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The research in microbial communities would potentially impact a vast number of applications in
‘‘bio’’-related disciplines. Large-scale analyses became a clear trend in microbial community studies, thus it
is increasingly important to perform efficient and in-depth data mining for insightful biological principles
from large number of samples. However, as microbial communities are from different sources and of
different structures, comparison and data-mining from large number of samples become quite difficult. In
this work, we have proposed a data model to represent large-scale comparison of microbial community
samples, namely the ‘‘Multi-Dimensional View’’ data model (the MDV model) that should at least include 3
aspects: samples profile (S), taxa profile (T) and meta-data profile (V). We have also proposed a method for
rapid data analysis based on the MDV model and applied it on the case studies with samples from various
environmental conditions. Results have shown that though sampling environments usually define key
variables, the analysis could detect bio-makers and even subtle variables based on large number of samples,
which might be used to discover novel principles that drive the development of communities. The efficiency
and effectiveness of data analysis method based on the MDV model have been validated by the results.

M
icrobes are ubiquitous on our planet, and it is well-known that the total number of microbial cells on
Earth is huge1,2. These organisms usually live in communities, and each of these communities has a
different taxonomical structure. As such, microbial communities would serve as the largest reservoir of

genes and genetic functions for a vast number of applications in ‘‘bio’’-related disciplines, including biomedicine,
bioenergy, bioremediation, and biodefense3. Since over 90% of strains in a microbial community could not be
isolated or cultivated4, metagenomic methods have been used to analyze a microbial community as a whole. Such
an approach has enabled exploring relationships among microbes, their communities and habitats at the most
fundamental genomic level. Furthermore, environments have profoundly and delicately shaped the microbial
community structures, thus making microbial communities from different conditions or time-points different, as
well as making it possible for communities from similar types of environment to be significantly different5.

With the advancement of microbial community analysis, it is now possible to conduct sample collection, DNA
extraction and taxonomical structure analysis by an efficient pipeline6,7 for large number of samples. These efforts,
together with the advanced methods for rapid sample comparison8,9 have enabled the monitoring of microbial
communities in time-course and under different conditions. For example, microbial community analyses have
been conducted for monitoring of human microbial communities5,10–12, environmental samples of ocean micro-
bial communities13 and soil microbial communities14.

As large-scale metagenomic analyses become a clear trend in microbial community analysis, data-mining
methods should keep pace. Based on large volume of microbial community samples, it is becoming more and
more important to perform in-depth data-mining for valuable biological information on a large scale. Currently
many tools such as Mothur15, QIIME16 and MEGAN17 provide metagenomic analysis methods for microbial
communities, which mostly focus on samples alone and ignore the connections to the environmental factors. And
some of these tools also face difficuties in throughput and data-volume when handreds of samples are to be
compared and integrated for mining. The basic data-mining requirements are to unveil the correlations between
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communities and key factors (taxa, environmental factors, etc.), as
well as the effect of these factors on the changes of these communit-
ies. For advanced data-mining method development, we believe they
should have at least two properties: firstly the method should be
capable of handling large-scale datasets, and secondly the analysis
results should be profound enough to show the underlining relation-
ships among microbial community structures, their environments,
and the ever-changing organisms within samples.

Though microbial community data are from different sources and
of different structures, a large-scale comparison of them could be
presented based on a uniformed data model, namely the ‘‘Multi-
Dimensional View’’ (MDV) data model that should at least include
3 aspects (Figure 1, for details refer to ‘‘Methods’’ section): samples
profile (S), taxa profile (T) and meta-data (environmental conditions

including sampling time, condition, etc.) profile (V). In other words,
MDV 5 {S, T, V}. Among these, ‘‘meta-data’’ profile includes all
environmental and temporal variables for microbial communities,
such as host/habitat for human microbiota, temperature, pH value,
etc. This 3-aspect view (Figure 1 (A)) is a simplified model that could
include more views such as different batch of experiments and so on
to become the extended MDV model (Figure 1 (B)).

Based on this MDV model, the digging of biological relationships
from communities could be summarized as the data-mining from the
MDV 5 {S, T, V} space, and the above-mentioned two key aspects
for data-mining method development become very natural and clear:
the deep data-mining would essentially echo the effective clustering
of those basic elements in the MDV model, and efficiency require-
ments echo the needs for fast process of such clustering. Thus the

Figure 1 | The data model for comparison of a number of microbial community samples. (A) The 3-aspect view for the comparison data model. (B)

Meta-data could be extended to include multiple environmental and temporal variables including habitat, pH value, etc. Among these meta-data

variables, some are highly related to human habitat samples, while others are highly related to environmental samples.

Figure 2 | The 3 microbial community datasets used in this study, represented in 3D views according to the MDV data model. Each dataset correspond

to a MDV model with different {S, T, V} space. The MDV cubes were generated using SVG (Scalable Vector Graphics) and photos were captured by one of

the authors (Xiaoquan Su) in-house.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 6393 | DOI: 10.1038/srep06393 2



effective and efficient clustering of basic elements in the MDV model
would be the core for the success of large-scale microbial community
data-mining.

In this work, we focused on inferring the correlation between the
taxa profile (T) and meta-data (V) by data-mining method in the
MDV model, i.e., comparison of samples with different meta-data.
We have proposed a method for the rapid data comparison and
correlation analysis among microbial community samples based
on the MDV model, which is supported by High-Performance
Computation for rapid process. This method has also been applied
on 3 sets of samples from different conditions including human-
associated habitats, soil and marine water, each of which has a large
number of samples. These datasets are of different complexity and
comes with different meta-data, therefore they are suitable for assess-
ment of data model and data analysis methods. The comparison and
correlation analysis results based on these datasets have showed
excellent performance of our method for in-depth data-mining from
massive number of microbial community samples.

Results
Microbial community samples. We have evaluated the efficiency of
sample comparison and correlation analysis method in MDV spaces
based on 3 microbial community datasets. The 3 sets of microbial
community samples were gathered from different environments,
each having a large number of samples (Figure 2). Dataset A
contains 258 human-associated microbial community samples
from 3 different habitats of 6 individuals, which were produced by
Caporaso, et al., PNAS 201118 and Caporaso, et al., Genome Biology,
201119 (refer to Table S1 in supporting information File S1 for
details); Dataset B contains 40 microbial samples from marine
surface water sampled at 3 different time-points, which were
produced by Caporaso, et al., PNAS 201118 (refer to Table S2 in
supporting information File S1 for details); Dataset C contains 42
soil microbial community samples of 3 different locations, produced
by the same work as Dataset B (refer to Table S3 in supporting
information File S1 for details). These 3 datasets thus represented
broad-based microbial communities that also have important
biological applications. All of these microbial community samples’
sequencing data were produced by Illumina GAIIx from 16S rRNA
genes.

Results on human-associated habitat microbial community samples.
The commensal microorganisms living in our gut20,21, skin22,23 and
various other places have key roles in our physiology24, including our
immune responses and metabolism, as well as in various human

diseases25. Since hosts and sampling times would significantly affect
the structure of human-associated habitat microbial communities,
the combination of large amount of samples together with their
meta-data would serve as a good benchmark for testing analysis
methods.

In this case study, we have obtained 258 human-associated habi-
tats microbial community samples from 3 different habitats (gut
samples from feces, skin samples from palms and oral samples from
tongue) of 6 individuals (Table 1). In the MDV model, jSj5 258 and
V 5 {Host, Habitat}. Among the 6 hosts, 2 (Female 5 and Male 6)
were from the same family, which were obtained from Caporaso, et
al., Genome Biology, 201119, while others were from different families
(Female 1, Male 2, Male 3 and Male 4) with samples’ sequences
produced by different primers, which were obtained from
Caporaso, et al., PNAS 201118.

Table 1 | Information of the Human-associated habitat samples

Host (v1) Habitat(v2) Number of samples ( | S | )

Female 11 Gut 14
Skin 14
Oral 13

Male 21 Gut 28
Male 31 Gut 14

Oral 14
Male 41 Gut 14

Skin 13
Oral 14

Female 52 Gut 20
Skin 20
Oral 20

Male 62 Gut 20
Skin 20
Oral 20

1Host in different families from Caporaso, et al., PNAS 2011.
2Hosts in the same family from Caporaso, et al., Genome Biology, 2011.

Figure 3 | Similarity matrix of Human-associated habitat microbial
community samples. (A) Hosts were from different families. (B) Hosts

were from the same family. Each tile represents a similarity value between

two samples from a color gradient between red and green: red color

indicates higher similarity value and green color indicates lower similarity

value, with red/green shades in between indicating intermediate values.

Table 2 | Prominent taxa which could distinguish samples from dif-
ferent habitats

Taxon Habitat P-value

Bacteroidaceae Gut 1.64E-39
Clostridiaceae Gut 4.86E-42
Prevotellaceae Oral 6.51E-31
Pasteurellaceae Oral 3.57E-46
Corynebacterineae Skin 2.36E-39

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 6393 | DOI: 10.1038/srep06393 3



We have first generated pair-wise similarity matrices with all 258
samples based on their taxonomical structure among samples ((S, T)
space of the MDV model) from different families (Figure 3 (A)) and
the same family (Figure 3 (B)), respectively. Then we used hierarch-
ical-based clustering methods based on similarly matrices to examine

the relationship among different human microbiota (for details refer
to ‘‘Methods’’ section). Results (Figure 3) have shown that samples
from the same habitat were clustered together, and samples from skin
and oral environment shared more common structures, yet com-
munity structures for samples within gut were significantly different.

Figure 4 | PCoA analysis results for samples from the same family. Samples were categorized by habitats on left, and by hosts on right.

Figure 5 | Clustering and bio-marker analysis results of marine samples. (A) Hierarchical-based clustering results to discover the relationships

among samples, in which the more similar the two samples the deeper dark red color. (B) Density-based clustering result to examine the major

differentiation factors, in which nodes represent samples, and edges between nodes indicated that their similarities were above the threshold of 85%.

(C) The relative abundances distribution for all marine water samples for 3 most dynamic taxa in marine samples.

www.nature.com/scientificreports
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This clustering pattern by habitats indicated that among the various
meta-data (V space of the MDV model, including family background
(possibly related to diet26), host and habitats), habitat played a more
important role in shaping the community structures for these sam-
ples. Further probing of the bio-marker taxa in (T, V) space of the
MDV model (for details refer to ‘‘Methods’’ section) that caused such
pattern has shown that Bacteroidaceae and Clostridiaceae (dominat-
ing gut microbial communities), Prevotellaceae and Pasteurellaceae
(dominating oral microbial communities), and Corynebacterineae
(dominating skin microbial communities) were the most prominent
taxa (Table 2) that could distinguish samples from different habitats.

We noticed that among the hosts in different families, most sam-
ples from the same host could be clustered together for each habitat
(Figure 3 (A)). Only few samples labeled with ‘‘Male_4_Gut’’ were
divided into two groups probably due to the reason that sequences
produced by different primers were from the different regions of 16S
rRNA gene). Additionally, among family members (Female 5 and
Male 6), samples of the same habitat could not be distinguished by
host (Figure 3 (B)). The most abundant taxa in samples from Female
5 and Male 6 include Bacteroidaceae (P-value 5 0.346),
Prevotellaceae (P-value 5 0.777), Pasteurellaceae (P-value 5

0.809) and Streptococcus (P-value 5 0.741) which showed high sim-
ilarity in relative abundances due to the strong effect from small-scale
environment of the same family26, thus making the differentiation
difficult.

Furthermore, we conducted the PCoA (Principal Coordinates
Analysis) analysis based on sample similarity matrix from the same
family to examine the correlation of the microbial community pat-
terns to hosts and habitats. It was obvious in the PCoA results
(Figure 4) that samples could be differentiated by habitats, but sam-
ples from the same habitats but different family members were mixed
together because they shared similar community structure patterns.

Results on microbial community samples from marine water.
Marine microbial communities play a very important role in the
regulation of carbon and nitrogen circulation of the globe27, and
they contain important genes for a wide application area such as
bioenergy, bioremediation, etc28. However, marine samples are
very diverse in their structure as well as function, making
knowledge discovery from them quite challenging.

In this work, we applied our method to analyze 40 microbial
samples produced by Caporaso, et al., PNAS 201118 from marine
surface water of Newport Beach Pier, CA, US collected at different
time-points (seasons)18. These samples were collected from 3 differ-
ent time-points (seasons) at the same location. In the MDV model,
jSj5 40 and V 5 {Time, Temperature}. We used hierarchical-based
method to evaluate the relationships among all marine water com-
munities and density-based clustering methods MCODE29 (for
details refer to ‘‘Methods’’ section) to examine the major differenti-
ation factors during time-course based on the pair-wise similarity
matrix.

Results from Figure 5(A) and Figure 5 (B) indicated that all sam-
ples could be divided into three groups by the meta-data of sampling
time-point (V space in the MDV model). Since these marine water
samples were collected from a similar site (a near-coast site) and
water-depth (surface) yet at 3 different time-points (seasons) with
different water temperature, the microbial community structures
showed high correlation with V 5 water temperature in the MDV

model in Figure 5 (B), which has also been proven in other works30.
Detailed analyses on bio-markers in (T, V) space of the MDV model
have shown that the relatively abundant and most dynamic taxa for
these samples include Flavobacteriaceae (P-value 5 0.00095),
Prochlorococcus (P-value 5 0.00056), and Rhodobacteraceae (P-
value 5 0.00056) (Figure 5(C)), all of which were sensitive to water
temperature as well. Additionally, from Figure 5 (A) we observed that
though each cluster of samples had high intra-cluster similarity,
samples from time-point 2 were not similar enough with any of
the samples from time-point 1 and time-point 3, indicating that
meta-data for samples from time-point 2 might be drastically differ-
ent. Our analyses on the above 3 most dynamic taxa have also shown

Table 3 | Information of soil samples

Type (v1) Location (v2) pH (v3) Number of samples ( | S | )

Desert scrub soil Sevilleta, New Mexico, US 8.3 14 (7 for 39 reads and 7 for 59 reads)
Grassland soil Cedar Creek, Minnesota, US 6.1 14 (7 for 39 reads and 7 for 59 reads)
Pine soil Calhoun, South Carolina, US 4.9 14 (7 for 39 reads and 7 for 59 reads)

Figure 6 | Clustering analysis results of soil samples based on
hierarchical-based clustering.

www.nature.com/scientificreports
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that compared to samples from time-point 1 and time-point 3, sam-
ples from time-point 2 always have different taxa abundances with
regard to Flavobacteriaceae, Prochlorococcus and Rhodobacteraceae
(Figure 5(C)).

Results on microbial community samples from soil. Soil microbial
communities belong to a type representing the most important
communities on land for regulation of the carbon and nitrogen circu-
lation on earth31,32, and they were directly related to agriculture
researches30. Soil microbial communities also represented the most
complex, diverse and dynamic communities on earth33.

We have used 42 soil microbial community samples of 3 different
places each with different pH values from the work of Caporaso,
et al., PNAS 201118 to demonstrate the performance of our method.
For the soil samples, both 39 reads and 59 reads which were the
sequencing results of 16S rRNA genes in two complementary direc-
tions by different primers were generated and analyzed together
(Table 3). In the MDV model, jSj 5 42 and V 5 {Type, Location,
pH, Primer}. We then processed the samples with hierarchical-based
clustering method (for details refer to ‘‘Methods’’ section) based on
their similarity matrix to discover the corresponding environmental
patterns.

Figure 7 | Correlation analysis result based on soil samples. (A) PCoA analysis results of soils samples. (B) Correlation of taxa abundances with Vi 5 pH

values. R was the Pearson correlation coefficient for the pH value against the relative abundance in all soil samples.

Figure 8 | Running time for the whole data-mining procedures. Bar chart illustrated the running time comparison between CPU (16 core) and GPU

(Tesla M2075) computing. The Y-axis was in 10-based log scale. Pie charts showed the proportions of each processing step in the total running time.

www.nature.com/scientificreports
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From the results (Figure 6) we observed that all samples could be
divided into 3 groups, mainly by the pH values of the sampling
environments. We also noticed that in each group, samples
sequenced by 39 primer and 59 primer could be distinguished from
the clustering results due to the technical specification of sequencing
that sequences produced by 39 primer and 59 primer were from
different regions of 16S rRNA genes. We also verified our results
using the Fast UniFrac34 algorithm and obtained similar results (refer
to Figure S1 in Supporting information File S1 for details).

We further investigated the correlation between the community
structures of soil samples and their environment factors by PCoA
(Principal Coordinates Analysis) in (T, V) space of the MDV model.
Results in Figure 7 (A) elucidated the high correlation of the com-
munity structure to the pH values: both 39 reads samples and 59 reads
samples were ordered from alkalinity soil to acid soil (from pH 8.3 to
pH 4.9), and sample from the acid and semiacid environment were
more similar (samples from pH 4.9 soil and pH 6.1 soil), which has
been proved by Fierer et al., PNAS 200635.

Then we performed the bio-marker analysis to discover the
abundant key taxa that strongly correlated with Vi 5 pH value. As
soil microbial communities were much more complex with a huge
number (.1,000) of species in each sample, a taxon with more than
5% relative proportion in the community was already very abundant.
The abundance variation of taxa Sphingomonadaceae (Pearson
correlation coefficient R 5 0.9537, abundances 0.6%–15%), Rubro-
bacterineae (R 5 0.9696, abundances 0.9%–5.5%) and Micromono-
sporineae (R 5 0.9296, abundances 0.5%–5.3%) had strong positive
correlation with pH values, as well as Burkholderiaceae (R 5

20.9832, abundances 0.3%–3.4%) were highly negative correlated
to pH values, which would be the reason behind the strong correla-
tion of community structure with pH values (Figure 7 (B)). In addi-
tion, there was no significant correlation (jRj , 0.7) for pH values
and other abundant taxa. This further confirmed that the pH values
might affect soil microbial communities significantly through the
changes of these abundant taxa35.

Efficiency analysis. We have also evaluated the running time of data-
mining analysis including similarity matrix construction, clustering
and correlation analysis, based on the 3 sets of microbial commu-
nities. Benefited by the GPU based High Performance Computing

(HPC)9 in the most time-consuming process of similarity matrix
construction (Figure 8, pie charts), the overall computing speed of
GPU achieved more than 60 times speed-up compared to computing
speed of CPU, with 16 cores (Figure 8, bar charts). This HPC strategy
has made possible data-mining on 258 samples (dataset A) to be
completed within only 2 minutes, out of which nearly 30% of time
was spent on clustering and correlation analyses.

Discussion and Conclusion
As large amount of metagenomic data could be accumulated quickly
from various microbial community profiling projects using NGS, it is
becoming more and more important to perform in-depth analysis of
microbial communities, as well as data-mining for valuable yet hid-
den biological principles that controls the dynamic changes of micro-
bial community samples. The basic questions based on such a large
amount of samples would be the comparison and correlation analysis
which include the understanding of relationships among communit-
ies, key factors (taxa, environmental factor, etc.) for such relation-
ships, as well as the effect of environmental and/or temporal factors
on community dynamics.

One apparent yet critical problem for data-mining from large
number of microbial communities is the heterogeneity of samples
(different sources, different meta-data, different structure, etc.). In
this work, we have proposed a data model to represent large-scale
comparison of these samples, namely the ‘‘multi-dimensional view’’
data model (MDV 5 {S, T, V}) that consisted of 3 basic aspects:
sample profile, taxa profile and meta-data profile. The effective
and efficient analysis among different elements in the MDV model
is the core for the success of large-scale microbial community data-
mining. We have also proposed a method for the rapid data
comparison and correlation analysis among microbial community
samples based on the MDV model, which is supported by High-
Performance Computation for rapid process. The comparison and
correlation analysis results based on datasets from various sampling
conditions showed excellent performance for in-depth data-mining
from massive number of microbial community samples.

The MDV model is not only restricted by sample clustering, but
could also be used for taxa clustering as well. Based on taxa clustering
(in T space), important biomarkers for distinguishing samples could
be discovered36,37. Clustering from another angle of meta-data (in V
space) would also help to distinguish important environmental or
temporal factors that would affect the dynamics of microbial com-
munity samples. These future works based on the MDV model would
serve well for more data-mining and in-depth understanding of the
underlining principle controlling the functions and evolution of vari-
ous microbial communities, which would also have great potential in
applications.

Methods
The MDV data model. The ‘‘Multi-Dimensional View’’ (MDV) data model includes
3 aspects (Figure 1): sample profile (S), taxa profile (T) and meta-data profile (V),
which could be integrated by formula 1:

MDV~

S~ s1,s2,:::,snð Þ
T~fphylogeny t1,t2,:::,tmð Þ
V~ v1,v2,:::,vq

� �

8><
>:

ð1Þ

In this 3-dimensional view (3D view), sample profiles S 5 (s1, s2, ..sn) contains the ID
and basic information about the samples; taxa profiles T 5 (t1, t2, …, tm) contains
community structure information about the taxa, their relative abundances in
different samples and their phylogenetic relationship (represented by fphylogeney in
Formula 1); meta-data profiles V 5 (v1, v2, …, vq) contains the meta-data (sampling
time, environment condition, etc.) of all samples. In this work, we focus on analysing
the relationships among samples with different meta-data. This is equivalent to
inferring the correlation between the taxa profile (T) and meta-data (V) by data-
mining in the MDV model, which could also be describe by Formula 2:

Figure 9 | The overall scheme for microbial community data-mining.

www.nature.com/scientificreports
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S,T,Vð Þ
Data{mining

f correlation T,Vð Þ ð2Þ

The data-mining method. The rapid data-mining procedure includes community
structure analysis, similarity-matrix construction, sample clustering and correlation
with meta-data based on the MDV model. The overall scheme is illustrated in
Figure 9:

Microbial community structure analysis. The community structure profiles of all
samples are parsed out from their 16S rRNA gene sequences by high efficient
metagenomic analysis tool Parallel-META36 (version 2.0). Parallel-META maps the
16S rRNA sequences of each sample by MegaBLAST37 to the reference database to
identify the taxonomical classification and phylogenetic relationship of each species.
In this work we use the GreenGenes38 core-set (release date: May 2009) as the ref-
erence database and 1E-30 as the expectation value for MegaBLAST based database
mapping.

Similarity matrix construction. The similarity matrix reflects the similarity of samples
in S 5 (s1, s2, ……, sn) space based on their taxonomical structure data T 5

fphylogeny(t1, t2, ……, tm). The similarity score between two microbial community
samples evaluates as a quantitative similarity (always a float value between 0% and
100%) calculated by Meta-Storms8,9 algorithm based on the community structure
analysis results. The similarity matrix of N samples that consisted by N*N pairs
represents pair-wise similarity, in which each pair indicated the similarity score of one
sample pair. Based on the permutation test results in our previous work8, a similarity
score of 85% or higher indicates significant similarity between 2 samples.

Clustering methods. Clustering methods includes hierarchical-based method and
density-based method from MDV 5 {S, T, V} space. The hierarchical-based clus-
tering elucidates the relationships among the microbial community samples and
sample groups, while the density-based clustering focuses on discovering sample
groups with significant difference defined by a given threshold. The density-based
clustering is also used for validity check for the results of hierarchical-based
clustering.

(a) The hierarchical-based clustering method is implemented by ‘‘HClust’’ func-
tion of CRAN R39, and results are visualized by MetaSee software40 and
‘‘gplots’’ package (Gregory R., et al., gplots: Various R programming tools
for plotting data. http://CRAN.R-project.org/package5gplots) of CRAN R.
In the hierarchical-based clustering, distances among different clusters were
evaluated using the ‘‘average linkage’’ (http://stat.ethz.ch/R-manual/R-devel/
library/stats/html/hclust.html) method.

(b) The density-based clustering method is implemented by MCODE29 and
results are visualized in Cytoscape software41. Based on permutation tests8,
similarity score of 85% or higher indicates the significant similarity between 2
samples. In the density-based clustering analysis we select 85% as the thresh-
old for significant difference.

Correlation and bio-marker selection methods. The correlation analysis attempts to
discover relationships between taxa profiles T 5 fphylogeney(t1, t2, ……, tm) space and
V 5 (v1, v2, ……, vq) space based on the clustering results to deduce the fcorrelation (T,
V) in Formula 2. The Principal Coordinates Analysis (PCoA) are used to elucidate the
correlation between community structures and meta-data based on the similarity
matrix, which is implemented by ‘‘vegan’’ package (ari Oksanen, et al., vegan:

Community Ecology Package. http://CRAN.R-project.org/package5vegan) of
CRAN R. Then we also select the bio-markers which are considered as abundant taxa
that have high correlation with the meta-data and clustering results. For the
numerical meta-data (such as pH value, temperature, etc.), we calculate the Pearson
correlation coefficient (R) between abundance values of specified taxa and meta-data,
and select the taxa with R value equal to or larger than 0.9 which indicate the
significant correlation between abundance values and meta-data. For the discrete
meta-data (such as human-associated habitat, location, etc.), we perform the
Wilcoxon and Kruskal rank-sum test and select the taxa with P-value smaller or equal
to 0.01, which indicate the significant difference of abundance values among different
meta-data.

High-performance computing. The MDV data model has been considered for
parallel processing of sample comparison. The similarity among microbial
community samples are evaluated by the similarity scores in (T, V) space of the MDV
model. The similarity score between each sample pair is calculated by Meta-Storms8

algorithm with time complexity of Nlog(N) (N is the number of species existing in one
sample). However, as the amount of samples increases, the overall time complexity of
M 2* Nlog(N) (M is the number of samples) based on pair-wise comparison always
leads to an unacceptable running time.

In this work, we have performed the calculation of the similarity matrix for massive
number of samples using GPU-Meta-Storms9 based on NVIDIA Tesla M2075 GPU
hardware (448 stream processors, 6 GB onboard memory). To calculate the similarity
matrix of N samples, N *N threads are launched in GPU with many-core architecture
to let each similarity score in the matrix be processed by one independent thread in
parallel (Figure 10). To fully utilize the GPU-based computation power, we have also
designed optimization strategies including global memory alignment, register recal-
ling allocation and shared memory utilization in I/O (Input/Output) operations to
improve the overall performance by GPU computing.
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