, such as hepatotoxicity
and nephrotoxicity (60, 61). According to our results of thymus
and spleen index (Table 2), and histological examination on
the spleen of immunocompromised mice. We hypothesized that
the immunosuppression in this group probably attributed to Cy
side-effects on organic damage.

The stimulating factors affected adaptive immune cells (Th1,
Th2, Th17, Tgd17, and CD8 T cells) to secrete IL-4, IL-5, IL-
15, TNF-α, and chemokine CXCL8 (IL-8), which influenced
neutrophils, macrophages (M1 and M2), and other granulocytes
to fight against extracellular bacteria, tumors, viruses or
extracellular parasites involved in immunologic processes of
infection resistance, autoimmunity and allergic disease. It
has previously been described that Cy polarizes the immune
response from Th1 to Th2 (62). In the current study, mRNA and
protein levels of all targeted elements were severely decreased in
three CCP2-treatment immunosuppressed mice groups.

Some polysaccharides, characterized from plants, animals,
fungi, etc., with various pharmacological properties by inducing
cytokine secretion in immune cells, causing its segments similar
to the cell membrane which were predominantly composed of
various polysaccharides with species-specific monosaccharides
or structures. The present data demonstrated that CCP2
significantly stimulated the mRNA expression of IL-2, IL-8, IL-6
to modulate immune response.

The western blot was used to explain the phenomenon.
As an integral membrane protein in cytoplasmic domain,
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the toll protein is the first identified in D. melanogaster as
potent classes of PRRs (63). It is an essential factor involve
in the survival and development of the embryo along with
patterning, and characterize in recognizing the polysaccharide
structures of cell walls. Among TLRs, TLR4 is known to induce
production of TNF-α and IL-6. In this study, the expression of
cell surface receptor TLR4 was elevated significantly. Moreover,
the production of TRIF, TRAF6, and phosphorylation of NF-
κBp65 were detected after administration of CCP2, indicating
the activation of TLR4- NF-kBp65 signaling pathway.

These results indicated the impact of Cy in suppressing
immune system through diminishing immune cells production,
circulation and infiltration. The chemotherapy might cause an
overall depletion of adaptive immune system cells.

Nevertheless, the administration of CCP2 reversed
the immunosuppression side-effects that caused by Cy,
which provided us a better understanding of the molecular
mechanisms of the activation of immune system. Further
understanding of the signaling pathways might provide novel
insights into the mechanisms of immunomodulation and new
opportunities on rational application of CCP2.

Conclusion

Polysaccharides obtained from fungi have attracted
considerable attention due to their unique biological activities.
In the present study, we investigated the chemical structure and
immunoregulatory activity of CCP2 for the first time. Available
data indicated CCP2 possessed immune-enhancing effect in vivo
and in vitro to alleviate immunosuppression, which could be
considered as a functional component of C. cornucopioides and
an immunological modulator in the food nutrition industry.
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